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1 Proof of Theorem 2.2

Lemma 1. Let {dk}k∈N, {εk}k∈N be two non-negative sequences, and {ωi}i∈I ∈ Rs such that

dk+1 ≤
∑
i∈I

ωidk−i + εk, (1)

for all k ≥ s. If
∑
i ωi ∈ [0, 1[ and

∑
k∈N εk < +∞, then∑

k∈N
dk < +∞.

Remark 2. Lemma 1 is an extension of [3, Lemma 3]. It should be noted that in our case, non-
negativity is not imposed to the weight ωi’s, but only the sum of them. In fact, we can even afford all
ωi’s to be negative, as long as

∑
i∈I ωidk−i + εk is positive for all k ∈ N.

Proof. From (1), suppose that d−1 = d−2 = d−s+1 = 0, then sum up for both sides from k = 0,∑
k∈N

dk+1 ≤
∑
k∈N

∑
i∈I

ωidk−i +
∑
k∈N

εk =⇒
∑
k∈N

dk ≤ d0 +
∑
i∈I

ωi
∑
k∈N

dk +
∑
k∈N

εk

=⇒
(

1−
∑
i∈I

ωi

)∑
k∈N

dk ≤ d0 +
∑
k∈N

εk.

Since we assume
∑
i∈I ωi < 1 and εk is summable, then we have∑

k∈N
dk ≤

(
1−

∑
i∈I

ωi

)−1(
d0 +

∑
k∈N

εk

)
< +∞,

which concludes the proof.

Define ∆k
def
= ||xk − xk−1||.

Lemma 3. For the update of xk+1 in (1.7), given any k ∈ N, define

gk+1
def
= 1
γk

(ya,k − xk+1)−∇F (yb,k) +∇F (xk+1).

We have gk+1 ∈ ∂Φ(xk+1), and moreover,

||gk+1|| ≤
(

1
γ

+ L
)
∆k+1 +

∑
i∈I

( |ai,k|
γ

+ |bi,k|
)
∆k−i. (2)
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Proof. From the definition of the proximity operator and the update of xk+1 (1.7), we have ya,k −
γk∇F (yb,k)− xk+1 ∈ γk∂R(xk+1). Adding γk∇F (xk+1) to both sides, we get

gk+1 =
ya,k − γk∇F (yb,k)− xk+1 + γk∇F (xk+1)

γk
∈ ∂Φ(xk+1).

Now, applying the triangle inequality and using Lipschitz continuity of∇F , we get

||gk+1|| = || 1γk (ya,k − xk+1)−∇F (yb,k) +∇F (xk+1)||

≤ 1
γk
||ya,k − xk+1||+ L||yb,k − xk+1||

≤ 1
γk

(
∆k+1 +

∑
i∈I
|ai,k|∆k−i

)
+ L
(
∆k+1 +

∑
i∈I
|bi,k|∆k−i

)
≤
(

1
γ

+ L
)
∆k+1 +

∑
i∈I

( |ai,k|
γ

+ |bi,k|
)
∆k−i,

which concludes the proof.

Lemma 4. For Algorithm 1, given the parameters γk, ai,k, bi,k, the following inequality holds

Φ(xk+1) + β∆2
k+1 ≤ Φ(xk) +

∑
i∈I

αi∆
2
k−i. (3)

Proof. Define the function

Lk(x) = γkR(x) + 1
2
||x− ya,k||2 + γk〈x, ∇F (yb,k)〉.

It can be shown that the update of xk+1 in (1.7) is equivalent to

xk+1 ∈ Argminx∈RnLk(x), (4)

which means that Lk(xk+1) ≤ Lk(xk), and

R(xk+1)+ 1
2γk
||xk+1−ya,k||2+〈xk+1, ∇F (yb,k)〉 ≤ R(xk)+ 1

2γk
||xk−ya,k||2+〈xk, ∇F (yb,k)〉,

which in turn leads to,

R(xk) ≥ R(xk+1) + 1
2γk
||xk+1 − ya,k||2 + 〈xk+1 − xk, ∇F (yb,k)〉 − 1

2γk
||xk − ya,k||2

= R(xk+1) + 〈xk+1 − xk, ∇F (xk)〉+ 1
2γk

∆2
k+1

+ 1
γk
〈xk − xk+1,

∑
i∈Iai,k(xk−i − xk−i−1)〉+ 〈xk+1 − xk, ∇F (yb,k)−∇F (xk)〉.

(5)
Since∇F is L-Lipschitz, we have the classical inequality

〈∇F (xk), xk+1 − xk〉 ≥ F (xk+1)− F (xk)− L
2

∆2
k+1.

Applying Young’s inequality, we obtain

〈xk − xk+1,
∑
i∈Iai,k(xk−i − xk−i−1)〉 ≥ −

(
µ
2

∆2
k+1 + 1

2µ
||∑i∈I ai,k(xk−i − xk−i−1)||2

)
≥ −
(
µ
2

∆2
k+1 +

∑
i∈I

sa2i,k
2µ

∆2
k−i

)
,

(6)
where µ > 0. Similarly, for ν > 0, we have

〈xk+1 − xk, ∇F (yb,k)−∇F (xk)〉 ≥ −
(
ν
2

∆2
k+1 + 1

2ν
||∇F (yb,k)−∇F (xk)||2

)
≥ −
(
ν
2

∆2
k+1 +

∑
i∈I

sb2i,kL
2

2ν
∆2
k−i

)
.

(7)

Combining (5), (6) and (7) leads to

Φ(xk+1) + βk∆2
k+1 ≤ Φ(xk) +

∑
i∈I

( sa2i,k
2γkµ

+
sb2i,kL

2

2ν

)
∆2
k−i = Φ(xk) +

∑
i∈I

αk,i∆
2
k−i. (8)
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Therefore, we obtain

Φ(xk+1) + β∆2
k+1 ≤ Φ(xk+1) + βk∆2

k+1 ≤ Φ(xk) +
∑
i∈I

αk,i∆
2
k−i ≤ Φ(xk) +

∑
i∈I

αi∆
2
k−i,

which concludes the proof.

Define Rns the product space Rns
def
= Rn × · · · × Rn︸ ︷︷ ︸

s times

and zk = (xk, xk−1, ..., xk−s+1) ∈ Rns . Then

given zk, define the function

Ψ(zk) = Φ(xk) +
∑
i∈I

s−1∑
j=i

αj∆
2
k−i,

which is is a KL function if Φ is. Denote Cxk
, Czk the set of cluster points of {xk}k∈N and {zk}k∈N

respectively, and crit(Ψ) = {z = (x, ..., x) ∈ Rns : x ∈ crit(Φ)}.
Lemma 5. For Algorithm 1, choose µ, ν, γk, ai,k, bi,k such that (2.3) holds. If Φ is bounded from
below, then

(i)
∑
k∈N ∆2

k < +∞;
(ii) The sequence Ψ(zk) is monotonically decreasing and convergent;

(iii) The sequence Φ(xk) is convergent.

Proof. Define
δ = β −

∑
i∈I

αi > 0.

From the Lemma 4, we have

δ∆2
k+1 ≤

(
Φ(xk)− Φ(xk+1)

)
+
∑
i∈I

αi(∆
2
k−i −∆2

k+1).

Since we let x1−s = ... = x0 = x1, for the above inequality, sum over k we get

δ
∑
k∈N

∆2
k+1 ≤

∑
k∈N

(
Φ(xk)− Φ(xk+1)

)
+
∑
k∈N

∑
i∈I

αi(∆
2
k−i −∆2

k+1)

≤ Φ(x0) +
∑
i∈I

αi
∑
k∈N

(∆2
k−i −∆2

k+1)

= Φ(x0) +
∑
i∈I

αi

1∑
j=1−i

∆2
j = Φ(x0),

which means, as Φ(x0) is bounded,∑
k∈N

∆2
k+1 ≤

Φ(x0)
δ

< +∞.

From Lemma 4, by pairing terms on both sides of (3), we get

Ψ(zk+1) +
(
β −

∑
i∈I

αi
)
∆2
k+1 ≤ Ψ(zk).

Since we assume β −
∑
i∈I αi > 0, hence Ψ(zk) is monotonically non-increasing. The convergence

of Φ(xk) is straightforward.

Lemma 6. For Algorithm 1, choose µ, ν, γk, ai,k, bi,k such that (2.3) holds. If Φ is bounded from
below and {xk}k∈N is bounded, then xk converges to a critical point of Φ.
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Proof. Since {xk}k∈N is bounded, there exists a subsequence {xkj}j∈N and cluster point x̄ such
that xkj → x̄ as j →∞. Next we show that Φ(xkj )→ Φ(x̄) and that x̄ is a critical point of Φ.

Since R is lsc, then lim infj→∞R(xkj ) ≥ R(x̄). From (4), we have Lkj−1(xkj ) ≤ Lkj−1(x̄),

R(x̄) ≥ R(xkj ) + 1
2γkj−1

||xkj − ya,kj−1||
2

+ 〈xkj − x̄, ∇F (yb,kj−1)〉 − 1
2γkj−1

||x̄− ya,kj−1||
2

= R(xkj ) + 1
2γkj−1

(||xkj − x̄||
2

+ 2〈xkj − x̄, x̄− ya,kj−1〉) + 〈xkj − x̄, ∇F (yb,kj−1)〉

Since ∆2
k → 0 and xkj → x̄, then passing to the limit in the inequality we obtain

lim supj→∞R(xkj ) ≤ R(x̄). As a result, limk→∞R(xkj ) = R(x̄). Since F is continuous, then
F (xkj )→ F (x̄), hence Φ(xkj )→ Φ(x̄).

Furthermore, owing to Lemma 3, gkj ∈ ∂Φ(xkj ), and (i) of Lemma 5 we have gkj → 0 as k →∞.
As a consequence,

gkj ∈ ∂Φ(xkj ), (xkj , gkj )→ (x̄, 0) and Φ(xkj )→ Φ(x̄),

as j →∞. Hence 0 ∈ ∂Φ(x̄), i.e. x̄ is a critical point.

Now we present the proof of Theorem 2.2.

Proof of Theorem 2.2. Putting together the above lemmas, we draw the following useful conclu-
sions:

(R.1) Denote δ = β −
∑
i∈I αi, then Ψ(zk+1) + δ∆2

k+1 ≤ Ψ(zk);
(R.2) Define

wk+1
def
=


gk+1 + 2

∑s−1
i=0 αi(xk+1 − xk)

2
∑s−1
i=0 αi(xk − xk+1) + 2

∑s−1
i=1 αi(xk − xk−1)

...
2αs−1(xk+2−s − xk+1−s)

 ,

then we have wk+1 ∈ ∂Ψ(zk+1). Owing to Lemma 3, there exists a σ > 0 such that
||wk+1|| ≤ σ

∑k+1
j=k+2−s ∆j ;

(R.3) if xkj is a subsequence such that xkj → x̄, then Ψ(zk)→ Ψ(z̄) where z̄ = (x̄, ..., x̄).
(R.4) Czk ⊆ crit(Ψ);
(R.5) limk→∞ dist(zk, Czk) = 0;
(R.6) Czk is non-empty, compact and connected;
(R.7) Ψ is finite and constant on Czk .

Next we prove the claims of Theorem 2.2.

(i) Consider a critical point of Φ, x̄ ∈ crit(Φ), such that z̄ = (x̄, ..., x̄) ∈ Czk , then owing to (R.3),
we have Ψ(zk)→ Ψ(z̄).
Suppose there exists K such that Ψ(zK) = Ψ(z̄), then the descent property (R.1) implies that
Ψ(zk) = Ψ(z̄) holds for all k ≥ K. Then zk is constant for k ≥ K, hence has finite length.
On the other hand, let Ψ(zk) > Ψ(z̄), denote ψk = Ψ(zk)−Ψ(z̄). Owing to (R.6), (R.7) and
Definition 2.1, the KL property of Ψ means that there exist ε, η and a concave function ϕ, and

U def
=
{
u ∈ Rns : dist(u, Czk) < ε

}⋂[
Ψ(z̄) < Ψ(u) < Ψ(z̄) + η

]
, (9)

sucht ath for all z ∈ U ,

ϕ′
(
Ψ(z)−Ψ(z̄)

)
dist

(
0, ∂Ψ(z)

)
≥ 1. (10)

Let k1 ∈ N be such that Ψ(zk) < Ψ(z̄) + η holds for all k ≥ k1. Owing to (R.5), there exists
another k2 ∈ N such that dist(zk, Czk) < ε holds for all k ≥ k2. Let K = max{k1, k2}, then
zk ∈ U holds for all k ≥ K. Then from (10), we have for k ≥ K

ϕ′(ψk)dist
(
0, ∂Ψ(zk)

)
≥ 1.

Since ϕ is concave, ϕ′ is decreasing, and Ψ(zk) is decreasing, we have

ϕ(ψk)− ϕ(ψk+1) ≥ ϕ′(ψk)
(
Ψ(zk)−Ψ(zk+1)

)
≥ Ψ(zk)−Ψ(zk+1)

dist(0, ∂Ψ(zk))
.
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From (R.1), since dist(0, ∂Ψ(zk)) ≤ ||wk||, then

ϕ(ψk)− ϕ(ψk+1) ≥ Ψ(zk)−Ψ(zk+1)

||wk||
≥ Ψ(zk)−Ψ(zk+1)

σ
∑k
j=k+1−s ∆j

.

Moreover, Ψ(zk)−Ψ(zk+1) ≥ δ∆2
k+1 from (R.2), therefore we get

ϕ(ψk)− ϕ(ψk+1) ≥
δ∆2

k+1

σ
∑k
j=k+1−s ∆j

,

which yields
∆2
k+1 ≤

(σ
δ

(ϕ(ψk)− ϕ(ψk+1))
)∑k

j=k+1−s ∆j . (11)

Taking the square root of both sides and applying Young’s inequality with κ > 0, we further
obtain

2∆k+1 ≤ 1
κ

∑k

j=k+1−s ∆j +
κσ
δ

(ϕ(ψk)− ϕ(ψk+1))

(κ = s) ≤ 1
s

∑k

j=k+1−s ∆j +
sσ
δ

(ϕ(ψk)− ϕ(ψk+1)).
(12)

Summing up both sides over k, and since x0 = ... = x−s, we get

`
def
=
∑

k∈N∆k ≤ ∆1 +
sσ
δ
ϕ(ψ1) < +∞,

which concludes the finite length property of xk.
(ii) Then the convergence of the sequence follows from the fact that {xk}k∈N is a Cauchy se-

quence, hence convergent. Owing to Lemma 6, there exists a critical point x? ∈ crit(Φ) such
that limk→∞ xk = x?.

(iii) We now turn to proving local convergence to a global minimmizer. Note that if x? is a global
minimizer of Φ, then z? is a global minimizer of Ψ. Let r > ρ > 0 such that Br(z?) ⊂ U and
η < δ(r − ρ)2. Suppose that the initial point x0 is chosen such that following conditions hold,

Ψ(z?) ≤ Ψ(z0) < Ψ(z?) + η (13)

||x0 − x?||+ `(s− 1) + 2
√

Ψ(z0)−Ψ(z?)
δ

+ σ
δ
ϕ(ψ0) < ρ. (14)

The descent property (R.1) of Ψ together with (13) imply that for any k ∈ N, Ψ(z?) ≤
Ψ(zk+1) ≤ Ψ(zk) ≤ Ψ(z0) < Ψ(z?) + η, and

||xk+1 − xk|| ≤
√

Ψ(zk)−Ψ(zk+1)
δ

≤
√

Ψ(zk)−Ψ(z?)
δ

. (15)

Therefore, given any k ∈ N, if we have xk ∈ Bρ(x?), then

||xk+1 − x?|| ≤ ||xk − x?||+ ||xk+1 − xk|| ≤ ||xk − x?||+
√

Ψ(zk)−Ψ(z?)
δ

≤ ρ+ (r − ρ) = r,

(16)

which means that xk+1 ∈ Br(x?).
For any k ∈ N, define the following partial sum

pk =
∑k−1

j=k+1−s

∑j

i=1
∆i.

Note that pk = 0 for k = 1, and limk→∞ pk = `(s− 1). Next we prove the following claims
through induction: for k ∈ N

xk ∈ Bρ(x?) (17)∑k

j=1
∆j+1 + ∆k+1 ≤ ∆1 + pk + σ

δ
(ϕ(ψ1)− ϕ(ψk+1)). (18)

From (15) we have

||x1 − x0|| ≤
√

Ψ(z0)−Ψ(z?)
δ

. (19)
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Applying the triangle inequality we then obtain

||x1 − x?|| ≤ ||x0 − x?||+ ||x1 − x0|| ≤ ||x0 − x?||+
√

Ψ(z0)−Ψ(z?)
δ

< ρ,

which means x1 ∈ Bρ(x?). Now, taking κ = 1 in (12) yields, for any k ∈ N,

2∆k+1 ≤
∑k

j=k+1−s∆j +
σ
δ

(ϕ(ψk)− ϕ(ψk+1)). (20)

Let k = 1. Since x0 = ... = x−s, we have

2∆2 ≤ ∆1 +
σ
δ

(ϕ(ψ1)− ϕ(ψ2)).

Therefore, (17) and (18) hold for k = 1.
Now assume that they hold for some k > 1. Using the triangle inequality and (18),

||xk+1 − x?|| ≤ ||x0 − x?||+ ∆1 +
∑k

j=1
∆j

≤ ||x0 − x?||+ 2∆1 + pk +
σ
δ

(ϕ(ψ1)− ϕ(ψk+1))

≤ ||x0 − x?||+ 2∆1 + (s− 1)`+
σ
δ

(ϕ(ψ1)− ϕ(ψk+1))

(19) ≤ ||x0 − x?||+ 2

√
Ψ(z0)−Ψ(z?)

δ
+ (s− 1)`+

σ
δ

(ϕ(ψ1)− ϕ(ψk+1)).

As ϕ(ψ) ≥ 0 and ϕ′(ψ) > 0 for ψ ∈]0, η[, and in view of (14), we arrive at

||xk+1 − x?|| ≤ ||x0 − x?||+ 2

√
Ψ(z0)−Ψ(z?)

δ
+ (s− 1)`+

σ
δ
ϕ(ψ0) < ρ

whence we deduce that (17) holds at k + 1. Now, taking (20) at k + 1 gives

2∆k+2 ≤
∑k+1

j=k+2−s∆j +
σ
δ

(ϕ(ψk+1)− ϕ(ψk+2))

≤ ∆k+1 +
∑k

j=k+2−s∆j +
σ
δ

(ϕ(ψk+1)− ϕ(ψ(k+2)).
(21)

Adding both sides of (21) and (18) we get∑k+1

j=1
∆j+1 + ∆k+2 ≤ ∆1 + pk +

∑k

j=k+2−s∆j +
σ
δ

(ϕ(ψ1)− ϕ(ψk+2))

= ∆1 + pk+1 +
σ
δ

(ϕ(ψ1)− ϕ(ψk+2)),

meaning that (18) holds at k + 1. This concludes the induction proof.
In summary, the above result shows that if we start close enough from x? (so that (13)-(14)
hold), then the sequence {xk}k∈N will remain in the neighbourhood Bρ(x?) and thus converges
to a critical point x̄ owing to Lemma 6. Moreover, Ψ(zk)→ Ψ(z̄) ≥ Ψ(z?) by virtue of (R.3).
Now we need to show that Ψ(z̄) = Ψ(z?). Suppose that Ψ(z̄) > Ψ(z?). As Ψ has the KL
property at z?, we have

ϕ′
(
Ψ(z̄)−Ψ(z?)

)
dist

(
0, ∂Ψ(z̄)

)
≥ 1.

But this is impossible since ϕ′(s) > 0 for s ∈]0, η[, and dist
(
0, ∂Ψ(z̄)

)
= 0 as z̄ is a critical

point. Hence we have Ψ(z̄) = Ψ(z?), which means Φ(x̄) = Φ(x?), i.e. the cluster point x̄ is
actually a global minimizer. This concludes the proof.

2 Proof of Theorem 3.2

Proof of Theorem 3.2. Under the conditions of Theorem 2.2, there exists a critical point x? ∈
crit(Φ) such that xk → x?, R(xk)→ R(x?) and Φ(xk)→ Φ(x?) (see the proof of Lemma 6).

Convergence properties of {xk}k∈N (Theorem 2.2) entails ||ya,k − xk|| → 0 and ||yb,k − x?|| → 0.
In turn,

dist
(
−∇F (x?), ∂R(xk+1)

)
≤ 1
γ
||ya,k − xk+1||+ 1

β
||yb,k − x?|| → 0.

Altogether, this shows that the conditions of [10, Theorem 4.10] or [6, Proposition 10.12] are fulfilled
on R at x? for −∇F (x?), and the identification result follows.
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3 Proof of Theorem 3.4

Before presenting the proofs, we need some extra result from partial smoothness, and also Riemannian
geometry.

3.1 Partial smoothness and Riemannian geometry

From the sharpness in Definition 3.1, Proposition 2.10 of [9] allows to prove the following fact.
Fact 7 (Local normal sharpness). IfR ∈ PSFx(M), then all x′ ∈M near x satisfy TM(x′) = Tx′ .
In particular, whenM is affine or linear, then Tx′ = Tx.

We now give expressions of the Riemannian gradient and Hessian (see Section 3.2 for definitions) for
the case of partly smooth functions relative to a C2 submanifold. This is summarized in the following
fact which follows by combining (23), (24), Definition 3.1, Fact 7 and [5, Proposition 17] (or [13,
Lemma 2.4]).
Fact 8. If R ∈ PSFx(M), then for any x′ ∈M near x

∇MR(x′) = PTx′ (∂R(x′)),

and this does not depend on the smooth representation of R onM. In turn, for all h ∈ Tx′

∇2
MG(x′)h = PTx′∇2R̃(x′)h+ Wx′

(
h,PT⊥

x′
∇R̃(x′)

)
,

where R̃ is a smooth extension (representative) of R onM, and Wx(·, ·) : Tx × T⊥x → Tx is the
Weingarten map ofM at x (see Section 3.2 below for definitions).

3.2 Riemannian Geometry

Let M be a C2-smooth embedded submanifold of Rn around a point x. With some abuse of
terminology, we shall state C2-manifold instead of C2-smooth embedded submanifold of Rn. The
natural embedding of a submanifoldM into Rn permits to define a Riemannian structure and to
introduce geodesics onM, and we simply sayM is a Riemannian manifold. We denote respectively
TM(x) and NM(x) the tangent and normal space ofM at point near x inM.

Exponential map Geodesics generalize the concept of straight lines in Rn, preserving the zero
acceleration characteristic, to manifolds. Roughly speaking, a geodesic is locally the shortest
path between two points on M. We denote by g(t;x, h) the value at t ∈ R of the geodesic
starting at g(0;x, h) = x ∈ M with velocity ġ(t;x, h) = dg

dt
(t;x, h) = h ∈ TM(x) (which is

uniquely defined). For every h ∈ TM(x), there exists an interval I around 0 and a unique geodesic
g(t;x, h) : I →M such that g(0;x, h) = x and ġ(0;x, h) = h. The mapping

Expx : TM(x)→M, h 7→ Expx(h) = g(1;x, h),

is called Exponential map. Given x, x′ ∈M, the direction h ∈ TM(x) we are interested in is such
that

Expx(h) = x′ = g(1;x, h).

Parallel translation Given two points x, x′ ∈ M, let TM(x), TM(x′) be their corresponding
tangent spaces. Define

τ : TM(x)→ TM(x′),

the parallel translation along the unique geodesic joining x to x′, which is isomorphism and isometry
w.r.t. the Riemannian metric.

Riemannian gradient and Hessian For a vector v ∈ NM(x), the Weingarten map ofM at x is
the operator Wx(·, v) : TM(x)→ TM(x) defined by

Wx(·, v) = −PTM(x)dV [h],

where V is any local extension of v to a normal vector field onM. The definition is independent of
the choice of the extension V , and Wx(·, v) is a symmetric linear operator which is closely tied to
the second fundamental form ofM, see [4, Proposition II.2.1].
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Let G be a real-valued function which is C2 along theM around x. The covariant gradient of G at
x′ ∈M is the vector∇MG(x′) ∈ TM(x′) defined by

〈∇MG(x′), h〉 =
d
dt
G
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′),

where PM is the projection operator ontoM. The covariant Hessian of G at x′ is the symmetric
linear mapping∇2

MG(x′) from TM(x′) to itself which is defined as

〈∇2
MG(x′)h, h〉 =

d2

dt2
G
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′). (22)

This definition agrees with the usual definition using geodesics or connections [13]. Now assume that
M is a Riemannian embedded submanifold of Rn, and that a function G has a C2-smooth restriction
onM. This can be characterized by the existence of a C2-smooth extension (representative) of G,
i.e. a C2-smooth function G̃ on Rn such that G̃ agrees with G onM. Thus, the Riemannian gradient
∇MG(x′) is also given by

∇MG(x′) = PTM(x′)∇G̃(x′), (23)

and ∀h ∈ TM(x′), the Riemannian Hessian reads

∇2
MG(x′)h = PTM(x′)d(∇MG)(x′)[h] = PTM(x′)d

(
x′ 7→ PTM(x′)∇MG̃

)
[h]

= PTM(x′)∇2G̃(x′)h+ Wx′
(
h,PNM(x′)∇G̃(x′)

)
,

(24)

where the last equality comes from [1, Theorem 1]. WhenM is an affine or linear subspace of Rn,
then obviouslyM = x+ TM(x), and Wx′(h,PNM(x′)∇G̃(x′)) = 0, hence (24) reduces to

∇2
MG(x′) = PTM(x′)∇2G̃(x′)PTM(x′).

See [8, 4] for more materials on differential and Riemannian manifolds.

The following lemmas summarize two key properties that we will need throughout.

Lemma 9. Let x ∈M, and xk a sequence converging to x inM. Denote τk : TM(x)→ TM(xk)
be the parallel translation along the unique geodesic joining x to xk. Then, for any bounded vector
u ∈ Rn, we have

(τ−1k PTM(xk) − PTM(x))u = o(||u||).

Proof. See Lemma B.1 of [12].

Lemma 10. Let x, x′ be two close points inM, denote τ : TM(x)→ TM(x′) the parallel translation
along the unique geodesic joining x to x′. The Riemannian Taylor expansion of Φ ∈ C2(M) around
x reads,

τ−1∇MΦ(x′) = ∇MΦ(x) +∇2
MΦ(x)PTM(x)(x

′ − x) + o(||x′ − x||).

Proof. See Lemma B.2 of [12].

3.3 Proof of Theorem 3.4

The proof of Theorem 1 consists of several steps, first we prove that under the required setting, we
can obtain (3.5), i.e. the linearized fixed-point iteration.

Proposition 11 (Locally linearized iteration). For Algorithm 1, suppose that the conditions in
Theorem 2.2 hold so that the generated sequence {xk}k∈N converges to a critical point x? ∈ crit(Φ)
such that Theorem 3.2 and condition (3.2) and (3.3) hold. Then for all k large enough, we have

dk+1 = Mdk + o(||dk||). (25)

The term o(·) vanishes if R is polyhedral around x? and (γk, ai,k, bi,k) are chosen constant.
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Define the iteration-dependent versions of the matrices in (3.1) and (3.4), i.e.

Hk
def
= γkPTx?∇2F (x?)PTx? , Gk

def
= Id−Hk, Qk

def
= γk∇2

Mx? Φ(x?)PTx? −Hk,

Mk,0
def
= (ak,0 − bk,0)P + (1 + bk,0)PG, Mk,s

def
= −(ak,s−1 − bk,s−1)P − bk,s−1PG,

Mk,i
def
= −

(
(ak,i−1 − ak,i)− (bk,i−1 − bk,i)

)
P − (bk,i−1 − bk,i)PG, i = 1, ..., s− 1,

Mk
def
=


Mk,0 Mk,1 · · · Mk,s−1 Mk,s

Id 0 · · · 0 0
0 Id · · · 0 0
...

...
. . .

...
...

0 0 · · · Id 0

 .
(26)

After the finite identification ofMx? , we have xk ∈ Mx? for xk close enough to x?. Let Txk
be

their corresponding tangent spaces, and define τk : Tx? → Txk
the parallel translation along the

unique geodesic joining from xk to x?.

Before proving Proposition 11, we first establish the following intermediate result which provides
useful estimates.
Proposition 12. Under the assumptions of Proposition 11, we have

||ya,k − x?|| = O(||dk||), ||yb,k − x?|| = O(||dk||), ||rk+1|| = O(||dk||),
(τ−1k+1PTxk+1

− PTx? )
(
∇F (yb,k)−∇F (xk+1)

)
= o(||dk||).

(27)

and
||P (Qk −Q)rk+1|| = o(||dk||), ||(Mk −M)dk|| = o(||dk||). (28)

Proof. Since |ai,k| ≤ 1, then

||ya,k − x?|| = ||xk +
∑
i∈Iai,k(xk−i − xk−i−1)− x? +

∑
i∈Iai,k(x? − x?)||

≤ ||xk − x?||+
∑
i∈I

ai,k(||xk−i − x?||+ ||xk−i−1 − x?||)

≤ 2
∑
i∈I
||rk−i|| ≤ 2

√
s+ 1||dk||,

(29)

hence we get the first and second estimates. From prox-regularity of R at x? for −∇F (x?), in-
voking [15, Proposition 13.37], we have that there exists r̄ > 0 such that for all γk ∈]0,min(γ, r̄)[,
there exists a neighbourhood U of x? − γk∇F (x?) on which ProxγkR is single-valued and l-
Lipschitz continuous with l = r̄/(r̄ − γk). Since ∇F is continuous and xk → x?, we have
ya,k − γk∇F (yb,k)→ x? − γk∇F (x?). In turn, ya,k − γk∇F (yb,k) ∈ U for all k sufficiently large.
Thus, we obtain

||rk+1|| = ||ProxγkR
(
ya,k − γk∇F (yb,k)

)
− ProxγkR

(
x? − γk∇F (x?)

)
||

≤ l||(ya,k − x?)− γk
(
∇F (yb,k)−∇F (x?)

)
||

≤ l
(
||ya,k − x?||+ γkL||yb,k − x?||

)
≤ 2
√
s+ 1(1 + γkL)||dk|| ≤ 4

√
s+ 1||dk||,

(30)

which yields the third estimate. Combining Lemma 9, (29) and (30), we get

(τ−1k+1PTxk+1
− PTx? )

(
∇F (yb,k)−∇F (xk+1)

)
= o(||∇F (yb,k)−∇F (xk+1)||)
= o(||yb,k − x?||) + o(||rk+1||) = o(||dk||).

Let’s now turn to (28). First, define the function R(x)
def
= R(x) + 〈x, ∇F (x?)〉. From the smooth

perturbation rule of partial smoothness [9, Corollary 4.7], R ∈ PSFx?(Mx?). Moreover, from Fact 8
and normal sharpness, the Riemannian Hessian of R at x? is such that, ∀h ∈ Tx? ,

γ∇2
Mx?R(x?)h = γPTx?∇2R̃(x?)h+ γWx?

(
h,PT⊥

x?
∇R̃(x?)

)
= γPTx?∇2R̃(x?)h+ γWx?

(
h,PT⊥

x?
∇Φ̃(x?)

)
= γ∇2

Mx? Φ(x?)PTx?h−Hh = Qh,
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where ·̃ is the smooth representative of the corresponding function. We have

lim
k→∞

||P (Qk −Q)rk+1||
||rk+1||

= lim
k→∞

||P (γk − γ)∇2
Mx?

R(x?)PTx? rk+1||
||rk+1||

≤ lim
k→∞

|γk − γ|||P ||||∇2
Mx?R(x?)PTx? || = 0,

which entails ||P (Qk −Q)rk+1|| = o(||rk+1||) = o(||dk||). Similarly, since H is Lipschitz, we have

lim
k→∞

||P (Gk −G)rk||
||rk||

= lim
k→∞

||P (γk − γ)Hrk||
||rk||

≤ lim
k→∞

|γk − γ|L||P || = 0. (31)

Now, let’s consider (Mk −M)dk

Mk −M =


Mk,0 −M0 Mk,1 −M1 · · · Mk,s−1 −Ms−1 Mk,s −Ms

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 .
Take (Mk,0 −M0)rk, we have

(Mk,0 −M0)rk

=
(
(ak,0 − bk,0)P + (1 + bk,0)PGk

)
rk −

(
(a0 − b0)P + (1 + b0)PG

)
rk

=
(
(ak,0 − bk,0)− (a0 − b0)

)
Prk + (1 + bk,0)P (Gk −G)rk + (bk,0 − b0)PGrk.

Since we assume that ai,k → ai, bi,k → bi, i = 0, 1 and γk → γ, plus (31), it can be shown that

lim
k→∞

||(Mk,0 −M0)rk||
||rk||

≤ lim
k→∞

|(ak,0 − bk,0)− (a0 − b0)|||P ||+ |1 + bk,0||γk − γ|L||P ||+ |bk,0 − b0|||P ||||G|| = 0,

that is ||(Mk,0 −M0)rk|| = o(||rk||). Using the same arguments, we can show that

||(Mk,i −Mi)rk−i|| = o(||rk−i||), i = 1, ..., s− 1 and ||(Mk,s −Ms)rk,s|| = o(||rk,s||).
Assemble them together, we obtain

||(Mk −M)dk|| = o(||dk||),
which concludes the proof.

Proof of Proposition 11. From the update (1.7) and the condition for a critical point x? of problem
(P), we have

ya,k − xk+1 − γk
(
∇F (yb,k)−∇F (xk+1)

)
∈ γk∂Φ(xk+1)

0 ∈ γk∂Φ(x?).

Projecting into Txk+1
and Tx? , respectively, and using Fact 8, leads to

γkτ
−1
k+1∇Mx? Φ(xk+1) = τ−1k+1PTxk+1

(
ya,k − xk+1 − γk

(
∇F (yb,k)−∇F (xk+1)

))
γk∇Mx? Φ(x?) = 0.

Adding both identities, and subtracting τ−1k+1PTxk+1
x? on both sides, we arrive at

τ−1k+1PTxk+1
rk+1 + γk

(
τ−1k+1∇Mx? Φ(xk+1)−∇Mx? Φ(x?)

)
= τ−1k+1PTxk+1

(ya,k − x?)− γkτ−1k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
.

(32)

By virtue of Lemma 9, we get

τ−1k+1PTxk+1
rk+1 = PTx? rk+1 + (τ−1k+1PTxk+1

− PTx? )rk+1 = PTx? rk+1 + o(||rk+1||).

Using [11, Lemma 5.1], we also have

rk+1 = PTx? rk+1 + o(||rk+1||),
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and thus

τ−1k+1PTxk+1
rk+1 = rk+1 + o(||rk+1||) = rk+1 + o(||dk||), (33)

where we also used (27). Similarly

τ−1k+1PTxk+1
(ya,k − x?)

= PTx? (ya,k − x?) + (τ−1k+1PTxk+1
− PTx? )(ya,k − x?)

= PTx? (ya,k − x?) + o(||ya,k − x?||) = PTx? (ya,k − x?) + o(||dk||)

= PTx? (xk − x?) +
∑
i∈I

ai,kPTx?

(
(xk−i − x?)− (xk−i−1 − x?)

)
+ o(||dk||)

= rk + o(||rk||) +
∑
i∈I

ai,k
(
rk−i − rk−i−1 + o(||rk−i||) + o(||rk−i−1||)

)
+ o(||dk||)

= rk +
∑
i∈I

ai,k(rk−i − rk−i−1) +
∑

i∈I∪{s}

o(||rk−i||) + o(||dk||)

= (ya,k − x?) + o(||dk||).

(34)

Moreover owing to Lemma 10 and (27),

τ−1∇Mx? Φ(xk+1)−∇Mx? Φ(x?) = ∇2
Mx? Φ(x?)PTx? rk+1 + o(||rk+1||)

= ∇2
Mx? Φ(x?)PTx? rk+1 + o(||dk||).

(35)

Therefore, inserting (33), (34) and (35) into (32), we obtain

(
Id + γk∇2

Mx? Φ(x?)PTx?

)
rk+1

= (ya,k − x?)− γkτ−1k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
+ o(||dk||).

(36)

Owing to (27) and local C2-smoothness of F , we have

τ−1k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
= PTx?

(
∇F (yb,k)−∇F (xk+1)

)
+ o(||dk||)

= PTx?

(
∇F (yb,k)−∇F (x?)

)
− PTx?

(
∇F (xk+1)−∇F (x?)

)
+ o(||dk||)

= PTx?∇2F (x?)(yb,k − x?) + o(||yb,k − x?||)− PTx?∇2F (x?)rk+1 + o(||rk+1||) + o(||dk||)
= PTx?∇2F (x?)PTx? (yb,k − x?)− PTx?∇2F (x?)PTx? (xk+1 − x?) + o(||dk||).

(37)
Injecting (37) in (36), we get

(
Id + γk∇2

Mx? Φ(x?)PTx? − γkPTx?∇2F (x?)PTx?

)
rk+1

= (Id +Qk)rk+1 = (ya,k − x?)−Hk(yb,k − x?) + o(||dk||),
(38)
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which can be further written as, recall that Hk = Id−Gk,

(Id +Qk)rk+1

= (Id +Q)rk+1 + (Qk −Q)rk+1

= (ya,k − x?)−Hk(yb,k − x?) + o(||dk||)

= rk +
∑
i∈I

ai,k(rk−i − rk−i−1)−Hk

(
rk +

∑
i∈I

bi,k(rk−i − rk−i−1)
)

+ o(||dk||)

= (1 + ak,0)rk −
s−1∑
i=1

(ak,i−1 − ak,i)rk−i − ak,s−1rk−s

−Hk

(
(1 + bk,0)rk −

s−1∑
i=1

(bk,i−1 − bk,i)rk−i − bk,s−1rk−s
)

+ o(||dk||)

= (1 + ak,0)rk −
s−1∑
i=1

(ak,i−1 − ak,i)rk−i − ak,s−1rk−s

− (1 + bk,0)Hkrk +Hk

s−1∑
i=1

(bk,i−1 − bk,i)rk−i +Hkbk,s−1rk−s + o(||dk||)

=
(
(1 + ak,0)Id− (1 + bk,0)Hk

)
rk − (ak,s−1Id− bk,s−1Hk)rk−s

−
s−1∑
i=1

(
(ak,i−1 − ak,i)Id− (bk,i−1 − bk,i)Hk

)
rk−i + o(||dk||)

=
(
(ak,0 − bk,0)Id + (1 + bk,0)Gk

)
rk −

(
(ak,s−1 − bk,s−1)Id + bk,s−1Gk

)
rk−s

−
s−1∑
i=1

(
(ak,i−1 − ak,i)Id− (bk,i−1 − bk,i)Id + (bk,i−1 − bk,i)Gk

)
rk−i + o(||dk||).

Inverting Id +Q (which is possible thanks to assumption (3.2)), we obtain

rk+1 + P (Qk −Q)rk+1

=
(
(ak,0 − bk,0)P + (1 + bk,0)PGk

)
rk −

(
(ak,s−1 − bk,s−1)P + bk,s−1PGk

)
rk−s

−
s−1∑
i=1

(
(ak,i−1 − ak,i)P − (bk,i−1 − bk,i)P + (bk,i−1 − bk,i)PGk

)
rk−i + o(||dk||)

= Mk,0rk +Mk,srk−s +

s−1∑
i=1

Mk,irk−i + o(||dk||).

Using the estimates (28), we get

dk+1 = (M + (Mk −M))dk + o(||dk||) = Mdk + o(||dk||).

With the above result, we are able to prove the claim (3.6), hence Theorem 3.4.

Proof of Theorem 3.4. Since ρ(M) < 1, then we have M is convergent with limk→∞Mk = 0.
Define ψk = o(dk), suppose after K > 0 iterations, (3.5) holds, then for k ≥ K

dk+1 = Mk+1−KdK +

k∑
j=K

Mk−jψj (39)

Since the spectral radius ρ(M) < 1, then from the spectral radius formula, given any ρ ∈]ρ(M), 1[,
there exists a constant C such that, for any k ∈ N

||Mk|| ≤ ||M ||k ≤ Cρk.
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Therefore, from (39), we get

||dk+1|| ≤ ||Mk+1−KdK +

k∑
j=K

Mk−jψj ||

≤ ||M ||k+1−K ||dK ||+
k∑

j=K

||M ||k−j ||ψj ||

≤ Cρk+1−K ||dK ||+ C

k∑
j=K

ρk−j ||ψj ||.

Together with the fact that ψj = o(||dj ||) leads to the claimed result. See also the result of [14,
Section 2.1.2, Theorem 1].
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[3] R. I. Boţ, E. R. Csetnek, and S. C. László. An inertial Forward–Backward algorithm for the minimization
of the sum of two nonconvex functions. EURO Journal on Computational Optimization, pages 1–23, 2014.

[4] I. Chavel. Riemannian geometry: a modern introduction, volume 98. Cambridge University Press, 2006.

[5] A. Daniilidis, W. Hare, and J. Malick. Geometrical interpretation of the predictor-corrector type algorithms
in structured optimization problems. Optimization: A Journal of Mathematical Programming & Operations
Research, 55(5-6):482–503, 2009.

[6] D. Drusvyatskiy and A. S. Lewis. Optimality, identifiability, and sensitivity. Mathematical Programming,
pages 1–32, 2013.

[7] P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for kurdyka–łojasiewicz
functions and general convergence rates. Journal of Optimization Theory and Applications, 165(3):874–900,
2015.

[8] J. M. Lee. Smooth manifolds. Springer, 2003.

[9] A. S. Lewis. Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization, 13(3):702–725,
2003.

[10] A. S. Lewis and S. Zhang. Partial smoothness, tilt stability, and generalized Hessians. SIAM Journal on
Optimization, 23(1):74–94, 2013.

[11] J. Liang, J. Fadili, and G. Peyré. Local linear convergence of Forward–Backward under partial smoothness.
In Advances in Neural Information Processing Systems, pages 1970–1978, 2014.

[12] J. Liang, M. J. Fadili, and G. Peyré. Activity identification and local linear convergence of Forward–
Backward-type methods. arXiv:1503.03703, 2015.

[13] S. A. Miller and J. Malick. Newton methods for nonsmooth convex minimization: connections among-
Lagrangian, Riemannian Newton and SQP methods. Mathematical programming, 104(2-3):609–633,
2005.

[14] B. T. Polyak. Introduction to optimization. Optimization Software, 1987.

[15] R. T. Rockafellar and R. Wets. Variational analysis, volume 317. Springer Verlag, 1998.

13


	Proof of Theorem 2.2
	Proof of Theorem 3.2
	Proof of Theorem 3.4
	Partial smoothness and Riemannian geometry
	Riemannian Geometry
	Proof of Theorem 3.4


