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Abstract

Fluorescent calcium indicators are a popular means for observing the spiking ac-
tivity of large neuronal populations. Unfortunately, extracting the spike train of
each neuron from raw fluorescence calcium imaging data is a nontrivial problem.
We present a fast online active set method to solve this sparse nonnegative decon-
volution problem. Importantly, the algorithm progresses through each time series
sequentially from beginning to end, thus enabling real-time online spike inference
during the imaging session. Our algorithm is a generalization of the pool adjacent
violators algorithm (PAVA) for isotonic regression and inherits its linear-time com-
putational complexity. We gain remarkable increases in processing speed: more
than one order of magnitude compared to currently employed state of the art convex
solvers relying on interior point methods. Our method can exploit warm starts;
therefore optimizing model hyperparameters only requires a handful of passes
through the data. The algorithm enables real-time simultaneous deconvolution of
O(105) traces of whole-brain zebrafish imaging data on a laptop.

1 Introduction
Calcium imaging has become one of the most widely used techniques for recording activity from
neural populations in vivo [1]. The basic principle of calcium imaging is that neural action potentials
(or spikes), the point process signal of interest, each induce an optically measurable transient response
in calcium dynamics. The nontrivial problem to extract the spike train of each neuron from a raw
fluorescence trace has been addressed with several different approaches, including template matching
[2] and linear deconvolution [3, 4], which are outperformed by sparse nonnegative deconvolution
[5]. The latter can be interpreted as the MAP estimate under a generative model (linear convolution
plus noise; Fig. 1), whereas fully Bayesian methods [6, 7] can provide some further improvements,
but are more computationally expensive. Supervised methods trained on simultaneously-recorded
electrophysiological and imaging data [8, 9] have also recently achieved state of the art results, but
are more black-box in nature.

The methods above are typically applied to imaging data offline, after the experiment is complete;
however, there is a need for accurate and fast real-time processing to enable closed-loop experiments, a
powerful strategy for causal investigation of neural circuitry [10]. In particular, observing and feeding
back the effects of circuit interventions on physiologically relevant timescales will be valuable for
directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo,
and recent experimental advances [11, 12] are now enabling work in this direction. Brain-computer
interfaces (BCIs) also rely on real-time estimates of neural activity. Whereas most BCI systems rely
on electrical recordings, BCIs have been driven by optical signals too [13], providing new insight
into how neurons change their activity during learning on a finer spatial scale than possible with
intracortical electrodes. Finally, adaptive experimental design approaches [14, 15, 16] also rely on
online estimates of neural activity.
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Figure 1: Generative autoregressive model for calcium dynamics. Spike train s gets filtered to produce calcium
trace c; here we used p = 2 as order of the AR process. Added noise yields the observed fluorescence y.

Even in cases where we do not require the strict timing/latency constraints of real-time processing,
we still need methods that scale to large data sets as for example in whole-brain imaging of larval
zebrafish [17, 18]. A further demand for scalability stems from the fact that the deconvolution
problem is solved in the inner loop of constrained nonnegative matrix factorization (CNMF) [19], the
current state of the art for simultaneous denoising, deconvolution, and demixing of spatiotemporal
calcium imaging data.

In this paper we address the pressing need for scalable online spike inference methods. We build
on the success of framing spike inference as a sparse nonnegative deconvolution problem. Current
algorithms employ interior point methods to solve the ensuing optimization problem and are fast
enough to process hundreds of neurons in about the same time as the recording [5], but will not scale
to currently obtained larger data sets such as whole-brain zebrafish imaging. Furthermore, these
interior point methods scale linearly, but they cannot be warm started, i.e. be initialized with the
solution from a previous iteration to gain speed-ups, and do not run online.

We noted a close connection between the MAP problem and isotonic regression, which fits data
by a monotone piecewise constant function. A classic isotonic regression algorithm is the pool
adjacent violators algorithm (PAVA) [20, 21], which sweeps through the data looking for violations
of the monotonicity constraint. When it finds one, it adjusts the estimate to the best possible fit with
constraints, which amounts to pooling data points with the same fitted value. During the sweep
adjacent pools that violate the constraints are merged. We generalized PAVA to derive an Online
Active Set method to Infer Spikes (OASIS) that yields speed-ups in processing time by at least one
order of magnitude compared to interior point methods on both simulated and real data. Further,
OASIS can be warm-started, which is useful in the inner loop of CNMF, and also when adjusting
model hyperparameters, as we show below. Importantly, OASIS is not only much faster, but operates
in an online fashion, progressing through the fluorescence time series sequentially from beginning to
end. The advances in speed paired with the inherently online fashion of the algorithm enable true
real-time online spike inference during the imaging session, with the potential to significantly impact
experimental paradigms. We expect our algorithm to be a useful tool for the neuroscience community,
to enable new experiments that online access to spike timings affords and to be of interest in other
fields, such as physics and quantitative finance, that deal with jump diffusion processes.

The rest of this paper is organized as follows: Section 2 introduces the autoregressive model for
calcium dynamics. In Section 3 we derive our active set method for the sparse nonnegative deconvo-
lution problem for the simple case of AR(1) dynamics and generalize it to arbitrary AR(p) processes
in the Supplementary Material. We further use the problem’s dual formulation to adjust the sparsity
level in a principled way (following [19]), and describe methods for fitting model hyperparameters
including the coefficients of the AR process. In Section 4 we show some results on simulated as well
as real data. Finally, in Section 5 we conclude with possible further extensions.

2 Autoregressive model for calcium dynamics
We assume we observe the fluorescence signal for T timesteps, and denote by st the number of spikes
that the neuron fired at the t-th timestep, t = 1, ..., T , cf. Figure 1. We approximate the calcium
concentration dynamics c using a stable autoregressive process of order p (AR(p)) where p is a small
positive integer, usually p = 1 or 2,

ct =

p∑
i=1

γict−i + st. (1)

The observed fluorescence y ∈ RT is related to the calcium concentration as [5, 6, 7]:
yt = a ct + εt, εt ∼ N (0, σ2) (2)
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where a is a nonnegative scalar and the noise is assumed to be i.i.d. zero mean Gaussian with variance
σ2. For the remainder we assume units such that a = 1 without loss of generality. The parameters γi
and σ can be estimated from the autocovariance function and the power spectral density (PSD) of
y respectively [19]. The autocovariance approach assumes that the spiking signal s comes from a
homogeneous Poisson process and in practice often gives a crude estimate of γi. We will improve on
this below (Fig. 3) by fitting the AR coefficients directly, which leads to better estimates, particularly
when the spikes have some significant autocorrelation.

The goal of calcium deconvolution is to extract an estimate of the neural activity s from the vector of
observations y. As discussed in [5, 19], this leads to the following nonnegative LASSO problem for
estimating the calcium concentration:

minimize
c

1
2‖c− y‖2 + λ‖s‖1 subject to s = Gc ≥ 0 (3)

where the `1 penalty enforces sparsity of the neural activity and the lower triangular matrix G is
defined as:

G =


1 0 0 . . . 0
−γ1 1 0 . . . 0
−γ2 −γ1 1 . . . 0

...
. . .

. . .
. . .

...
0 . . . −γ2 −γ1 1

 (4)

Following the approach in [5] the spike signal s is relaxed from nonnegative integers to arbitrary
nonnegative values.

3 Derivation of the active set algorithm
The optimization problem (3) could be solved using generic convex program solvers. Here we derive
the much faster Online Active Set method to Infer Spikes (OASIS).

3.1 Online Active Set method to Infer Spikes (OASIS)
For simplicity we consider first the AR(1) model and defer the cumbersome general case p > 1 to the
Supplementary Material. We begin by inserting the definition of s (Eq. 3, skipping the index of γ for
a single AR coefficient). Using that s is constrained to be nonnegative yields for the sparsity penalty

λ‖s‖1 = λ1>s = λ

T∑
t=1

T∑
k=1

Gk,tct = λ

T∑
t=1

(1− γ + γδtT )ct =

T∑
t=1

µtct = µ>c (5)

with µt := λ(1− γ + γδtT ) (with δ denoting Kronecker’s delta) by noting that the sum of the last
column of G is 1, whereas all other columns sum to (1− γ). Now the problem

minimize
c

1

2

T∑
t=1

(ct − yt)2 +

T∑
t=1

µtct subject to ct+1 ≥ γct ≥ 0 ∀t (6)

shares some similarity to isotonic regression with the constraint ct+1 ≥ ct. However, our constraint
ct+1 ≥ γct bounds the rate of decay instead of enforcing monotonicity. We generalize PAVA to
handle the additional factor γ. The algorithm is based on the following: For an optimal solution, if
yt < γyt−1, then the constraint becomes active and holds with equality, ct = γct−1. (Supposing
the opposite, i.e. ct > γct−1, we could move ct−1 and ct by some small ε to decreases the objective
without violating the constraints, yielding a proof by contradiction.)

We first present the algorithm in a way that conveys its core ideas, then improve the algorithm’s
efficiency by introducing “pools” of variables (adjacent ct values) which are updated simultaneously.
We introduce temporary values c′ and initialize them to the unconstrained least squares solution,
c′ = y − µ. Initially all constraints are in the “passive set” and possible violations are fixed by
subsequently adding the respective constraints to the “active set.” Starting at t = 2 one moves
forward until a violation of the constraint c′τ ≥ γc′τ−1 at some time τ is detected (Fig. 2A). Now
the constraint is added to the active set and enforced by setting c′τ = γc′τ−1. Updating the two
time steps by minimizing 1

2 (yτ−1 − c′τ−1)2 + 1
2 (yτ − γc′τ−1)2 + µτ−1c

′
τ−1 + µτγc

′
τ−1 yields an

updated value c′τ−1. However, this updated value can violate the constraint c′τ−1 ≥ γc′τ−2 and we
need to update c′τ−2 as well, etc., until we have backtracked some ∆t steps to time t̂ = τ − ∆t
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Figure 2: Illustration of OASIS for an AR(1) process (see Supplementary Video). Red lines depict true spike
times. The shaded background shows how the time points are gathered in pools. The pool currently under
consideration is indicated by the blue crosses. A constraint violation is encountered for the second time step (A)
leading to backtracking and merging (B). The algorithm proceeds moving forward (C-E) until the next violation
occurs (E) and triggers backtracking and merging (F-G) as long as constraints are violated. When the most
recent spike time has been reached (G) the algorithm proceeds forward again (H). The process continues until
the end of the series has been reached (I). The solution is obtained and pools span the inter-spike-intervals.

where the constraint c′
t̂
≥ γc′

t̂−1
is already valid. At most one needs to backtrack to the most recent

spike, because c′
t̂
> γc′

t̂−1
at spike times t̂ (Eq. 1). (Because such delays could be too long for some

interesting closed loop experiments, we show in the Supplementary Material how well the method
performs if backtracking is limited to just few frames.) Solving

minimize
c′
t̂

1

2

∆t∑
t=0

(γtc′
t̂
− yt+t̂)2 +

∆t∑
t=0

µt+t̂γ
tc′
t̂

(7)

by setting the derivative to zero yields

c′
t̂

=

∑∆t
t=0(yt+t̂ − µt+t̂)γt∑∆t

t=0 γ
2t

(8)

and the next values are updated according to c′
t̂+t

= γtc′
t̂

for t = 1, ...,∆t. (Along the way it is worth
noting that, because a spike induces a calcium response described by kernel h with components

h1+t = γt, c′
t̂

could be expressed in the more familiar regression form as h
>
1:∆t+1(y−µ)t̂:τ
h>

1:∆t+1h1:∆t+1
, where

we used the notation vi:j to describe a vector formed by components i to j of v.) Now one moves
forward again (Fig. 2C-E) until detection of the next violation (Fig. 2E), backtracks again to the most
recent spike (Fig. 2G), etc. Once the end of the time series is reached (Fig. 2I) we have found the
optimal solution and set c = c′.

In a worst case situation a constraint violation is encountered at every step of the forward sweep
through the series. Updating all t values up to time t yields overall

∑T
t=2 t = T (T+1)

2 − 1 updates
and an O(T 2) algorithm. In order to obtain a more efficient algorithm we introduce pools which are
tuples of the form (vi, wi, ti, li) with value vi, weight wi, event time ti and pool length li. Initially
there is a pool (yt−µt, 1, t, 1) for each time step t. During backtracking pools get combined and only
the first value vi = c′ti is explicitly considered, while the other values are merely defined implicitly
via ct+1 = γct. The constraint ct+1 ≥ γct translates to vi+1 ≥ γlivi as the criterion determining
whether pools need to be combined. The introduced weights allow efficient value updates whenever
pools are merged by avoiding recalculating the sums in equation (8). Values are updated according to

vi ←
wivi + γliwi+1vi+1

wi + γ2liwi+1
(9)

where the denominator is the new weight of the pool and the pool lengths are summed
wi ← wi + γ2liwi+1 (10)
li ← li + li+1. (11)
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Whenever pools i and i + 1 are merged, former pool i + 1 is removed and the succeeding pool
indices decreased by 1. It is easy to prove by induction that the updates according to equations
(9-11) guarantee that equation (8) holds for all values (see Supplementary Material) without having to
explicitly calculate it. The latter would be expensive for long pools, whereas merging two pools has
O(1) complexity independent of the pool lengths. With pooling the considered worst case situation
results in a single pool that is updated at every step forward, yielding O(T ) complexity. Analogous
to PAVA, the updates solve equation (6) not just greedily but optimally. The final algorithm is
summarized in Algorithm 1 and illustrated in Figure 2 as well as in the Supplementary Video.

Algorithm 1 Fast online deconvolution algorithm for AR(1) processes with positive jumps
Require: data y, decay factor γ, regularization parameter λ
1: initialize pools as P = {(vi, wi, ti, li)}Ti=1 ← {(yt − λ(1− γ + γδtT ), 1, t, 1)}Tt=1 and let i← 1
2: while i < |P| do . iterate until end
3: while i < |P| and vi+1 ≥ γlivi do i← i+ 1 . move forward
4: if i == |P| then break
5: while i > 0 and vi+1 < γlivi do . track back

6: Pi ←
(
wivi+γ

liwi+1vi+1

wi+γ
2liwi+1

, wi + γ2liwi+1, ti, li + li+1

)
. Eqs. (9-11)

7: remove Pi+1

8: i← i− 1
9: i← i+ 1

10: for (v, w, t, l) in P do . construct solution for all t
11: for τ = 0, ..., l − 1 do ct+τ ← γτ max(0, v) . enforce ct ≥ 0 via max

12: return c

3.2 Dual formulation with hard noise constraint

The formulation above contains a troublesome free sparsity parameter λ (implicit in µ). A more
robust deconvolution approach eliminates it by inclusion of the residual sum of squares (RSS) as a
hard constraint and not as a penalty term in the objective function [19]. The expected RSS satisfies
〈‖c− y‖2〉 = σ2T and by the law of large numbers ‖c− y‖2 ≈ σ2T with high probability, leading
to the constrained problem

minimize
c

‖s‖1 subject to s = Gc ≥ 0 and ‖c− y‖2 ≤ σ2T. (12)

(As noted above, we estimate σ using the power spectral estimator described in [19].) We will solve
this problem by increasing λ in the dual formulation until the noise constraint is tight. We start with
some small λ, e.g. λ = 0, to obtain a first partitioning into pools P , cf. Figure 3A below. From
equations (8-10) (and see also S11) along with the definition of µ (Eq. 5) it follows that given the
solution (vi, wi, ti, li), where

vi =

∑li−1
t=0 (yti+t − µti+t)γt∑li−1

t=0 γ2t
=

∑li−1
t=0 (yti+t − λ(1− γ + γδti+t,T ))γt

wi

for some λ, the solution (v′i, w
′
i, t
′
i, l
′
i) for λ+ ∆λ is

v′i = vi −∆λ

∑li−1
t=0 (1− γ + γδti+t,T )γt

wi
= vi −∆λ

1− γli(1− δiz)
wi

(13)

where z = |P| is the index of the last pool and because pools are updated independently we make
the approximation that no changes in the pool structure occur. Inserting equation (13) into the noise
constraint (Eq. 12) results in

z∑
i=1

li−1∑
t=0

((
vi −∆λ

1− γli(1− δiz)
wi

)
γt − yti+t

)2

= σ2T (14)

and solving the quadratic equation yields ∆λ =
−β+
√
β2−4αε

2α with α =
∑
i,t ξ

2
it, β = 2

∑
i,t χitξit

and ε =
∑
i,t χ

2
it − σ2T where ξit = 1−γli (1−δiz)

wi
γt and χit = yti+t − viγt.
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Figure 3: Optimizing sparsity parameter λ and AR coefficient γ. (A) Running the active set method, with
conservatively small estimate of γ, yields an initial denoised estimate (blue) of the data (yellow) roughly
capturing the truth (red). We also report the correlation between the deconvolved estimate and true spike train
as direct measure for the accuracy of spike train inference. (B) Updating sparsity parameter λ according to
Eq. (14) such that RSS = σ2T (left) shifts the current estimate downward (right, blue). (C) Running the active
set method enforces the constraints again and is fast due to warm-starting. (D) Updating γ by minimizing the
polynomial function RSS(γ) and (E) running the warm-started active set method completes one iteration, which
yields already a decent fit. (F) A few more iterations improve the solution further and the obtained estimate is
hardly distinguishable from the one obtained with known true γ (turquoise dashed on top of blue solid line).
Note that determining γ based on the autocovariance (purple) yields a crude solution that even misses spikes (at
24.6 s and 46.5 s).

The solution ∆λ provides a good approximate proposal step for updating the pool values vi (using
Eq. 13). Since this update proposal is only approximate it can give rise to violated constraints (e.g.,
negative values of vi). To satisfy all constraints Algorithm 1 is run to update the pool structure, cf.
Figure 3C, but with a warm start: we initialize with the current set of merely z pools P ′ instead of the
T pools for a cold start (Alg. 1, line 1). This step returns a set of vi values that satisfy the constraints
and may merge pools (i.e., delete spikes); then the procedure (update λ then rerun the warm-started
Algorithm 1) can be iterated until no further pools need to be merged, at which point the procedure
has converged. In practice this leads to an increasing sequence of λ values (corresponding to an
increasingly sparse set of spikes), and no pool-split (i.e., add-spike) moves are necessary1.

This warm-starting approach brings major speed benefits: after the residual is updated following a
λ update, the computational cost of the algorithm is linear in the number of pools z, hence warm
starting drastically reduces computational costs from k1T to k2z with proportionality constants k1

and k2: if no pool boundary updates are needed then after warm starting the algorithm only needs to
pass once through all pools to verify that no constraint is violated, whereas a cold start might involve
a couple passes over the data to update pools, so k2 is typically significantly smaller than k1, and z is
typically much smaller than T (especially in sparsely-spiking regimes).

3.3 Optimizing the AR coefficient
Thus far the parameter γ has been known or been estimated based on the autocovariance function.
We can improve upon this estimate by optimizing γ as well, which is illustrated in Figure 3. After
updating λ followed by running Algorithm 1, we perform a coordinate descent step in γ that minimizes
the RSS, cf. Figure 3D. The RSS as a function of γ is a high order polynomial, cf. equation (8), and
we need to settle for numerical solutions. We used Brent’s method [22] with bounds 0 ≤ γ < 1. One
iteration consists now of steps B-E in Figure 3, while for known γ only B-C were necessary.

1Note that it is possible to cheaply detect any violations of the KKT conditions in a candidate solution; if
such a violation is detected, the corresponding pool could be split and the warm-started Algorithm 1 run locally
near the detected violations. However, as we noted, due to the increasing λ sequence we did not find this step to
be necessary in the examples examined here.
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Figure 4: OASIS produces the same high quality results as convex solvers at least an order of magnitude faster.
(A) Raw and inferred traces for simulated AR(1) data, (B) simulated AR(2) and (C) real data from [29] modeled
as AR(2) process. OASIS solves equation (3) exactly for AR(1) and just approximately for AR(2) processes,
nevertheless well extracting spikes. (D) Computation time for simulated AR(1) data with given λ (blue circles,
Eq. 3) or inference with hard noise constraint (green x, Eq. 12). GUROBI failed on the noise constrained
problem. (E) Computation time for simulated AR(2) data.

4 Results

4.1 Benchmarking OASIS

We generated datasets of 20 fluorescence traces each for p = 1 and 2 with a duration of 100 s at
a framerate of 30 Hz, such that T = 3,000 frames. The spiking signal came from a homogeneous
Poisson process. We used γ = 0.95, σ = 0.3 for the AR(1) model and γ1 = 1.7, γ2 = −0.712,
σ = 1 for the AR(2) model. Figures 4A-C are reassuring that our suggested (dual) active set method
yields indeed the same results as other convex solvers for an AR(1) process and that spikes are
extracted well. For an AR(2) process OASIS is greedy and yields good results that are similar to the
one obtained with convex solvers (lower panels in Fig. 4B and C), with virtually identical denoised
fluorescence traces (upper panels). An exact fast (primal) active set method method for this case is
presented in the extended journal version of this paper [23].

Figures 4D,E report the computation time (±SEM) averaged over all 20 traces and ten runs per trace
on a MacBook Pro with Intel Core i5 2.7 GHz CPU. We compared the run time of our algorithm
to a variety of state of the art convex solvers that can all be conveniently called from the convex
optimization toolbox CVXPY [24]: embedded conic solver (ECOS, [25]), MOSEK [26], splitting
conic solver (SCS, [27]) and GUROBI [28]. With given sparsity parameter λ (Eq. 3) OASIS is about
two magnitudes faster than any other method for an AR(1) process (Fig. 4D, blue disks) and more
than one magnitude for an AR(2) process (Fig. 4E). Whereas the other solvers take almost the same
time for the noise constrained problem (Eq. 12, Fig. 4D,E, green x), our method takes about three
times longer to find the value of the dual variable λ compared to the formulation where the residual is
part of the objective; nevertheless it still outperforms the other algorithms by a huge margin.

We also ran the algorithms on longer traces of length T = 30,000 frames, confirming that OASIS
scales linearly with T . Our active set method maintained its lead by 1-2 orders of magnitude in
computing time. Further, compared to our active set method the other algorithms required at least an
order of magnitude more RAM, confirming that OASIS is not only faster but much more memory
efficient. Indeed, because OASIS can run in online mode the memory footprint can be O(1), instead
of O(T ).

We verified these results on real data as well. Running OASIS with the hard noise constraint and
p = 2 on the GCaMP6s dataset collected at 60 Hz from [29] took 0.101± 0.005 s per trace, whereas
the fastest other methods required 2.37 ± 0.12 s. Figure 4C shows the real data together with the
inferred denoised and deconvolved traces as well as the true spike times, which were obtained by
simultaneous electrophysiological recordings [29].

We also extracted each neuron’s fluorescence activity using CNMF from an unpublished whole-brain
zebrafish imaging dataset from the M. Ahrens lab. Running OASIS with hard noise constraint and
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p = 1 (chosen because the calcium onset was fast compared to the acquisition rate of 2 Hz) on 10,000
traces out of a total of 91,478 suspected neurons took 81.5 s whereas ECOS, the fastest competitor,
needed 2,818.1 s. For all neurons we would hence expect 745 s for OASIS, which is below the 1,500 s
recording duration, and over 25,780 s for ECOS and other candidates.

4.2 Hyperparameter optimization
We have shown that we can solve equation (3) and equation (12) faster than interior point methods.
The AR coeffient γ was either known or estimated based on the autocorrelation in the above analyses.
The latter approach assumes that the spiking signal comes from a homogeneous Poisson process,
which does not generally hold for realistic data. Therefore we were interested in optimizing not
only the sparsity parameter λ, but also the AR(1) coeffient γ. To illustrate the optimization of both,
we generated a fluorescence trace with spiking signal from an inhomogeneous Poisson process
with sinusoidal instantaneous firing rate (Fig. 3), thus mimicking realistic data. We conservatively
initialized γ to a small value of 0.9. The value obtained based on the autocorrelation was 0.9792
and larger than the true value of 0.95. The left panels in Figures 3B and D illustrate the update of
λ from the previous value λ− to λ∗ by solving a quadratic equation analytically (Eq. 14) and the
update of γ by numerical minimization of a high order polynomial respectively. Note that after
merely one iteration (Fig. 3E) a good solution is obtained and after three iterations the solution is
virtually identical to the one obtained when the true value of γ has been provided (Fig. 3F). This
holds not only visually, but also when judged by the correlation between deconvolved activity and
ground truth spike train, which was 0.869 compared to merely 0.773 if γ was obtained based on the
autocorrelation. The optimization was robust to the initial value of γ, as long as it was positive and
not, or only marginally, greater than the true value. The value obtained based on the autocorrelation
was considerably greater and partitioned the time series into pools in a way that missed entire spikes.
A quantification of the computing time for hyperparameter optimization as well as means to reduce it
are presented in the extended journal version [23].

5 Conclusions
We presented an online active set method for spike inference from calcium imaging data. We assumed
that the forward model to generate a fluorescence trace from a spike train is linear-Gaussian. Future
work will extend the method to nonlinear models [30] incorporating saturation effects and a noise
variance that increases with the mean fluorescence to better resemble the Poissonian statistics of
photon counts. In the Supplementary Material we already extend our mathematical formulation to
include weights for each time point as a first step in this direction.

Further development, contained in the extended journal version [23], includes and optimizes an
explicit fluorescence baseline. It also provides means to speed up the optimization of model hyperpa-
rameters, including the added baseline. It presents an exact and fast (primal) active set method for
AR(p > 1) processes and more general calcium response kernels. A further extension is to add the
constraint that positive spikes need to be larger than some minimal value, which renders the problem
non-convex. A minor modification to our algorithm enables it to find an (approximate) solution of this
non-convex problem, which can be marginally better than the solution obtained with `1 regularizer.
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