LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

Bibtex Metadata Paper Reviews

Authors

Zeyuan Allen-Zhu, Yuanzhi Li

Abstract

We study k-SVD that is to obtain the first k singular vectors of a matrix A. Recently, a few breakthroughs have been discovered on k-SVD: Musco and Musco [1] proved the first gap-free convergence result using the block Krylov method, Shamir [2] discovered the first variance-reduction stochastic method, and Bhojanapalli et al. [3] provided the fastest $O(\mathsf{nnz}(A) + \mathsf{poly}(1/\varepsilon))$-time algorithm using alternating minimization. In this paper, we put forward a new and simple LazySVD framework to improve the above breakthroughs. This framework leads to a faster gap-free method outperforming [1], and the first accelerated and stochastic method outperforming [2]. In the $O(\mathsf{nnz}(A) + \mathsf{poly}(1/\varepsilon))$ running-time regime, LazySVD outperforms [3] in certain parameter regimes without even using alternating minimization.