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A Concentration Inequalities

Lemma 6 (Azuma-Hoeffding inequality). If a super-martingale (Yy;t > 0), corresponding to
Siltration Fy, satisfies |Yy — Yi—1| < ¢ for some constant ¢4, forallt = 1,...,T, then for any a > 0,

a2

Pr(Ypr — Yy >a) <e 257,

B Benchmark

Proof of Lemma 1. For an instantiation w = (X, V;)Z_, of the sequence of inputs, let vector
p;(w) € AK+L denote the distribution over actions (plus no-op) taken by the optimal adaptive
policy at time t. Then,

_ T .
OPT = E,.pr[Y1, v/ P} (w)] (13)
Also, since this is a feasible policy,

V,'p;(w)] < B1 (14)
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Construct a static context dependent policy 7* as follows: for any X € [0, 1]™*¥ define

1 T
"(X) = 7 3 Eulpi(@)|X = X1,

Intuitively, 7*(X), denotes (in hindsight) the probability that the optimal adaptive policy takes
an action a when presented with a context X, averaged over all time steps. Now, by definition of
r(7), v(m), from above definition of 7*, and (13), (14),

Tr(n*) = TEx~plp) X7*(X)] = E,[Y;_, Vip; ()] = OPT,
Tv(n*) = TExp[W,) X7*(X)] = E,[Y2/_, Vip} (w)] < B1,

C Hardness of linear AMO

In this section we show that finding the best linear policy is NP-Hard. The input to the problem is, for
each ¢t € [T, and each arm a € [K], a context x;(a) € [0,1]™, and a reward 7;(a) € [—1,1]. The
output is a vector @ € R™ that maximizes ) , r(a;) where

a; = arg Q%{Xt(a)w}-

We give a reduction from the problem of learning halfspaces with noise [16]. The input to this
problem is for some integer n, for each ¢ € [n], a vector z; € [0,1]™, and y; € {—1, +1}. The output
is a vector @ € R™ that maximizes

n
> sign(z] 0)y:.
=1

Given an instance of the problem of learning halfspaces with noise, construct an instance of the
linear AMO as follows. The time horizon 7" = n, and the number of arms K = 2. For each ¢ € [T7,
the context of the first arm, x;(1) = 2, and its reward r+(1) = y;. The context of the second arm,
x¢(2) = 0, the all zeroes vector, and the reward r;(2) is also 0.

The total reward of a linear policy w.r.t a vector @ for this instance is
[{i: sign(z{ 0) = 1,0 = 1}| = |{i : sign(= 0) = 1,y;, = ~1}|.

It is easy to see that this is an affine transformation of the objective for the problem of learning
halfspaces with noise.
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D Confidence ellipsoids

Proof of Corollary 1. The following holds with probability 1 — 4.

T

T

~T -
Z'Ht Xt _HJIxt| < ZHIJ‘t_IJ'*”MtHXt”]VIt_l
t=1 t=1

IN

( m1n<1+5tm) +m> (D).

The inequality in the first line is a matrix-norm version of Cauchy-Schwartz (Lemma 7). The
inequality in the second line is due to Lemmas 2 and 3. The lemma follows from multiplying out the
two factors in the second line.

O

Lemma 7. For any positive definite matrix M € R™ ™ and any two vectors a,b € R", |aTb| <
l[allarlBf|ar-1.

Proof. Since M is positive definite, there exists a matrix M /5 such that M = M, o M 1—;2. Further,
M~ =MT, ,M_y, where M_y 5 = Ml—/;.
HaTMl/QH2 = aTMl/QMl—'}za =a' Ma = ||a|j3,.
Similarly, || M_; /2b||? = ||b||3,-.. Now applying Cauchy-Schwartz, we get that
la"b| = |a" My s M_yj5b| < [[a” My [[[M_yj5bl| = [l ar[[bll a1

O

Proof of Corollary 2. Here, the first claim follows simply from definition of 1;(a) and the ob-
servation that with probability 1 — 4, W* € G;. To obtain the second claim, apply Corol-
lary 1 with p, = w.;,y, = xi(ar), fr, = [Wi(ay)]; (the j%* column of Wy(a;)), to bound

|Zt([Wt(at)]j — w*j)Txt(at)| < D (Wilar)]; — w*j)Txt(at)| for every j, and then take
the norm. O]

E Appendix for Section 3.2

Proof of Theorem 2: We will use R’ to denote the main term in the regret bound.

R/(T) == O (m\/ln(de/(S) ln(T)T)

Let 7 be the stopping time of the algorithm. Let H;_; be the history of plays and observations before
time ¢, i.e. Hi_y := {0, X,,a,,r-(a;),v-(a;),7 = 1,...,t — 1}. Note that H;_; determines
0., i, Wt, Gy, but it does not determine Xy, a;, Wt (since a; and Wt(a) depend on the context X at
time t). The proof is in 3 steps:

Step 1:  Since E[v;(as)| Xy, a, Hi—1] = W, x;(a;), we apply Azuma-Hoeffding inequality to get
that with probability 1 — 4,

(|30 ve(ar) — W*Txt(at)Hoo < R/(T). (15)

Similarly, we obtain
| 221 re(ae) =l xe(ar)| < RY(T). (16)
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Step 2:  From Corollary 2, with probability 1 — 9,
|2 W = Wala) Txulan)|| < RY(D). an

| i (Brela) — ) Txe(an)| < RI(T). (18)
It is therefore sufficient to bound the sum of the vectors W;(a;)"
ft,(a;) "x¢(a;).  We use the shorthand notation of 7 := f1,(a¢) "
V= Wt(at)Txt(at) and Vo == > _,_, v for the rest of this proof.

x¢(ay), and similarly for
Xt(at)a Toum = Z:Zlft,

Step 3: The proof is completed by showing that
E[fsum] > OPT — ZR'(T).

Lemma 8. .

. T . - B
ZE[Tt|Ht—1] > 7OPT+ Zzet E[v: - 1f\Ht—1]

t=1 t=1

Proof. Let a; be defined as the (randomized) action given by optimal static policy 7* for context X;.
Define 7} := p,(af) x,(a}) and v} := Wi (a}) " x,(a}). By Corollary 2, with probability 1 — 4,
we have that TE[r;|H;_1] > OPT, and E[v;|H;_;] < 21, where the expectation is over context
X; given H;_1. By the choice made by the algorithm,

Ft_Z(gt'{’t) 2 r:—Z(Gtv:)
E[fy = Z(0:-vi)|Hia] = Elry|Hy] = Z(0: - E[vy|Hi])
B
> 1OPT-Z(6,-21).
Summing above inequality for ¢t = 1 to 7 gives the lemma statement. O

Lemma 9.

Proof. Recall that ¢,(0;) = 0, - (fft — %1), therefore the LHS in the required inequality is
D11 9:(0y). Let 0" := argmaxjg||,<1,0>0 »_,—; 9¢(0). We use the regret definition for the
OLalgorithm to get that >, g:(6¢) > >_;_; g:(6") — R(T'). Note that from the regret bound given
in Lemma 4, R(T) < R'(T).

Case 1: 7 < T. This means that Y ;_,(v¢(a) - ;) > B for some j. Then from (15) and (17), it
must be that >, (V¢-e;) > B—R/(T) sothat 3°;_, g:(6%) > 7, gi(e;) > B— T —R/(T).

Case2: 7 =T. Inthiscase, B— 2B =0=3, ,¢(0) <>/, g:(0"), which completes the

proof of the lemma. O

Now, we are ready to prove Theorem 2, which states that Algorithm 1 achieves a regret of ZR'(T).
Proof of Theorem 2. Substituting the inequality from Lemma 9 in Lemma 8, we get

T T T
;E[rt|Ht_1] > ZOPT+ZB (1 T) ZR(T)

Also, Z > 9FL. Substituting in above,

Y

- T ~ T T
E[faum] = > E[f|Hy 1] FOPT+OPT(1 — ) — ZR(T)
t=1
> OPT — ZR/(T)

From Steps 1 and 2, this implies a lower bound on E[>";_, 7¢(a¢)]. The proof is now completed by
using Azuma-Hoeffding to bound the actual total reward with high probability. O
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F Appendix for Section 3.3

Proof of Lemma 5. Let us define an “intermediate sample optimal” as:

T
orPT| = maXg Tl% Ziil /LIXlW(Xl)])

such that Tlo Y2 W Xin(X;) < B+y

Above sample optimal knows the parameters p, , W, the error comes only from approximating the

expected value over context distribution by average over the observed contexts. We do not actually

compute OPT, but will use it for the convenience of proof exposition. The proof involves two steps.

19)

Step 1: Bound [OPT' — OPT].
Step 2: Bound |OPT”” — OPT'|

Step 1 bound can be borrowed from the work on Online Stochastic Convex Programming in [4]: since
n,., W* is known, so there is effectively full information before making the decision, i.e., consider
the vectors [p,] x;(a), W,  x;(a)] as outcome vectors which can be observed for all arms a before
choosing the distribution over arms to be played at time ¢, therefore, the setting in [4] applies. In fact,

OPT as defined by Equation (F.10) in [4] when A, = {[u] x¢(a), W) x,(a)], a € [K]}, f identity,
and S = {v_; < %}, is same as % times OPT ' defined here. And using Lemma F.4 and Lemma F.6
in [4] (using L = 1, Z* = OPT/B), we obtain that for any v > (Tlo) 2m\/Tolog(T0) log(Tod/9),
with probability 1 — O(9),

PT
OPT — v < OPT' < OPT + 27(% +1). (20)

For Step 2, we show that with probability 1 — 8, for all 7, y > (Tl) 9m/Tolog(Tp) log(1od/0)

To
> G — ) T Xom(X0) < Q1)
i=1
T & .
HTO Z(Wz - W*)TXiW(XZ-)HOO < ¥ (22)

i=1
This is sufficient to prove both lower and wupper bound on Of’T27 for v >
(Tlo) 2m+/Tolog(Ty) log(Tod/S).  For lower bound, we can simply use (22) for optimal

policy for OPT ', denoted by 7. This implies that (because of relaxation of distance constraint by )

7 is a feasible primal solution for Of’TQV, and therefore using (20) and (21),
oPT” 4~ > OPT' > OPT — ~.

.2
For the upper bound, we can use (22) for the optimal policy 7 for OPT 7, Then, using (20) and (21),

. OPT
OPT”" < OPT"" + 4 < OPT + 67(—5 + 1)+

Combining, this proves the desired lemma statement:

) OPT
OPT — 2y < OPT"" < OPT + T +1) (23)

What remains is to proof the claim in (21) and (22). We show the proof for (22), the proof for (21) is
similar. Observe that for any 7,

T() TO
1Y (W = W) T Xm(Xo)lle < D (W = W) T Xym(Xe)[loo
t=1 t=1
To
< > W - Wella | Xem (Xe) [ g
t=1
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where HWt — W*HMt = maxj H\?th — W*jHMt'
Now, applying Lemma 2 to every column W; of W, we have that with probability 1 — ¢ for all £,
Wy = Wellar, < 2¢/mlog(td/) < 2/mlog(Tod/5)

And, by choice of p;
[ Xem(Xe) | < (1 Xepell g

Also, by Lemma 3,

To
D IXipill g1 < V/mToIn(Th)
t=1
Therefore, substituting,
To To
1Y W = W) T Xim(Xe) e < (2 mlog(Tod/5))ZIItitIIMt—l
=1 t=1
< (2y/mlog(Tyd/6))\/mTy n(Ty)
- b
< T’Y

14



