
Abstract

This supplementary document contains all the technical proofs and several addi-
tional remarks for the NIPS’16 paper entitled “Learning Additive Exponential
Family Graphical Models via ℓ2,1-norm Regularized M-Estimation”. It is in-
deed the appendix section of the paper. The technical proofs are provided in
Appendix A. The additional remarks on key assumptions are presented in Ap-
pendix B.

A Technical Proofs

A.1 Proof of Proposition 1

Proof. Since P(Y ) > 0, it is standard to know (see, e.g., [14]) that an approximate 0.99 confi-
dence interval for exp{A(θ̂n)} is exp{Â(θ̂n;Ym)} ± 2.58σ̂n/

√
m with σ̂ given in the proposition.

From the convexity of logarithm function we have the following inequality holds with confidence
approximately 0.99:

Â(θ̂n;Ym) = log
(
exp{Â(θ̂n;Ym)}

)
≤ log

(
exp{A(θ̂n)}

)
+

2.58σ̂ exp{−Â(θ̂n;Ym)}√
m

=A(θ̂n) +
2.58σ̂ exp{−Â(θ̂n;Ym)}√

m
.

Similarly, for ˆ̂θn, we have the following inequality holds with confidence approximately 0.99:

A(
ˆ̂
θn) ≤ Â(

ˆ̂
θn;Ym) +

2.58σ̂ exp{−A(
ˆ̂
θn)}√

m
,

From the preceding two inequalities and the optimality of ˆ̂θn we have that

L(
ˆ̂
θn;Xn) + λn∥ ˆ̂θn∥2,1 ≤L̂(

ˆ̂
θn;Xn,Ym) + λn∥ ˆ̂θn∥2,1 +

2.58σ̂ exp{−A(
ˆ̂
θn}√

m

≤L̂(θ̂n;Xn,Ym) + λn∥θ̂n∥2,1 +
2.58σ̂ exp{−A(

ˆ̂
θn}√

m

≤L(θ̂n;Xn) + λn∥θ̂n∥2,1 +
2.58σ̂

(
exp{−A(

ˆ̂
θn}+ exp{−Â(θ̂n;Ym)}

)
√
m

holds with high probability.

A.2 Proof of Theorem 1

We need the following result which indicates that under Assumption 1, {Zs,k, Zst,l} satisfy a large
deviation inequality.

Lemma 1. If Assumption 1 holds, then for all (s, k) and (s, t, l) and any ε ≤ ζσ2 we have

P

(∣∣∣∣∣ 1n
n∑

i=1

φk(X
(i)
s )− Eθ∗ [φk(Xs)]

∣∣∣∣∣ > ε

)
≤2 exp

{
−nε2

2σ2

}
,

P

(∣∣∣∣∣ 1n
n∑

i=1

ϕl(X
(i)
s , X

(i)
t )− Eθ∗ [ϕl(Xs, Xt)]

∣∣∣∣∣ > ε

)
≤2 exp

{
−nε2

2σ2

}
.
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Proof. From the definition and the “law of the unconscious statistician” we know that Assumption 1
identically requires

Eθ∗ [exp{η(Zs,k)}] ≤ exp
{
σ2η2/2

}
, Eθ∗ [exp{η(Zst,l)}] ≤ exp

{
σ2η2/2

}
.

Since X(i) are i.i.d. samples of X , we have that Z(i)
s,k = φk(X

(i)
s ) − Eθ∗ [φk(Xs)] are also i.i.d.

samples of Zs,k. We use the exponential Markov inequality for the sum Z =
∑n

i=1 Z
(i)
s,k and with a

parameter η > 0:

P (Z > ϵ) = P (exp{ηZ} > exp{ηϵ}) ≤ E[exp{ηZ}]
exp{ηϵ}

=

∏n
i=1 E

[
exp

{
ηZ

(i)
st

}]
exp{ηϵ}

.

If η ≤ ζ, Assumption 1 yields

P (Z > nε) ≤
exp

{
nσ2η2/2

}
exp{ηnε}

= exp
{
−ηnε+ nσ2η2/2

}
,

whose minimum is attained at η = min
(

ε
σ2 , ζ

)
. Thus, for any ε ≤ σ2ζ, we have

P (Z > nε) ≤ exp

{
−nε2

2σ2

}
.

Repeating this argument for −Z
(i)
st instead of Z(i)

st , we obtain the same bound for P(−Z > nε).
Combining these two bounds yields

P

(∣∣∣∣∣ 1n
n∑

i=1

ϕ(X(i)
s , X

(i)
t )− Eθ∗ [ϕ(Xs, Xt)]

∣∣∣∣∣ > ε

)
= P (|Z| > nε) ≤ 2 exp

{
−nε2

2σ2

}
.

The second inequality can be similarly proved. This completes the proof.

Let us define γn := ∥∇L(θ∗;Xn)∥2,∞. The following lemma indicates that under Assumption 1,
with overwhelming probability, γn approaches zero at the rate of O(

√
max{q, r} ln p/n).

Lemma 2. Assume that Assumption 1 is valid. If n > 6max{q, r} ln p/(σ2ζ2), then with probabil-
ity at least 1− 2max{q, r}p−1 the following inequality holds:

γn = ∥∇L(θ∗;Xn)∥2,∞ ≤ σ
√
6max{q, r} ln p/n.

Proof. From the gradient term (6) and Lemma 1 we have the following inequalities hold for any
ε < σ2ζ:

P

(∣∣∣∣∣∂L(θ∗;Xn)

∂θ∗s,k

∣∣∣∣∣ > ε

)
=P

(∣∣∣∣∣ 1n
n∑

i=1

φk(X
(i)
s )− Eθ∗ [φk(Xs)]

∣∣∣∣∣ > ε

)
≤ 2 exp

{
−nε2

2σ2

}
,

P

(∣∣∣∣∣∂L(θ∗;Xn)

∂θ∗st,l

∣∣∣∣∣ > ε

)
=P

(∣∣∣∣∣ 1n
n∑

i=1

ϕl(X
(i)
s , X

(i)
t )− Eθ∗ [ϕl(Xs, Xt)]

∣∣∣∣∣ > ε

)
≤ 2 exp

{
−nε2

2σ2

}
.

Let θ∗s = [θ∗s,1, ..., θ
∗
s,q] and θ∗st = [θ∗st,1, ..., θ

∗
st,r]. By the union bound we obtain

P
(∥∥∥∥∂L(θ∗;Xn)

∂θ∗s

∥∥∥∥ > ε

)
≤

q∑
k=1

P

(∣∣∣∣∣∂L(θ∗;Xn)

∂θ∗s,k

∣∣∣∣∣ > ε
√
q

)
≤ 2q exp

{
− nε2

2qσ2

}
,

P
(∥∥∥∥∂L(θ∗;Xn)

∂θ∗st

∥∥∥∥ > ε

)
≤

r∑
l=1

P

(∣∣∣∣∣∂L(θ∗;Xn)

∂θ∗st,l

∣∣∣∣∣ > ε√
r

)
≤ 2r exp

{
− nε2

2rσ2

}
.

Therefore,

P(∥∇L(θ∗;Xn))∥2,∞ > ε) ≤2qp exp

{
− nε2

2qσ2

}
+ 2r(p2 − p) exp

{
− nε2

2rσ2

}
≤2max{q, r}p2 exp

{
− nε2

2max{q, r}σ2

}
.
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Let us choose ε = σ
√

6max{q, r} ln p/n. Since n > 6max{q, r} ln p/(σ2ζ2), we have ε < σ2ζ.
Therefore we obtain that with probability at least 1− 2max{q, r}p−1,

∥∇L(θ∗;Xn)∥2,∞ ≤ σ
√

6max{q, r} ln p/n.

This completes the proof of Lemma 2.

The following result further bounds the estimation error of the MLE estimator (7) in terms of γn, δ
and β.
Lemma 3. Assume that the conditions in Assumption 2 hold true. Assume that λn ∈ [2γn, c0γn] for
some c0 ≥ 2. Define γ = 3c0

√
∥θ∗∥2,0β−1γn. If γ < δ, then we have

∥θ̂n − θ∗∥ ≤ 3c0

√
∥θ∗∥2,0β−1γn.

Proof. Let ∆θ = θ̂n − θ∗ and we define ∆θ̃ = t∆θ where we pick t = 1 if ∥∆θ∥ ≤ δ and
t ∈ (0, 1) with ∥∆θ̃∥ = δ otherwise. By construction we have ∥∆θ̃∥ ≤ r. We now claim that
∥∆θ̃S̄∥2,1 ≤ 3∥∆θ̃S∥2,1. Indeed, since θ∗

S̄
= 0, we have

∥θ∗+∆θ̃∥2,1−∥θ∗∥2,1 = ∥(θ∗+∆θ̃)S∥2,1+∥∆θ̃S̄∥2,1−∥θ∗S∥2,1 ≥ ∥∆θ̃S̄∥2,1−∥∆θ̃S∥2,1. (A.1)

From the convexity of function L(θ;Xn) and λn ≥ 2γn = 2∥∇L(θ∗;Xn)∥2,∞ we have

L(θ∗+∆θ̃;Xn)−L(θ∗;Xn) ≥ ⟨∇L(θ∗;Xn),∆θ̃⟩ ≥ −∥∇L(θ∗;Xn)∥2,∞∥∆θ̃∥2,1 ≥ −λn

2
∥∆θ̃∥2,1.

(A.2)
Due to the optimality of θ̂n and the convexity of L(θ;Xn), it holds that

L(θ∗ +∆θ̃;Xn) + λn∥θ∗ +∆θ̃∥2,1 ≤ L(θ∗;Xn) + λn∥θ∗∥2,1. (A.3)

By combining the proceeding three inequalities (A.1), (A.2) and (A.3), we obtain that

0 ≥ L(θ∗ +∆θ̃;Xn) + λn∥θ∗ +∆θ̃∥2,1 − L(θ∗;Xn)− λn∥θ∗∥2,1

≥ −λn

2
(∥∆θ̃S∥2,1 + ∥∆θ̃S̄∥2,1) + λn(∥∆θ̃S̄∥2,1 − ∥∆θ̃S∥2,1),

which implies ∥∆θ̃S̄∥2,1 ≤ 3∥∆θ̃S∥2,1. From second-order Taylor expansion we know that there
exists a real number ξ ∈ [0, 1] such that

L(θ∗ +∆θ̃;Xn) = L(θ∗;Xn) + ⟨∇L(θ∗;Xn),∆θ̃⟩+ 1

2
∆̃θ⊤∇2L(θ∗ + ξ∆θ̃;Xn)∆̃θ.

By using Assumption 2 (note that ∥ξ∆̃θ∥ ≤ ∥∆̃θ∥ ≤ r) and (A.2) we have

L(θ∗+∆θ̃;Xn)−L(θ∗;Xn) ≥ ⟨∇L(θ∗;Xn),∆θ̃⟩+ β

2
∥∆̃θ∥2 ≥ −λn

2
∥∆θ̃∥2,1+

β

2
∥∆̃θ∥2. (A.4)

By combining the inequalities (A.1), (A.3) and (A.4), we obtain

0 ≥ L(θ∗ +∆θ̃;Xn) + λn∥θ∗ +∆θ̃∥2,1 − L(θ∗;Xn)− λn∥θ∗∥2,1

≥ −λn

2
∥∆θ̃∥2,1 +

β

2
∥∆̃θ∥2 + λn(∥∆̃θS̄∥2,1 − ∥∆̃θS∥2,1)

≥ λn

2
(∥∆θ̃S̄∥2,1 − 3∥∆θ̃S∥2,1) +

β

2
∥∆θ̃∥2

≥ −1.5λn∥∆θ̃S∥2,1 +
β

2
∥∆θ̃∥2 ≥ −1.5λn

√
∥θ∗∥2,0∥∆θ̃∥+ β

2
∥∆θ̃∥2,

which implies that

∥∆θ̃∥ ≤ 3λnβ
−1
√
∥θ∗∥2,0 ≤ 3c0

√
∥θ∗∥2,0β−1γn = γ.

Since γ < δ, we claim that t = 1 and thus ∆θ̃ = ∆θ. Indeed, if otherwise t < 1, then ∥∆θ̃∥ = δ >
γ which contradicts the above inequality. This completes the proof.
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Equipped with Lemma 2 and Lemma 3, we are now in the position to prove Theorem 1.

Proof of Theorem 1. By invoking Lemma 2 and the condition n > 54c20δ
−2β−2σ2∥θ∗∥2,0 ln p) we

have that with probability at least 1− 2max{q, r}p−1,

γ = 3c0
√

|E|β−1γn ≤ 3c0β
−1σ

√
6max{q, r}∥θ∗∥2,0 ln p/n < δ.

By applying Lemma 3 we obtain the desired result.

A.3 Proof of Theorem 2

To prove the theorem, we will need to study the concentration bound of the random variables defined
by

Z̃s,k := Eθ∗
s
[φk(Xs) | X\s]−Eθ∗ [φk(Xs)], Z̃st,l := Eθ∗

s
[ϕl(Xs, Xt) | X\s]−Eθ∗ [ϕl(Xs, Xt)].

The following lemma shows that under Assumption 1, Z̃st have exponential-type moment generating
function.

Lemma 4. If Assumption 1 holds, then we have that for any (s, k), (s, t, l), and for all |η| ≤ ζ,

E[exp{ηZ̃s,k}] ≤ exp
{
σ2η2/2

}
, E[exp{ηZ̃st,l}] ≤ exp

{
σ2η2/2

}
.

Proof. We only prove the first inequality as the second one can be very similarly proved. Note that
for any η, exp{ηx} is convex with respect to x. By applying Jensen’s inequality we have

exp
{
ηEθ∗

s
[φk(Xs) | X\s]

}
≤ Eθ∗

s
[exp {ηφk(Xs)} | X\s].

By taking the expectation Eθ∗
\s
[·] with respect to the marginal distribution of X\s, and using the rule

of iterated expectation, we obtain

Eθ∗
\s

[
exp

{
ηEθ∗

s
[φk(Xs) | X\s]

}]
≤ Eθ∗

\s

[
Eθ∗

s
[exp {ηφk(Xs)} | X\s]

]
= Eθ∗ [exp{ηφk(Xs)}].

By using the “law of the unconscious statistician” and the above inequality we obtain

E[exp{ηZ̃s,k}] ≤ E[exp{ηZs,k}] ≤ exp
{
σ2η2/2

}
,

where the last inequality follows from Assumption 1. This completes the proof.

This lemma shows that the random variables {Z̃s,k, Z̃st,l} all have the same exponential-type mo-
ment generating function as that of {Zs,k, Zst,l} investigated in the previous subsection.

Based on Lemma 4 and the proof of Lemma 1, we may establish the following lemma which will
be used in the proofs to follow.

Lemma 5. If Assumption 1 holds, then for all (s, t), (s, t, l) and any ε ≤ σ2ζ we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Eθ∗
s
[φk(Xs) | X(i)

\s ]− Eθ∗ [φk(Xs)]

∣∣∣∣∣ > ε

)
≤ 2 exp

{
−nε2

2σ2

}
,

P

(∣∣∣∣∣ 1n
n∑

i=1

Eθ∗
s
[ϕl(Xs, X

(i)
t ) | X(i)

\s ]− Eθ∗ [ϕl(Xs, Xt)]

∣∣∣∣∣ > ε

)
≤ 2 exp

{
−nε2

2σ2

}
.

Let us define γ̃n := ∥∇L̃(θ∗s ;Xn)∥2,∞. The following lemma further indicates that under Assump-
tion 1, with overwhelming probability, γ̃n approaches zero at the rate of O(

√
max{q, r} ln p/n).

Lemma 6. Assume that Assumption 1 holds. If n > 6max{q, r} ln p/(σ2ζ2), then with probability
at least 1− 4max{q, r}p−2 the following inequality holds:

γ̃n ≤ 2σ
√
6max{q, r} ln p/n.
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Proof. Recall the formulation of gradient ∇L̃(θs;Xn) in (9). For any node t ∈ V \ s, we have∣∣∣∣∣∂L̃(θ∗s ;Xn)

∂θ∗st,l

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

−ϕl(X
(i)
s , X

(i)
t ) + Eθ∗

s
[ϕl(Xs, X

(i)
t ) | X(i)

\s ]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

ϕl(X
(i)
s , X

(i)
t )− Eθ∗ [ϕl(Xs, Xt)]

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

Eθ∗
s
[ϕl(Xs, X

(i)
t ) | X(i)

\s ]− Eθ∗ [ϕl(Xs, Xt)]

∣∣∣∣∣ .
Therefore, for any ε ≤ 2σ2ζ,

P

(∣∣∣∣∣∂L̃(θ∗s ;Xn)

∂θ∗st,l

∣∣∣∣∣ > ε

)
≤P

(∣∣∣∣∣ 1n
n∑

i=1

ϕl(X
(i)
s , X

(i)
t )− Eθ∗ [ϕl(Xs, Xt)]

∣∣∣∣∣ > ε

2

)

+ P

(∣∣∣∣∣ 1n
n∑

i=1

Eθ∗
s
[ϕl(Xs, X

(i)
t ) | X(i)

\s ]− Eθ∗ [ϕl(Xs, Xt)]

∣∣∣∣∣ > ε

2

)
ξ1
≤4 exp

{
−nε2

8σ2

}
,

where ξ1 follows from Lemma 1 and Lemma 5. Similarly, we can show

P

(∣∣∣∣∣∂L̃(θ∗s ;Xn)

∂θ∗s,k

∣∣∣∣∣ > ε

)
≤ 4 exp

{
−nε2

8σ2

}
.

By the union bound we obtain

P

(∥∥∥∥∥∂L̃(θ∗s ;Xn)

∂θ∗s

∥∥∥∥∥ > ε

)
≤

q∑
k=1

P

(∣∣∣∣∣∂L̃(θ∗s ;Xn)

∂θ∗s,k

∣∣∣∣∣ > ε
√
q

)
≤ 4q exp

{
− nε2

8qσ2

}
,

P

(∥∥∥∥∥∂L̃(θ∗s ;Xn)

∂θ∗st

∥∥∥∥∥ > ε

)
≤

r∑
l=1

P

(∣∣∣∣∣∂L̃(θ∗s ;Xn)

∂θ∗st,l

∣∣∣∣∣ > ε√
r

)
≤ 4r exp

{
− nε2

8rσ2

}
.

This implies

P(∥∇L̃(θ∗s ;Xn)∥2,∞ > ε) ≤ 4q exp

{
− nε2

8qσ2

}
+4r(p−1) exp

{
− nε2

8rσ2

}
≤ 4max{q, r}p exp

{
− nε2

8max{q, r}σ2

}
.

Let us choose ε = 2σ
√

6max{q, r} ln p/n. Since n > 6max{q, r} ln p/(σ2ζ2), we have ε <
2σ2ζ. We conclude that with probability at least 1− 4max{q, r}p−2,

∥∇L̃(θ∗s ;Xn)∥2,∞ ≤ 2σ
√

6max{q, r} ln p/n.
This proves the desired bound.

The following result establishes the estimation error of the node-conditional estimator (10) in terms
of γ̃n, δ̃ and β̃.
Lemma 7. Assume that the conditions in Assumption 3 hold. Assume that λn ∈ [2γ̃n, c̃0γ̃n] for
some c̃0 ≥ 2. Define γ̃ = 3c̃0

√
max{q, r}(d+ 1)β̃−1γ̃n. If γ̃ < δ̃, then we have

∥θ̂ns − θ∗s∥ ≤ 3c̃0
√

max{q, r}(d+ 1)β̃−1γ̃n.

The proof of this lemma mirrors that of Lemma 3.

Based on the above lemmas, we can now complete the proof of Theorem 2.

Proof of Theorem 2. From Lemma 6 and the condition n > 216c̃20δ̃
−2β̃−2σ2 max{q, r}∥θ∗s∥2,0 ln p

we know that with probability at least 1− 4max{q, r}p−2,

γ̃ = 3c̃0

√
∥θ∗s∥2,0β̃−1γ̃n ≤ 6c̃0β̃

−1σ
√
6∥θ∗s∥2,0 ln p/n < δ̃.

By applying Lemma 7 we obtain the desired result.
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B Some Additional Remarks on Assumptions

We provide here a few additional remarks on the conditions under which Assumption 1 and Assump-
tion 3 can be satisfied.
Remark 4 (On Assumption 1: the basis {φk(Xs), ϕl(Xs, Xt)} are bounded). It can be verified
that Assumption 1 holds when the basis {φk(Xs), ϕl(Xs, Xt)} are bounded. Indeed, given the
bounded basis, {Zs,k, Zst,l} are bounded random variables with zero means. Based on the Ho-
effding’s Lemma, for any random variable Z ∈ [a, b] and E[Z] = 0, we have E[exp{ηZ}] ≤
exp{η2(b − a)2/8} holds for all scalar η. Therefore Assumption 1 holds when the basis statistics
{φk(Xs), ϕl(Xs, Xt)} are bounded.

Remark 5 (On Assumption 1: the basis {φk(Xs), ϕl(Xs, Xt)} are unbounded but sub-exponential).
We call a random variable Z sub-exponential if there exist constants c1, c2 > 0 such that P(|Z −
E(Z)| > η) ≤ exp {c1 − η/c2} , for all η > 0. Using the result in [23, Lemma 5.15], we can verify
that Assumption 1 holds when {φk(Xs), ϕl(Xs, Xt)} are sub-exponential random variables. For
instance, consider that the energy function in (4) satisfies B(X; θ∗) ≤ − 1

2 (X − µ)⊤Ω(X − µ) + c
for some constant vector µ, scalar c and positive-definite matrix Ω ≻ 0. It can be verified that the
marginal distribution of Xs is bounded by P(Xs) ≤ cs exp

{
− (Xs−µs)

2

2σ2
s

}
for some constants cs, µs

and σs. If further assuming there exist constants ck > 0 and c′k such that φk(Xs) ≤ ck(Xs−µs)
2+

c′k, then we claim that Zs,k is sub-exponential. Indeed, for any η > 0, by using Markov inequality
we have

P(φk(Xs) > η) ≤E[exp{φk(Xs)/(4ckσ
2
s)}]

exp{η/(4ckσ2
s)}

≤
cs
∫
X exp{−(Xs − µs)

2/(4σ2
s)}dXs

exp{(η − c′k)/(4ckσ
2
s)}

∝ exp{−(η − c′k)/(4ckσ
2
s)},

which shows that φk(Xs) is a sub-exponential random variable and so is Zs,k. Similarly, we can
show that ϕl(Xs, Xt) is sub-exponential if there exist cl > 0 and c′l such that ϕl(Xs, Xt) ≤ cl((Xs−
µs)

2+(Xt−µt)
2)+c′l. Clearly, the analysis made for this example is applicable to the multivariate

Gaussian for which some similar results have been established in [17, 16].

Remark 6 (On Assumption 3). Assumption 3 requires that the Hessian ∇2L̃(θs;Xn) is positive
definite in the cone C̃S when θs lies in a local ball centered at θ∗s . Specially, when X is multivariate
Gaussian, i.e., ϕ(Xs, Xt) = XsXt and f(Xs) = −X2

s , this condition essentially requires that the
design matrix An

s = 1
n

∑n
i=1 X

(i)
\s (X

(i)
\s )

⊤ is positive definite. In this case, if the precision matrix is
positive definite, then it is known from the compressed sensing literature [3, 4] that with overwhelm-
ing probability, An

s is positive definite provided that the sample size n = O(ln p) is sufficiently large.
More generally, it can be verified that E[∇2L̃(θs;Xn)] is the sub-matrix of ∇2L(θ;Xn) associated
with the pairs {(s, t) | t ∈ V \ {s}}. Therefore, if the whole Hessian matrix ∇2L(θ;Xn) is positive
definite at any θ, then E[∇2L̃(θs;Xn)] is also positive definite. By using weak law of large number
we get that Assumption 3 holds with high probability when n is sufficiently large.
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