
Appendix: Kronecker Determinantal Point Processes

A Proof of Prop. 3.1

We use ‘vec’ to denote the operator that stacks columns of a matrix to form a vector; conversely,
‘mat’ takes a vector with k2 coefficients and returns a k × k matrix.

Let L = L1 ⊗ L2, S1 = L−1
1 , S2 = L−1

2 and S = S1 ⊗ S2 = L−1. Let Eij be the matrix with all
0s except for a 1 at position (i, j), its size being clear from context. We wish to solve

∇f2(X) = −∇g2(S1) and ∇f1(X) = −∇g1(S2) (10)
It follows from the fact that

log det(S1 ⊗ S2) = N2 log detS1 +N1 log detS2

that∇fS2(X) = N2X
−1 and∇fS1(X) = N1X

−1. Moreover, we know that

∇g(S) = −(I + S)−1 − S−1 1

n

∑
i
Ui(U

⊤
i S−1Ui)

−1UiS
−1

= −S−1 − S−1

(
1

n

∑
i
Ui(U

⊤
i S−1Ui)

−1Ui − (I + S−1)−1

)
S−1

= −(L+ L∆L).

The Jacobian of S1 → S1 ⊗ S2 is given by J = (vec(E11 ⊗ S2), . . . , vec(EN1N1 ⊗ S2)). Hence,

∇f1(X)ij = −(∇g1(S1))ij ⇐⇒ N2X
−1
ij = (J⊤ vec(−∇g(S)))ij

⇐⇒ N2X
−1
ij = vec(Eij ⊗ S2)

⊤ vec(L+ L∆L)

⇐⇒ N2X
−1
ij = Tr((Eij ⊗ S2)(L+ L∆L))

⇐⇒ N2X
−1
ij = Tr(S2(L+ L∆L)(ij))

⇐⇒ N2X
−1
ij = Tr

(
((I ⊗ S2)(L+ L∆L))(ij)

)
The last equivalence is simply the result of indices manipulation. Thus, we have

∇f2(X) = −∇g2(S1) ⇐⇒ X−1 =
1

N2
Tr1((I ⊗ S2)(L+ L∆L))

Similarly, by setting J ′ = (vec(S1 ⊗ E11), . . . , vec(S1 ⊗ EN1N1)), we have that

∇f2(X)ij = −(∇g2(S2))ij ⇐⇒ N1X
−1
ij = (J ′⊤ vec(−∇g(S)))ij

⇐⇒ N1X
−1
ij = vec(S1 ⊗ Eij)

⊤ vec(L+ L∆L)

⇐⇒ N1X
−1
ij = Tr((S1 ⊗ Eij)(L+ L∆L))

⇐⇒ N1X
−1
ij =

(∑N1

k,ℓ=1
S1kℓ(L+ L∆L)(ℓk)

)
ij

⇐⇒ N1X
−1
ij =

(∑N1

ℓ=1
((S1 ⊗ I)(L+ L∆L))(ℓℓ)

)
ij

Hence,

∇fS1(X) = −∇gS1(S2) ⇐⇒ X−1 =
1

N1
Tr2 ((S1 ⊗ I)(L+ L∆L)) ,

which proves Prop. 3.1.

B Efficient updates for KRK-PICARD

The updates to L1 and L2 are obtained efficiently through different methods; hence, the proof to
Thm. 3.3 is split into two sections. We write

Θ =
1

n

n∑
i=1

UiL
−1
Yi

U⊤
i (or Θ = UiL

−1
Yi

U⊤
i for stochastic updates)

so that ∆ = Θ− (I + L)−1. Recall that (A⊗B)(ij) = aijB.

10



B.1 Updating L1

We wish to compute X = Tr1
(
(I ⊗ L−1

2 )(L∆L)
)

efficiently. We have

Xij = Tr
[
((I ⊗ L−1

2 )(L∆L))(ij)
]

= Tr
[
L−1
2 (L∆L)(ij)

]
= Tr

[
L−1
2

∑N1

k,ℓ=1
L(ik)∆(kℓ)L(ℓj)

]
=

∑N1

k,ℓ=1
L1ikL1ℓj Tr(L

−1
2 L2∆(kℓ)L2)

=
∑N1

k,ℓ=1
L1ikL1ℓj Tr(Θ(kℓ)L2)︸ ︷︷ ︸

Akℓ

−Tr((I + L)−1
(kℓ)L2)︸ ︷︷ ︸

Bkℓ

= (L1AL1 − L1BL1)ij .

The N1 × N1 matrix A can be computed in O(nκ3 + N2
1N

2
2 ) time simply by pre-computing Θ in

O(nκ3) and then computing all N2
1 traces inO(N2

2 ) time. When doing stochastic updates for which
Θ is sparse with only κ2 non-zero coefficients, computing A can be done in O(N2

1κ
2 + κ3).

By diagonalizing L1 = P1D1P
⊤
1 and L2 = P2D2P

⊤
2 , we have (I + L)−1 = PDP⊤ with P =

P1⊗P2 and D = (I+D1⊗D2)
−1. P1, P2, D1, D2 and D can all be obtained inO(N3

1+N3
2+N1N2)

as a consequence of Prop. 2.1. Then

Bij = Tr((I + L)−1
(ij)L2)

=
∑
k

Tr(P(ik)D(kk)P
⊤
(kj)L2)

=
∑
k

P1ikP1jk Tr(P2D(kk)P
⊤
2 P2D2P

⊤
2 )

=
∑
k

P1ikP1jk Tr(D(kk)D2)︸ ︷︷ ︸
αk

.

Let D̂ = diag(α1, . . . , αN1), which can be computed in O(N1N2). Then L1BL1 = P1D1D̂D1P1

is computable in O(N3
1 +N3

2 ).

Overall, the update to L1 can be computed in O(nκ3 +N2
1N

2
2 +N3

1 +N3
2 ) time, or in O(N2

1κ
2 +

κ3 + N3
1 + N3

2 ) time if the updates are stochastic. Moreover, if Θ is sparse with only z non-zero
coefficients (for stochastic updates z = κ), A can be computed inO(κ2) space, leading to an overall
O(z2 +N2

1 +N2
2 ) memory cost.

B.2 Updating L2

We wish to compute X = Tr2
[
(L−1

1 ⊗ I)(L∆L)
]

efficiently.

X =
∑N1

i=1

(
(L−1

1 ⊗ I)(L∆L)
)
(ii)

=
∑N1

i=1

(
(I ⊗ L2)(Θ− (I + L)−1)(L1 ⊗ L2)

)
(ii)

=
∑N1

i,j=1
L1ijL2Θ(ij)L2 −

N1∑
i=1

((I ⊗ L2)(I + L)−1(L1 ⊗ L2))(ii)

= L2

∑N1

i,j=1
L1ijΘ(ij)L2︸ ︷︷ ︸
A

−
∑N1

i=1
((I ⊗ L2)(I + L)−1(L1 ⊗ L2))(ii)︸ ︷︷ ︸

B

The matrix A can be computed in O(nκ3 +N2
1N

2
2 +N3

2 ) time. As before, when doing stochastic
updates A can be computed in O(N2

1κ
2 + κ3 +N3

2 ) time and O(N2
2 +N2

1 + κ2) space due to the
sparsity of Θ.

11



Regarding B, as all matrices commute, we can write

(I ⊗ L2)(I + L)−1(L1 ⊗ L2) = (P1 ⊗ P2)Λ(P1 ⊗ P2)

where Λ = (I⊗D2)(I+D1⊗D2)
−1(D1⊗D2) is diagonal and is obtained inO(N3

1 +N3
2 +N1N2).

Moreover,

B =
∑N1

i=1
(PΛP⊤)(ii) = P2

(∑N1

i,k=1
P1ikΛ(kk)P1ik

)
P⊤
2 ,

which allows us to compute B in O(N2
1N2 +N3

2 +N3
1 ) total.

Overall, we can obtain X inO(nκ3 +N2
1N

2
2 +N3

1 +N3
2 ) or inO(N2

1κ
2 +N2

1N2 +N3
1 +N3

2 ) for
stochastic updates, in which case only O(N2

1 +N2
2 + κ2) space is necessary.

C Proof of validity for joint updates

In order to minimize the number of matrix multiplications, we equivalently (due to the properties of
the Frobenius norm) minimize the equation

∥L−1 +∆−X ⊗ Y ∥2F (11)

and set
{
L′
1 ← L1XL1

L′
2 ← L2Y L2.

.

Theorem C.1. Let L ≻ 0. Define R := [vec(L(11))
⊤; . . . ; vec(L(N1N1))

⊤]N1
i,j=1 ∈ RN1N1×N2N2 .

Suppose that R has an eigengap between its largest singular value and the next, and let u, v, σ be
the first singular vectors and value of R. Let U = mat(u) and V = mat(v). Then U and V are
either both positive definite or negative definite.

Moreover, for any value α ̸= 0, the pair (αU, σ/αV ) minimizes ∥L−X ⊗ Y ∥2F .

The proof is a consequence of [22, Thm. 11]. This shows that if L is initially positive definite,
setting the sign of α based on whether U and V are positive or negative definite3, and updating{

L1 ← αL1UL1

L2 ← σ/αL2V L2

maintains positive definite iterates. Given that if L1 ≻ 0 and L2 ≻ 0, L1 ⊗ L2 ≻ 0, a simple
induction then shows that by choosing an initial kernel estimate L ≻ 0, subsequent values of L will
remain positive definite.

By choosing α such that the new estimates L1 and L2 verify ∥L1∥ = ∥L2∥, we verify all the
conditions of Eq. 8.

C.1 Algorithm for joint updates

Theorem C.1 leads to a straightforward iteration for learning matrices L1 and L2 based on the
decomposition of the Picard estimate as a Kronecker product.

Algorithm 3 JOINT-PICARD iteration
Input: Matrices L1, L2, training set T , step-size a ≥ 1.
for i = 1 to maxIter do

U, σ, V ← power_method(L−1 +∆) to obtain the first singular value and vectors of matrix R.
α← sgn(U11)

√
σ∥L2V L2∥/∥L1UL1∥

L1 ← L1 + a(αL1UL1 − L1)
L2 ← L2 + a(σ/αL2V L2)

end for
return (L1, L2)

3This can easily be done simply by checking the sign of the first diagonal coefficient of U , which will be
positive if and only if U ≻ 0.

12


