Abstract

This supplementary document contains all the technical proofs and several addi-
tional remarks for the NIPS’16 paper entitled “Learning Additive Exponential
Family Graphical Models via {3 ;-norm Regularized M-Estimation”. It is in-
deed the appendix section of the paper. The technical proofs are provided in
Appendix A. The additional remarks on key assumptions are presented in Ap-
pendix B.

A Technical Proofs

A.1 Proof of Proposition 1

Proof. Since P(Y') > 0, it is standard to know (see, e.g., [14]) that an approximate 0.99 confi-
dence interval for exp{ A(6,,)} is exp{A(0,; Y,n)} + 2.585,,/+/m with & given in the proposition.
From the convexity of logarithm function we have the following inequality holds with confidence
approximately 0.99:

A(énv Ym) =log (eXp{A(ém Ym)})

<log (eXp{A(én)}) n 2.586 eXp{\;ﬂé(én;Ym)}

2.586 exp{—A(0n; Y,)}
NG )

Similarly, for 0,,, we have the following inequality holds with confidence approximately 0.99:

:A(én) +

Abn) < Alb; Y, + 2589 GX%A(Q”)},

From the preceding two inequalities and the optimality of 6,, we have that
2.586 exp{—A(0,,}
vm
2.586 exp{—A(0,,}
vm
2,586 (exp{~ A0} + exp{~A(0; Y.n)})

<L(0n; X, Yon) + A |0 |21 +

<L(0n;Xn) + Anllfnll2,1 +

vm
holds with high probability. O
A.2 Proof of Theorem 1

We need the following result which indicates that under Assumption 1, {Z; i, Zs} satisfy a large
deviation inequality.

Lemma 1. [f Assumption 1 holds, then for all (s, k) and (s,t,1) and any € < (o? we have

n€2
P( ><€> S?exp{—w},
g

1 & , ; ne?
ﬁ ng)l(Xgl)’sz)) — EG*[QSZ(XsaXt)] > 5) §2€Xp {M} .

i=1

% Z or(X{D) — Ege [or(X,)]
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Proof. From the definition and the “law of the unconscious statistician” we know that Assumption 1
identically requires

Eg-[exp{n(Zs 1)} < exp{c®n®/2}, Eo-[exp{n(Zs,)}] < exp {c®n®/2}.

Since X are ii.d. samples of X, we have that Z(i) = @k(X(i)) Eg« [ (Xs)] are also i.i.d.
(

S

samples of Z; ;. We use the exponential Markov inequality for the sum Z = """ | Z Z,)C and with a

parameter > 0:

P(Z > €) =P (exp{nZ} > exp{ne}) < Elexp{nZ}] _ T, E [exp {UZS)H |

exp{ne} exp{ne}
If n < ¢, Assumption 1 yields
exp {n02772/2} 9 o
P(Z > <—mW——= = — 2,
( ne) < xp{mme) exp { —nne + no’n*/2}
whose minimum is attained at 7 = min (%, ¢ ) Thus, for any £ < 02¢, we have
2
ne
P(Z > ne) <exp {_W} .

Repeating this argument for —Z (t instead of Zs(t), we obtain the same bound for P(—Z > ne).

Combining these two bounds yields
ne?
el =P(Z] >ne) <2exps ——= .
202

1< N ol
P(ﬁ;mﬁ%ﬁh—mwwwm]>
The second inequality can be similarly proved. This completes the proof. O

Let us define v, := ||VL(6*;X,,)||2,00- The following lemma indicates that under Assumption 1,
with overwhelming probability, +,, approaches zero at the rate of O(y/max{q,r}Inp/n).

Lemma 2. Assume that Assumption 1 is valid. If n > 6 max{q,r}Inp/(c2(?), then with probabil-
ity at least 1 — 2max{q,r}p~! the following inequality holds:

= [|[VL(0"; X,) < o+/6max{q,} Inp/n.
Proof. From the gradient term (6) and Lemma 1 we have the following inequalities hold for any
e <o
OL(6*;X,,) 1 & ) ne?
P(aazk >E> =P (‘ng(pk(st)—Eg*[ng(Xs)] > ¢ SQexp _ﬁ y

L™ %) |
90*

st,l

P( ) ( Z¢ -W)EMM&KM>%§%W{$Q~

Let 07 = [0%,,...,05 ] and 03, = [0%, 1, ..., 0%, ,]. By the union bound we obtain

9 Ys,q »Vst,r
OL(9*; X §§:P
80*
k=1
\ ) (1™
=1

OL(6*;X
80:t
Therefore,

{
IWHVIKQZXHDHZW:>5)§2anp{__néZ}_%QﬂpQ_jﬁeXp{__nEQ}
|

AL(6*;X,)
007,

IN

AL(0":X,)
00*

st,l

2qo

<2max{q, r}p* exp {—
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Let us choose € = oy/6 max{q,r} Inp/n. Since n > 6 max{q,r}Inp/(c%¢?), we have ¢ < 02(.

Therefore we obtain that with probability at least 1 — 2 max{q,}p~!,

[VL(0*;X,)]|2.00 < 04/6 max{q,}Inp/n.
This completes the proof of Lemma 2. O

The following result further bounds the estimation error of the MLE estimator (7) in terms of ~,,, ¢
and (.

Lemma 3. Assume that the conditions in Assumption 2 hold true. Assume that \,, € [27y,,, coYn] for
some co > 2. Define v = 3co\/[|0*]|2,08  n- If ¥ < 6, then we have

16 = 671 < 3co/ 1% 12,08~ vn-
Proof. Let A0 = 6, — 6* and we define A@ = tA0 where we pick ¢t = 1 if [|Af]| < § and

t € (0,1) with |[A|| = & otherwise. By construction we have |Af| < r. We now claim that
[Afg|l2,1 < 3[|Afs]|2,1. Indeed, since 0% = 0, we have

16% + 20|21~ 10" |20 = [[(6" +20)s |21+ [ Ag]l21 — 05 ll2.1 > | A ]21 | Abs
From the convexity of function L(0;X,,) and A\, > 27, = 2||VL(6*;X,,)||2,c0 We have

2,1- (A1)

* n * * n * n An n
L(6"+A0; X5)=L(07; Xn) 2 (VL(07: Xn), A0) 2 —[[VL(07; Xn) 12,00/ A0]12,1 2 == [ A8]|2,1.
) (A.2)
Due to the optimality of §,, and the convexity of L(6;X,,), it holds that

L(0* + A0;X,.) + M\ |07 4 AB21 < L(O%;X,) + A ]|07]]2.1- (A.3)
By combining the proceeding three inequalities (A.1), (A.2) and (A.3), we obtain that
0 > L0 +A0;X,) 4+ M\al0F + AB|21 — L% X,) — Mnl|07 |21
)\n n N n N
2 = (1A0sllz1 + [1A05]12.1) + An(|A05 12,1 — |AOs]l2.1),

which implies ||Af gll21 < 3||A9~S||271. From second-order Taylor expansion we know that there
exists a real number £ € [0, 1] such that

LO* + A0;X,) = L(0%;X,,) + (VL(6*;X,,), Af) + %AeTv%(e* + EAG; X,,) A0
By using Assumption 2 (note that ||£Af|| < ||Af| < r) and (A.2) we have
L0 +80: %) = L0 %) 2 (VL0 X0), MO+ B0 > 22 [ Ad ]+ 5 130]2. (A4
By combining the inequalities (A.1), (A.3) and (A.4), we obtain
0 > L0+ A0;X,) + M0 + Af)l21 — L(6;X,,) — A\ 0*

|21 — |1A0s]|2,1)

2,1

An o~ . .
> AT+ DIA0 + A (120

Y

DU . .
7(HA95||2,1 —3[|Abs]|2,1) + §||A9||2

> LA AT o + D [AF = ~L5x 167 20| AT + 21202

186 < 83X 87"/ 16* 12,0 < 3cor/10[|2.08 v =

Since v < 4, we claim that ¢ = 1 and thus Af = A@. Indeed, if otherwise ¢ < 1, then [|Af]| = & >
~ which contradicts the above inequality. This completes the proof. 0

which implies that
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Equipped with Lemma 2 and Lemma 3, we are now in the position to prove Theorem 1.

Proof of Theorem 1. By invoking Lemma 2 and the condition n > 54¢267287202(|0*||2,0 Inp) we
have that with probability at least 1 — 2 max{q,r}p~ 1,

v =3co/|B|B ™ yn < 3coﬂ_la\/6max{q7r}||0*|\2,0lnp/n < 4.

By applying Lemma 3 we obtain the desired result. O

A.3 Proof of Theorem 2

To prove the theorem, we will need to study the concentration bound of the random variables defined
by

Zs,k = EO; [Sak(Xs) | X\e] _EO* [ka(Xs)]v Zst,l = EH;* [d)l(stXt) ‘ X\s] - EO* [¢Z(X57Xt)]~

The following lemma shows that under Assumption 1, Z: have exponential-type moment generating
function.

Lemma 4. If Assumption 1 holds, then we have that for any (s, k), (s,t,1), and for all |n| < (,
E[exp{nZ&k}] < exp {02772/2} , ]E[exp{nZstyl}] < exp {027]2/2} .

Proof. We only prove the first inequality as the second one can be very similarly proved. Note that
for any 7, exp{nz} is convex with respect to x. By applying Jensen’s inequality we have

exp {nEo; [or(Xo) | X\o]} < Eozlexp {nes(Xo)} | X\l-

By taking the expectation ]E9§ [-] with respect to the marginal distribution of X\ 5, and using the rule
of iterated expectation, we obtain

Eo; | [exp {nEo; [0x(Xs) | X\s]}] < Eor [Eo: [exp {non(Xs)} | X\l = Eo- [exp{new(Xs)}.

By using the “law of the unconscious statistician” and the above inequality we obtain

E[exp{nZs,k}] < Elexp{nZs}] < exp {02772/2} ,

where the last inequality follows from Assumption 1. This completes the proof. O

This lemma shows that the random variables {Z ks Z st.1} all have the same exponential-type mo-
ment generating function as that of {Z; , Zs; } investigated in the previous subsection.

Based on Lemma 4 and the proof of Lemma 1, we may establish the following lemma which will
be used in the proofs to follow.

Lemma 5. If Assumption 1 holds, then for all (s,t), (s,t,1) and any ¢ < 0>¢ we have

ne?
P <2 -
( > E) < 2exp { 252 } s
5N i)y | x® ne’
P( ﬁi:ZlEOS*[@(Xth ) | X\g] = EBo- (X5, Xe)]| > € | <2exp To52 [

Let us define 7, := ||VL(6};X,,)|2,00- The following lemma further indicates that under Assump-
tion 1, with overwhelming probability, 4,, approaches zero at the rate of O(y/max{q,r}Inp/n).

Lemma 6. Assume that Assumption 1 holds. If n > 6 max{q,r} Inp/(c*¢?), then with probability
at least 1 — 4max{q, r}p~? the following inequality holds:

LS B fon(X0) | X7~ Bor[on(X)

An < 20\/6 max{q,r}Inp/n.
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Proof. Recall the formulation of gradient VE(HS; X,,) in (9). For any node t € V' \ s, we have

OL(0;X,,)
903,

== (X0, X0) + By [on(Xe, X[ | X))

i=1

1 « , ; 1< , .
<[22 a(X 0, X))~ Bae (60X, X0)]| + | =3 Eog [01(Xe, X{) | X () = Boe [00( X, X))
1=1 1=1
Therefore, for any ¢ < 202,
31:4(9*' X,) 1 — . ) €
P||—= <P|(|- X0 XY — Ege [ (X, X -
< aezt,l > €> = ( n ; ¢l( s 14 g ) [ [¢l( ER) t)] > 2

1 & ; .
+P (‘n > e (b1 (Xs, XV | X{g] — Eo-[1(Xs, X3)]

i=1

24 ne?
ex _—
Sdexp(—gg 0

where £; follows from Lemma 1 and Lemma 5. Similarly, we can show

T(O*. 2
P w >e| <dexp _ne” .
82

007 .
By the union bound we obtain

-
2

AOL(6%:X,) I OL(6%:X,) { €2 }
Pll—=—>¢]| < Pl|——| > —= | <4qexpq— ,
< 00 > ; 207 ), Vi 8qo?
OL(0r;X,) . OL(0r;X,) € g2
p || 2n) <Np ||V C ) <y -
<| 003, ‘ g 5) 23 < F V) B
This implies
. ne? ne? ne?
P(IVL(03;X,)||2,00 > €) < 4gexp {—8(]02}—1-47"(]9—1) exp {_8T02 } < 4max{q,r}pexp {_Smax{qr}UQ} .

Let us choose £ = 20+/6max{q,7}Inp/n. Since n > 6max{q,r}Inp/(c¢?), we have ¢ <

202¢. We conclude that with probability at least 1 — 4 max{q,r}p~2,

||VE(9:; Xn)ll2,00 < 20\/6 max{q,r}Inp/n.

This proves the desired bound. O

The following result establishes the estimation error of the node-conditional estimator (10) in terms
of '3/77,7 0 and 6
Lemma 7. Assume that the conditions in Assumption 3 hold. Assume that \,, € (23, ¢0Yn] for
some &y > 2. Define 7 = 3¢9\/max{q,r}(d + 1)~ 4. If ¥ < J, then we have

165 — 631 < 3é0/max{q, r}(d+1)8~"F,.

The proof of this lemma mirrors that of Lemma 3.

Based on the above lemmas, we can now complete the proof of Theorem 2.

Proof of Theorem 2. From Lemma 6 and the condition n > 21662625202 max{q, r}||6%||2.0 In p
we know that with probability at least 1 — 4 max{q, r}p~2,

7 = 3600/ 102 ]|2,08 ™ Fn < 620871 0(/6]|0% 12,0 Inp/n < 6.

By applying Lemma 7 we obtain the desired result. O
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B Some Additional Remarks on Assumptions

We provide here a few additional remarks on the conditions under which Assumption 1 and Assump-
tion 3 can be satisfied.

Remark 4 (On Assumption 1: the basis {¢x(X5), ¢1(Xs, X¢)} are bounded). It can be verified
that Assumption 1 holds when the basis {pr(Xs), 0i1(Xs, X¢)} are bounded. Indeed, given the
bounded basis, {Zs x, Zs1} are bounded random variables with zero means. Based on the Ho-
effding’s Lemma, for any random variable Z € [a,b] and E[Z] = 0, we have Elexp{nZ}] <
exp{n?(b — a)?/8} holds for all scalar n. Therefore Assumption 1 holds when the basis statistics
{0k (Xs), d1(Xs, Xt)} are bounded.

Remark 5 (On Assumption 1: the basis {p(X5), ¢;1(Xs, X;)} are unbounded but sub-exponential).
We call a random variable Z sub-exponential if there exist constants ¢1,co > 0 such that P(|Z —
E(Z)| > n) <exp{ci —n/ca},forall n > 0. Using the result in [23, Lemma 5.15], we can verify
that Assumption 1 holds when {pr(Xs), 01(Xs, X¢)} are sub-exponential random variables. For
instance, consider that the energy function in (4) satisfies B(X;6*) < —3(X — p) TQ(X — p) + ¢
Sfor some constant vector i, scalar c and positive-definite matrix Q) = 0. It can be verified that the
marginal distribution of X s is bounded by P(X) < ¢4 exp {— Ke—pa)

2
20‘2‘ 2) } for some constants cs, [is
and o. If further assuming there exist constants ci, > 0 and ¢}, such that ¢ (Xs) < ci(Xs — ws)?+
¢}, then we claim that Z i, is sub-exponential. Indeed, for any n > 0, by using Markov inequality

e fae Efexp{pe(X.)/ (dex02)}]
xp{ ok (Xs CLOs
F) =) =T o (ero?))
<Cs fx exp{—(X, — Ns)z/(4ag)}dXs
exp{(n — ¢;)/(4cro)}

ocexp{—(n — &)/ (4cr03)},
which shows that i, (X) is a sub-exponential random variable and so is Z, . Similarly, we can
show that ¢;(X s, X¢) is sub-exponential if there exist ¢; > 0 and ¢ such that ¢;(Xs, X¢) < ¢;((Xs—

ps)? + (X —pe)?) +¢). Clearly, the analysis made for this example is applicable to the multivariate
Gaussian for which some similar results have been established in [17, 16].

Remark 6 (On Assumption 3). Assumption 3 requires that the Hessian V2[~/(95; X,,) is positive

definite in the cone Cs when 0y lies in a local ball centered at 0%. Specially, when X is multivariate
Gaussian, i.e., p(X,, X;) = X X; and f(X,) = —X?2, this condition essentially requires that the

design matrix AT = 13" | X &) (X\(ZS))—r is positive definite. In this case, if the precision matrix is
positive definite, then it is known from the compressed sensing literature [3, 4] that with overwhelm-
ing probability, A is positive definite provided that the sample size n = O(In p) is sufficiently large.
More generally, it can be verified that E[V2L(0s; X,,)] is the sub-matrix of V>L(0; X,,) associated
with the pairs {(s,t) | t € V \ {s}}. Therefore, if the whole Hessian matrix V> L(0;X,,) is positive
definite at any 0, then E[V2I~/(95; Xn)] is also positive definite. By using weak law of large number
we get that Assumption 3 holds with high probability when n is sufficiently large.
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