
0 64 128
−8

−2

4

0 64 128
−2

6

16

L6T0

ADA0

6GD

Figure 10: Updates proposed by different optimizers at different optimization steps for two different
coordinates.

A Gradient preprocessing

One potential challenge in training optimizers is that different input coordinates (i.e. the gradients
w.r.t. different optimizee parameters) can have very different magnitudes. This is indeed the case e.g.
when the optimizee is a neural network and different parameters correspond to weights in different
layers. This can make training an optimizer difficult, because neural networks naturally disregard
small variations in input signals and concentrate on bigger input values.

To this aim we propose to preprocess the optimizer’s inputs. One solution would be to give the
optimizer (log(|r|), sgn(r)) as an input, where r is the gradient in the current timestep. This has a
problem that log(|r|) diverges for r ! 0. Therefore, we use the following preprocessing formula

rk !
(⇣

log(|r|)
p , sgn(r)

⌘
if |r| � e

�p

(�1, e

pr) otherwise

where p > 0 is a parameter controlling how small gradients are disregarded (we use p = 10 in all our
experiments).

We noticed that just rescaling all inputs by an appropriate constant instead also works fine, but the
proposed preprocessing seems to be more robust and gives slightly better results on some problems.

B Visualizations

Visualizing optimizers is inherently difficult because their proposed updates are functions of the full
optimization trajectory. In this section we try to peek into the decisions made by the LSTM optimizer,
trained on the neural art task.

Histories of updates We select a single optimizee parameter (one color channel of one pixel in the
styled image) and trace the updates proposed to this coordinate by the LSTM optimizer over a single
trajectory of optimization. We also record the updates that would have been proposed by both SGD
and ADAM if they followed the same trajectory of iterates. Figure 10 shows the trajectory of updates
for two different optimizee parameters. From the plots it is clear that the trained optimizer makes
bigger updates than SGD and ADAM. It is also visible that it uses some kind of momentum, but its
updates are more noisy than those proposed by ADAM which may be interpreted as having a shorter
time-scale momentum.

Proposed update as a function of current gradient Another way to visualize the optimizer
behavior is to look at the proposed update gt for a single coordinate as a function of the current
gradient evaluation rt. We follow the same procedure as in the previous experiment, and visualize
the proposed updates for a few selected time steps.

These results are shown in Figures 11–13. In these plots, the x-axis is the current value of the gradient
for the chosen coordinate, and the y-axis shows the update that each optimizer would propose should
the corresponding gradient value be observed. The history of gradient observations is the same for all
methods and follows the trajectory of the LSTM optimizer.

10

The shape of this function for the LSTM optimizer is often step-like, which is also the case for
ADAM. Surprisingly the step is sometimes in the opposite direction as for ADAM, i.e. the bigger the
gradient, the bigger the update.

C Neural Art

Shown below are additional examples of images styled using the LSTM optimizer. Each triple
consists of the content image (left), style (right) and image generated by the LSTM optimizer (center).

11

6teS 1
−10

0

10

6teS 2 6teS 3 6teS 4

6teS 5
−10

0

10

6teS 6 6teS 7 6teS 8

6teS 9
−10

0

10

6teS 10 6teS 11 6teS 12

6teS 13
−10

0

10

6teS 14 6teS 15 6teS 16

6teS 17
−10

0

10

6teS 18 6teS 19 6teS 20

6teS 21
−10

0

10

6teS 22 6teS 23 6teS 24

6teS 25
−10

0

10

6teS 26 6teS 27 6teS 28

−400 0 400
6teS 29

−10

0

10

−400 0 400
6teS 30

−400 0 400
6teS 31

−400 0 400
6teS 32

Figure 11: The proposed update direction for a single coordinate over 32 steps.

12

6teS 1
−10

0

10

6teS 2 6teS 3 6teS 4

6teS 5
−10

0

10

6teS 6 6teS 7 6teS 8

6teS 9
−10

0

10

6teS 10 6teS 11 6teS 12

6teS 13
−10

0

10

6teS 14 6teS 15 6teS 16

6teS 17
−10

0

10

6teS 18 6teS 19 6teS 20

6teS 21
−10

0

10

6teS 22 6teS 23 6teS 24

6teS 25
−10

0

10

6teS 26 6teS 27 6teS 28

−400 0 400
6teS 29

−10

0

10

−400 0 400
6teS 30

−400 0 400
6teS 31

−400 0 400
6teS 32

Figure 12: The proposed update direction for a single coordinate over 32 steps.

13

6teS 1
−10

0

10

6teS 2 6teS 3 6teS 4

6teS 5
−10

0

10

6teS 6 6teS 7 6teS 8

6teS 9
−10

0

10

6teS 10 6teS 11 6teS 12

6teS 13
−10

0

10

6teS 14 6teS 15 6teS 16

6teS 17
−10

0

10

6teS 18 6teS 19 6teS 20

6teS 21
−10

0

10

6teS 22 6teS 23 6teS 24

6teS 25
−10

0

10

6teS 26 6teS 27 6teS 28

−400 0 400
6teS 29

−10

0

10

−400 0 400
6teS 30

−400 0 400
6teS 31

−400 0 400
6teS 32

Figure 13: The proposed update direction for a single coordinate over 32 steps.

14

