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This appendix includes proofs of the theorems presented in the paper and details about the experi-
mental design.

A Proof of Theorem 1

Proof. Let z = (x, y) be a fixed testing sample. We define the function Gz : (X × Y)2m → R as:

Gz(T, T
′) = `γ(fT (x), y)− `γ(fT ′(x), y). (1)

For any i ∈ {1, ..,m}, if we re-sample the ith element in T to get T i, using the β-stability of the
learning algorithm and Lipschitz continuity of `γ we get:

|Gz(T, T ′)−Gz(T i, T ′)|≤
1

γ
|fT (x)− fT i(x)|≤

β

γ
. (2)

The same inequality holds for |Gz(T, T ′)−Gz(T, T ′i)|. We have ET,T ′∼Dm [Gz(T, T
′)] = 0, and

thus can apply the McDiarmid inequality to get:

Pr
T,T ′∼Dm

[|Gz(T, T ′)|> ε] ≤ 2e
− ε

2γ2

mβ2 . (3)

Integrating the above gives us the bound over the expectation:

E
T,T ′∼Dm

[|Gz(T, T ′)|] ≤
∫ ∞
0

Pr
T,T ′∼Dm

[|Gz(T, T ′)|> ε]dε ≤ β
√
πm

γ
. (4)

The above inequality holds for any fixed z and thus holds for the expectation:

E
T,T ′∼Dm

[Cγ(f1, f2)] = E
T,T ′∼Dm

[
E

Z∼D
[|GZ(T, T ′)|]

]
(5)

= E
Z∼D

[
E

T,T ′∼Dm
[|GZ(T, T ′)|]

]
(6)

≤ β
√
πm

γ
. (7)

B Proof of Theorem 2

Proof. We again use the McDiarmid inequality, on the function H : (X × Y)2m → R defined as:

H(T, T ′) = Cγ(fT , fT ′) = E
(X,Y )∼D

[|`γ(fT (X), Y )− `γ(fT ′(X), Y )|]. (8)
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For any i ∈ {1, ..,m}, if we re-sample the ith element in T to get T i, using the β-stability of the
learning algorithm and Lipschitz continuity of `γ we get:

|H(T, T ′)−H(T i, T ′)| ≤ E
(X,Y )∼D

[
||`γ(fT (X), Y )− `γ(fT ′(X), Y )|− (9)

|`γ(fT i(X), Y )− `γ(fT ′(X), Y )||
]

(10)

≤ E
(X,Y )∼D

[|`γ(fT (X), Y )− `γ(fT i(X), Y )|] (11)

≤ β

γ
, (12)

where line (11) is by reverse triangular inequality. Same bound similarly holds for replacing the ith
element in T ′: |H(T, T ′)−H(T, T ′

i
)|≤ β/γ. Applying McDiarmid inequality and using the bound

on the expectation of H from Theorem 1 completes the proof:

Pr
T,T ′∼Dm

{
Cγ(fT , fT ′) > ε+

√
πmβ

γ

}
≤ Pr

T,T ′∼Dm

{
H(T, T ′) > ε+ E

T,T ′∼Dm
[H(T, T ′)]

}
≤ e

− ε
2γ2

mβ2 . (13)

C Proof of Theorem 3

The proof partly follows Lemma 21 from [1] and Theorem 4 from [2]. Define:

`j(g) = (g(xj)− yj)2 (14)

R̂T (g) =
1

m

m∑
j=1

`j(g) (15)

R̂
\i
T (g) =

1

m

m∑
j=1
j 6=i

`j(g) (16)

RT (g) = R̂T (g) + λ‖g‖2k (17)

R
\i
T (g) = R̂

\i
T (g) + λ‖g‖2k. (18)

By the assumption of the theorem, fT is the minimizer of RT . Let f\iT be the minimizer of R\iT .

Lemma 1. With the assumptions of Theorem 3, we have for all i:

∀x : (fT (x)− f\iT (x))2 ≤ κ4

λ2m2
(fT (xi)− yi)2. (19)

Proof of Lemma 1. To simply the notation, we drop the T subscript throughout the proof of this
lemma. Let dφ(f, g) be the functional Bregman divergence [3]:

dφ(f, g) = φ(f)− φ(g)−∇φ(g; f − g), (20)

where ∇φ(g; .) is the Fréchet derivative of φ at g. Since f and f\i are minimizers of R and R\i

respectively, we have: ∇R(f ; .) = 0 and ∇R\i(f\i; .) = 0. We thus have:

dR(f
\i, f) + dR\i(f, f\i) = R(f\i)−R(f) +R\i(f)−R\i(f\i) (21)

=
1

m
`i(f

\i)− 1

m
`i(f), (22)
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where the last line follows by the definition of R and R\i. By non-negativity and additivity of
divergence (dA+B = dA + dB) we have:

0 ≤ dR̂\i(f, f
\i) + dR̂\i(f

\i, f) (23)

= −λd‖.‖2k(f, f
\i)− λd‖.‖2k(f

\i, f) + dR\i(f, f\i) + dR\i(f\i, f) (24)

= −λd‖.‖2k(f, f
\i)− λd‖.‖2k(f

\i, f) + dR\i(f, f\i) + dR(f
\i, f)− 1

m
d`i(f

\i, f) (25)

= −λd‖.‖2k(f, f
\i)− λd‖.‖2k(f

\i, f) +
1

m
`i(f

\i)− 1

m
`i(f)−

1

m
d`i(f

\i, f) (26)

= −λd‖.‖2k(f, f
\i)− λd‖.‖2k(f

\i, f) +
1

m
∇`i(f ; f\i − f), (27)

where line (26) is by the derivation in line (22), and line (27) is by the definition of the Bregman
divergence. In the RKHS space, we have d‖.‖2k(g, g

′) = ‖g − g′‖2k, and by assumption of Theorem 3
we have ∀x : |g(x)|≤ κ‖g‖k. Substituting the Fréchet derivative in the above inequality, we get:

‖f − f\i‖2k ≤ 1

λm
(f\i(x)− f(x))(f(xi)− yi) (28)

≤ κ

λm
‖f\i − f‖k(f(xi)− yi). (29)

Cancelling the sides and squaring both sides, we get for all x:

(f(x)− f\i(x))2 ≤ κ2‖f − f\i‖2k (30)

≤ κ4

λ2m2
(f(xi)− yi)2. (31)

Proof of Theorem 3. Let V = `γ(fT (X), Y )− `γ(fT ′(X), Y ). Define Vi, 1 ≤ i ≤ 2m as:

Vi =

{
`γ(f

\i
T (X), Y )− `γ(fT ′(X), Y ) if i ≤ m

`γ(fT (X), Y )− `γ(f\(i−m)
T ′ (X), Y ) if i > m

(32)

It is easy to see that ET,T ′∼Dm [V ] = 0. Using the concentration inequality of Theorem 6 from [4]
on V and Vi, the symmetry of the training algorithm, and the symmetry of V on T and T ′ we get:

E
T,T ′∼Dm
(X,)∼D

[(`γ(fT (X), Y )− `γ(fT ′(X), Y ))2] = Var
T,T ′∼Dm
(X,Y )∼D

[V ] (33)

≤
2m∑
i=1

E
T,T ′∼Dm
(X,Y )∼D

[(V − Vi)2] (34)

= 2 E
T,T ′∼Dm
(X,Y )∼D

[
m∑
i=1

(V − Vi)2
]

(35)

=
2

γ2
E

T,T ′∼Dm
(X,Y )∼D

[
m∑
i=1

(fT (X)− f\iT (X))2

]
, (36)

where line (36) is by Lipschitz continuity of `γ . Applying Lemma 1 to RHS completes the proof.
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D Further Experimental Details

Table 1 includes further details on the datasets used for experiments presented in the paper.

Table 1: Full details of the datasets used in the experimental analysis.

Nomao [5] News Popularity [6] Twitter Buzz [7]

# Features 89 continuous
31 nominal
some missing values

61 features
no missing values

77 features
evolution of 11 primatry
features through time
no missing values

# Samples 34,465 39,797 Sub-sampled 46,902

Goal predict if two business
entities are the same

predict if a news will be
shared more than 1400
times

predict if a tweet is go-
ing to be popular

TA 4000 samples
drop first 5 features

8000 samples
drop the 3 features:
self_reference_min
self_reference_max
self_reference_avg

4000 samples
drop last 7 features

TB 5000 samples
all the features

10000 samples
all the features

5000 samples
all the features

Validation Set 1000 samples 1000 samples 1000 samples

Testing Set 28465 samples 28797 samples 45402 samples

We optimized the hyper-parameters of each algorithm for each datasets on the validation set. Details
of the chosen hyper-parameters for each algorithm is included in Table 2. The names of the parameters
match the names used in Scikit-Learn [8].

Table 2: We summarize here the regularization parameters used to train the models. These parameters
have been selected using a validation set of 1000 samples.

Ridge RFT-Regression SVM Adaboost LinearSVR
α min_weight_fraction_leaf C learning_rate C

Nomao 0.02 0.0001 10 1.5 0.5
News 2 0.01 1.5 5 10
Twitter-Buzz 1 0.002 50 1.0 75

Full results for all experiments are included in Table 3. We have included further results on linear
SVM and AdaBoost (boosted stumps). However, note that there is a regression in accuracy between
the two versions of the model for the baseline algorithm. We believe that that our hyper-parameter
optimization did not find a good solution for these algorithms (likely resulting in over-fitting), or that
we could not effectively use the implementation in Scikit-Learn [8].
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Table 3: Experiment results on 3 domains with 5 different training algorithms for a single step RCP
and the MCMC methods. For the MCMC experiment, we report the numbers with the standard
deviation over the 40 runs of the chain.

Baseline RCP MCMC, k = 30 MCMC, k = 30
No RCP, No Chain α = 0.5, ε = 0.5 α = 0.5, ε = 0.5 α = 0.7, ε = 0.1

N
om

ao

Ridge

WLR 1.24 1.40 1.31 1.60
pwin 26.5 49.2 36.5 73.9
Cr 1.00 0.54 0.54 ± 0.06 0.32 ± 0.05

Acc V1 / V2 93.1 / 93.4 93.1 / 93.4 93.2 ± 0.1 / 93.4 ± 0.1 93.0 ± 0.3 / 93.2 ± 0.2

RF

WLR 1.02 1.13 1.09 1.12
pwin 5.6 13.4 9.8 13.1
Cr 1.00 0.83 0.83 ± 0.05 0.59 ± 0.05

Acc V1 / V2 94.8 / 94.8 94.8 / 95.0 94.9 ± 0.2 / 95.0 ± 0.2 94.7 ± 0.2 / 94.8 ± 0.2

AdaBoost

WLR 0.79 0.79 0.00 0.00
pwin 0.2 0.2 0.0 0.0
Cr 1.00 1.00 0.01 ± 0.06 0.00 ± 0.00

Acc V1 / V2 85.7 / 85.3 85.7 / 85.3 75.7 ± 2.4 / 75.6 ± 2.2 77.4 ± 6.2 / 77.4 ± 6.2

LinSVM

WLR 0.64 0.89 0.90 2.60
pwin 0.0 1.2 1.3 99.8
Cr 1.00 0.75 0.76 ± 0.02 0.22 ± 0.02

Acc V1 / V2 90.1 / 86.2 90.1 / 89.3 90.1 ± 0.4 / 89.4 ± 0.3 90.1 ± 0.5 / 91.9 ± 0.5

SVM

WLR 1.70 2.51 2.32 2.08
pwin 82.5 99.7 99.2 97.1
Cr 1.00 0.75 0.69 ± 0.06 0.54 ± 0.03

Acc V1 / V2 94.6 / 95.1 94.6 / 95.2 94.8 ± 0.2 / 95.3 ± 0.1 94.9 ± 0.2 / 95.2 ± 0.1

N
ew

s

Ridge

WLR 0.95 0.94 1.04 0.97
pwin 2.5 2.4 6.7 3.4
Cr 1.00 0.75 0.78 ± 0.04 0.42 ± 0.06

Acc V1 / V2 65.1 / 65.0 65.1 / 65.0 65.0 ± 0.1 / 65.1 ± 0.1 64.7 ± 0.2 / 64.7 ± 0.2

RF

WLR 1.07 1.02 1.10 1.24
pwin 8.5 5.7 10.8 26.6
Cr 1.00 0.69 0.67 ± 0.04 0.04 ± 0.04

Acc V1 / V2 64.5 / 65.1 64.5 / 64.7 64.3 ± 0.3 / 64.8 ± 0.2 63.0 ± 0.4 / 63.0 ± 0.4

AdaBoost

WLR 0.72 0.72 0.81 0.00
pwin 0.0 0.0 0.3 0.0
Cr 1.00 1.00 7.88 ± 12.07 0.03 ± 0.06

Acc V1 / V2 59.3 / 59.2 59.3 / 59.2 59.4 ± 0.2 / 59.2 ± 0.0 58.7 ± 1.1 / 58.7 ± 1.1

LinSVM

WLR 0.81 1.24 1.03 1.02
pwin 0.3 26.4 6.1 5.3
Cr 1.00 0.90 1.10 ± 0.19 1.12 ± 0.26

Acc V1 / V2 63.3 / 62.5 63.3 / 64.1 63.5 ± 0.5 / 63.6 ± 0.5 63.0 ± 0.8 / 63.1 ± 0.7

SVM

WLR 1.17 1.26 1.24 1.25
pwin 18.4 29.4 26.1 28.0
Cr 1.00 0.77 0.86 ± 0.02 0.61 ± 0.02

Acc V1 / V2 64.9 / 65.4 64.9 / 65.4 64.8 ± 0.1 / 65.4 ± 0.1 64.7 ± 0.2 / 65.1 ± 0.1

Tw
itt

er
B

uz
z

Ridge

WLR 1.71 3.54 1.53 1.58
pwin 83.1 100.0 66.4 71.9
Cr 1.00 0.85 0.65 ± 0.05 0.44 ± 0.04

Acc V1 / V2 89.7 / 89.9 89.7 / 90.0 90.1 ± 0.1 / 90.2 ± 0.1 89.7 ± 0.1 / 89.7 ± 0.1

RF

WLR 1.35 1.15 1.15 1.03
pwin 41.5 16.1 15.9 6.0
Cr 1.00 0.86 0.77 ± 0.07 0.42 ± 0.10

Acc V1 / V2 96.2 / 96.4 96.2 / 96.3 96.3 ± 0.1 / 96.3 ± 0.1 96.2 ± 0.1 / 96.2 ± 0.1

AdaBoost

WLR 0.93 0.90 1.13 1.17
pwin 1.8 1.2 13.3 18.4
Cr 1.00 1.03 0.80 ± 0.18 0.22 ± 0.07

Acc V1 / V2 95.0 / 95.0 95.0 / 95.0 94.2 ± 0.4 / 94.2 ± 0.4 95.5 ± 0.3 / 95.5 ± 0.3

LinSVM

WLR 0.22 2.66 3.71 3.82
pwin 0.0 99.9 100.0 100.0
Cr 1.00 0.52 0.61 ± 0.45 0.41 ± 0.22

Acc V1 / V2 94.8 / 91.2 94.8 / 96.2 92.2 ± 2.7 / 92.7 ± 2.5 93.0 ± 2.0 / 93.2 ± 2.0

SVM

WLR 1.35 1.77 1.55 1.33
pwin 42.2 86.6 68.4 39.3
Cr 1.00 0.70 0.70 ± 0.03 0.50 ± 0.03

Acc V1 / V2 96.0 / 96.1 96.0 / 96.1 96.1 ± 0.1 / 96.2 ± 0.1 96.1 ± 0.1 / 96.2 ± 0.1

5



E Link between the accuracies, the WLR, and the Churn

Given two classifiers fA and fB (that is, any measurable function from Rd to {−1, 1}), we define the
Win/Loss Ratio (WLR) to be p

1−p with p = Pr[fB(X) = Y | fB(X) 6= fA(X)]: p is the probability
that model fB is correct knowing that models fA and fB are giving a different answer.

Recall that the Churn between fA and fB is defined to be:
C = Pr[fA(X) 6= fB(X)],

and that the accuracies of fA and fB are given by:
AccA = Pr[fA(X) = Y ], AccB = Pr[fB(X) = Y ].

Lemma 2. The relation between the WLR, Churn and accuracies of the classifiers fA and fB is
the following:

WLR =
p

1− p
, p =

1

2
+
AccB −AccA

2C
. (37)

Proof.
AccB = Pr[fB(X) = Y, fB(X) 6= fA(X)] + Pr[fB(X) = Y, fB(X) = fA(X)].

Futhermore:
Pr[fB(X) = Y, fB(X) = fA(X)] = Pr[fA(X) = Y, fB(X) = fA(X)]

= AccA − Pr[fA(X) = Y, fA(X) 6= fB(X)].

Thus using the Bayes’ theorem we deduce that:
AccB = pC +AccA − (1− p)C,

which gives the result.

As discussed before, (37) confirms that for a fixed accuracy gain, less Churn is better as it increases p,
and thus increases the WLR.

A statistical hypothesis test is usually used to decide if model fB is statistically significantly better
than fA. In this setting, increasing the ratio AccB−AccA

C increases uniformly the power of such test.
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