
Table 3: Key notation, listed in the order in which it was introduced.

Symbol Introduced Description
k Section 2 Number of datasets
m Section 2 Number of dataset constraints
Di Section 2 ith dataset
sp, sn Section 2, Equation 1 Positive and negative indicator-based rates
λ Section 2, Problem 1 Regularization parameter
α
(0)
i , β(0)

i Section 2, Problem 1 Coefficients defining the objective function
α
(j)
i , β(j)

i Section 2, Problem 1 Coefficients defining the jth dataset constraint
γ(j) Section 2, Problem 1 Given upper bound of the jth dataset constraint
σ Section 2, Equation 2 Ramp function: σ(z) = max{0,min{1, 1/2 + z}}
rp, rn Section 2, Equation 3 Positive and negative ramp-based rates
σ̌p, σ̌n Section 2.1, Equation 4 Convex upper bounds on ramp functions
řp, řn Section 2.1, Equation 5 Convex upper bounds on ramp-based rates
Ψ Section 2.2, Equation 7 SVM objective (for minimizing over w and b)
z Section 2.2, Equation 6 Optimum of Ψ (for maximizing over v)
v Section 2.2 Lagrange multipliers associated with dataset constraints
V Section 2.2, Algorithm 2 Set of allowed vs
v(s) Section 2.2, Algorithm 2 Candidate solution at the tth iteration
lt, ut Section 2.2, Algorithm 2 Lower and upper bounds on z(v(t))

g(t) Section 2.2, Algorithm 2 Gradient of the cutting plane inserted at the tth iteration
ht Section 2.2, Algorithm 2 Concave function upper-bounding z(v)
Lt, Ut Section 2.2, Algorithm 2 Lower and upper bounds on maxv∈V z(v)
V Appendix C Maximum allowed vj : V ⊆ [0, V ]m

s̄p, s̄n Appendix C, Equation 10 Expected positive and negative indicator-based rates
µ Appendix E Lebesgue measure
S` Appendix E.2, Equation 11 Superlevel set
Sh Appendix E.2, Equation 12 Superlevel hypograph
n Appendix F.1 Total size of datasets: n =

∑k
i=1 |Di|

α̌
(0)
i , β̌(0)

i Appendix F.1, Equation 13 Coefficients defining the convex objective function
α̌
(j)
i , β̌(j)

i Appendix F.1, Equation 14 Coefficients defining the jth convex dataset constraint
γ̌(j) Appendix F.1, Equation 15 Given upper bound of the jth convex dataset constraint
`i,x Appendix F.1, Equation 16 Loss of example x in dataset Di, in the SVM objective
α̌i, β̌i Appendix F.1, Equation 17 Coefficients defining the SVM objective function
L Appendix F.1, Equation 18 Lipschitz constant of the `i,xs
ξ Appendix F.1, Equation 19 SVM dual variables
Ψ∗ Appendix F.1, Equation 19 SVM dual objective (for maximizing over ξ)
bs Appendix F.2, Algorithm 3 Candidate solution at the tth iteration
l′t, u′t Appendix F.2, Algorithm 3 Lower and upper bounds on minw∈Rd Ψ(w, bt, v;w′, b′)
g′t Appendix F.2, Algorithm 3 Derivative of the cutting plane inserted at the tth iteration
h′t Appendix F.2, Algorithm 3 Convex function lower-bounding minw∈Rd Ψ(w, b, v;w′, b′)
L′t, U ′t Appendix F.2, Algorithm 3 Lower and upper bounds on minb∈B,w∈Rd Ψ(w, b, v;w′, b′)

A Randomized classification
The use of the ramp loss in Problem 2 can be interpreted in two ways, which are exactly equivalent at
training time, but lead to the use of different classification rules at evaluation time.

Deterministic: This is the obvious interpretation: we would like to optimize Problem 1, but cannot
do so because the indicator-based rates sp and sn are discontinuous, so we approximate them with
the ramp-based rates rn and rp, and and hope that this approximation doesn’t cost us too much, in
terms of performance. The result is Problem 2. At evaluation time, on an example x, we make a
positive prediction if 〈w, x〉 − b is nonnegative, and a negative prediction otherwise.

Randomized: In this interpretation (also used by Cotter et al. [8]), we reinterpret the ramp loss as
the expected 0/1 loss suffered by a randomized classifier, with the result that the rates aren’t being
approximated at all—instead, we’re using the indicator-based rates throughout, but randomizing
the classifier and taking expectations to smooth out the discontinuities in the objective function.
To be precise, at evaluation time, on an example x, we make a positive prediction with probability
σ(〈w, x〉 − b), and a negative prediction otherwise (with σ being the ramp function of Equation 2).

10



Table 4: Some ratio metrics (Appendix B), which are metrics that can be written as ratios of linear
combinations of rates. #Wins and #Losses are actually linear combination metrics, but are needed for
the other definitions (as are Recall and #Changes from Table 2).

Metric Expression
Precision #TP/ (#TP + #FP)
F1-score 2Precision · Recall/ (Precision + Recall) = 2#TP/ (2#TP + #FN + #FP)
#Wins |D+−| sp (D+−) + |D−+| sn (D−+)
#Losses |D++| sn (D+−) + |D−−| sp (D−+)
Win/loss Ratio #Wins/#Losses
Win/change Ratio #Wins/#Changes

Taking expectations of the indicator-based rates sp and sn over the randomness of this classification
rule yields the ramp-based rates rn and rp, resulting, once again, in Problem 2.

This use of a randomized prediction isn’t as unfamiliar as it may at first seem: in logistic regression,
the classifier provides probability estimates at evaluation time (with σ being a sigmoid instead of a
ramp). Furthermore, at training time, the learned classifier is assumed to be randomized, so that the
optimization problem can be interpreted as maximizing the data log-likelihood.

In the setting of this paper, the main advantages of the use of a randomized classification rule are that
(i) we can say something about generalization performance (Appendix C), and (ii) because the rates
are never being approximated, the dataset constraints will be satisfied tightly on the training dataset,
in expectation (this is easily seen in the dotted red curve in the left plot of Figure 3). Despite these
apparent advantages, deterministic classifiers seem to work better in practice.

B Ratio metrics
Problem 1 minimizes an objective function and imposes upper-bound constraints, all of which are
written as linear combinations of positive and negative rates—we refer to such as “linear combination
metrics”. Some metrics of interest, however, cannot be written in this form. One important subclass
are the so-called “ratio metrics”, which are ratios of linear combinations of rates. Examples of ratio
metrics are precision, F1-score, win/loss ratio and win/change ratio (recall is a linear combination
metric, since its denominator is a constant).

Ratio metrics may not be used directly in the objective function, but can be included in constraints by
multiplying through by the denominator, then shifting the constraint coefficients to be non-negative.
For example, the constraint that precision must be greater than 90% can be expressed as follows:∣∣D+

∣∣ sp (D+
)
≥0.9

(∣∣D+
∣∣ sp (D+

)
+
∣∣D−∣∣ sp (D−))

0.1
∣∣D+

∣∣ sp (D+
)
− 0.9

∣∣D−∣∣ sp (D−) ≥0

−0.1
∣∣D+

∣∣ sp (D+
)

+ 0.9
∣∣D−∣∣ sp (D−) ≤0

0.1
∣∣D+

∣∣ sn (D+
)

+ 0.9
∣∣D−∣∣ sp (D−) ≤0.1

∣∣D+
∣∣ ,

where we used the fact that sp (D+) + sn (D+) = 1 on the last line—this is an example of a fact
that we noted in Section 2: since positive and negative rates must sum to one, it is possible to write
any linear combination of rates as a positive linear combination, plus a constant.

Multiplying through by the denominator is fine for Problem 1, but a natural question is whether, by
using a randomized classifier and optimizing Problem 2, we’re doing the “right thing” in expectation.
The answer is: not quite. Since the expectation of a ratio is not the ratio of expectations, e.g. a
precision constraint in our original problem (Problem 1) becomes only a constraint on a precision-like
quantity (the ratio of the expectations of the precision’s numerator and denominator) in our relaxed
problem.

C Generalization
In this appendix, we’ll provide generalization bounds for an algorithm that is nearly identical to
Algorithm 1. The two differences are that (i) we assume that the optimizer used on line 3 will
prefer smaller biases b to larger ones, i.e. that if Problem 3 has multiple equivalent minima, then
the optimizer will return one for which |b| is minimized, and (ii) that the Lagrange multipliers

11



are upper-bounded by a parameter V ≥ vj , i.e. that instead of optimizing Equation 6, line 3 of
Algorithm 1 will optimize:

max
0�v�V

min
w,b

Ψ (w, b, v;w′, b′) , (9)

the difference being the upper bound on v. If V is large enough that no vjs are bound to a constraint,
then this will have no effect on the solution. If, however, V is too small, then the solution might
not satisfy the dataset constraints. Notice that Algorithm 2 assumes that v ∈ V , with V being
compact—hence, for our proposed optimization procedure, the assumption is that V ⊆ [0, V ]

m.

With these assumptions in place, we’re ready to move on to defining a function class that contains
any solution that could be found by our algorithm, and bounding its Rademacher complexity.
Lemma 1. Define F to be the set of all linear functions f(x) = 〈w, x〉− b with ‖w‖2 ≤ XB/λ and
|b| ≤ 1/2 +X2B/λ, where X ≥ ‖x‖2 is a uniform upper bound on the magnitudes of all training
examples, and:

B =

k∑
i=1

α(0)
i + β

(0)
i + V

m∑
j=1

(
α
(j)
i + β

(j)
i

) .

Then F will contain all |b|-minimizing optimal solutions of Equation 9 for any (w′, b′) and any
training dataset.

Proof. Let f(w, b) + (λ/2) ‖w‖22 be the the objective function of Problem 3, and gj(w, b) ≤ γ(j)

the jth constraint. Then it follows that:

‖∇wf (w, b)‖2 ≤X
k∑
i=1

(
α
(0)
i + β

(0)
i

)
‖∇wgj (w, b)‖2 ≤XV

k∑
i=1

(
α
(j)
i + β

(j)
i

)
.

Differentiating the definition of Ψ (Equation 7) and setting the result equal to zero shows that any
optimal w must satisfy (this is the stationarity KKT condition):

λw = −∇wf (w, b)−
m∑
j=1

vj∇wgj (w, b) ,

implying by the triangle inequality that ‖w‖2 ≤ XB/λ, where B is as defined in the theorem
statement.

Now let’s turn our attention to b. The above bound implies that, if w is optimal, then |〈w, x〉| ≤
X2B/λ, from which it follows that the hinge functions max{0, 1/2+(〈w, x〉− b)} and max{0, 1/2−
(〈w, x〉 − b)} will be nondecreasing in |b| as long as |b| > 1/2 + X2B/λ. Problem 3 seeks to
minimize a positive linear combination of such hinge functions subject to upper-bound constraints on
positive linear combinations of such hinge functions, so our assumption that the optimizer used on
line 3 of Algorithm 1 will always choose the smallest optimal b gives that |b| ≤ 1/2 +X2B/λ.

Lemma 2. The function class F of Lemma 1 has Rademacher complexity [2]:

Rn (F) ≤ 1

2
√
n

+
2X2

λ
√
n

k∑
i=1

α(0)
i + β

(0)
i + V

m∑
j=1

(
α
(j)
i + β

(j)
i

) ,

where X ≥ ‖x‖2, as in Lemma 1, is a uniform upper bound on the magnitudes of all training
examples.

Proof. The Rademacher complexity of F is:

Rn (F) =E

[
sup
f∈F

1

n

n∑
i=1

εif (xi)

]

=E

[
sup

w:‖w‖2≤
XB
λ

1

n

n∑
i=1

εi 〈w, x〉

]
+ E

 sup
b:|b|≤ 1

2+
X2B
λ

1

n

n∑
i=1

εib

 ,
12



where the expectations are taken over the i.i.d. Rademacher random variables ε1, . . . , εn and the
i.i.d. training sample x1, . . . , xn, and B is as in Lemma 1. Applying the Khintchine inequality and
substituting the definition of B yields the claimed bound.

We can now apply the results of Bartlett and Mendelson [2] to prove bounds on the generalization
error. To this end, we assume that each of our training datasets Di is drawn i.i.d. from some
underlying unknown distribution Di. We will bound the expected positive and negative prediction
rates w.r.t. these distributions:

s̄p (D; f) = Ex∼D [f (x)] s̄n (D; f) = s̄p (D; 1− f) , (10)

where f : Rd → {0, 1} is a binary classification function.
Theorem 1. For a given (w, b) pair, define fw,b(x) such that it predicts 1 with probability σ(〈w, x〉−
b), and 0 otherwise (σ is as in Equation 2, so this is the randomized classifier of Appendix A).

Suppose that the k training datasets Di have sizes ni = |Di|, and that Di is drawn i.i.d. from Di for
all i ∈ {1, . . . , k}. Then, with probability 1− δ over the training samples, uniformly over all (w, b)
pairs that are optimal solutions of Equation 9 for some (w′, b′) under the assumptions listed at the
start of this appendix, the expected rates will satisfy:

s̄p (Di; fw,b) ≤rp (Di;w, b) + E/
√
ni

s̄n (Di; fw,b) ≤rn (Di;w, b) + E/
√
ni,

the above holding for all i ∈ {1, . . . , k}, where:

E = 1 +
4X2

λ

k∑
i=1

α(0)
i + β

(0)
i + V

m∑
j=1

(
α
(j)
i + β

(j)
i

)+

√
8 ln

(
4k

δ

)
,

with X ≥ ‖x‖2, as in Lemmas 1 and 2, being a uniform upper bound on the magnitudes of all
training examples x ∼ Di for all i ∈ {1, . . . , k}.

Proof. Observe that the ramp rates rp and rn are 1-Lipschitz. Applying Theorems 8 and 12 (part
4) of Bartlett and Mendelson [2] gives that each of the following inequalities hold with probability
1− δ/2k, for all i ∈ {1, . . . , k}:

Ex∼Di [rp ({x};w, b)] ≤rp (Di;w, b) + 2Rni (F) +

√
8

ni
ln

(
4k

δ

)

Ex∼Di [rn ({x};w, b)] ≤rn (Di;w, b) + 2Rni (F) +

√
8

ni
ln

(
4k

δ

)
,

whereRn(F) is as in Lemma 2. The union bound implies that all 2k inequalities hold simultaneously
with probability 1−δ. The LHSs above are the expected ramp-based rates of a deterministic classifier,
but as was explained in Appendix A, these are identical to the expected indicator-based rates of a
randomized classifier, which is what is claimed.

An immediate consequence of this result is that (with probability 1− δ) if (w, b) suffers the training
loss:

L̂ =

k∑
i=1

(
α
(0)
i rp(Di;w, b) + β

(0)
i rn(Di;w, b)

)
,

then the expected loss on previously-unseen data (drawn i.i.d. from the same distributions) will be
upper-bounded by:

L̂+ E

k∑
i=1

α
(0)
i + β

(0)
i√

ni
.

Likewise, if (w, b) satisfies the constraint:
k∑
i=1

(
α
(j)
i rp(Di;w, b) + β

(j)
i rn(Di;w, b)

)
≤ γ(j),

13



then the corresponding rate constraint on previously-unseen data will be violated by no more than:

E

k∑
i=1

α
(j)
i + β

(j)
i√

ni

in expectation, where, here and above, E is as in Theorem 1.

D Fairness constraints of Zafar et al. [27]
The constraints of Zafar et al. [27] can be interpreted as a relaxation of the constraint −c ≤
sp(D

A;w)− sp(DB ;w) ≤ c under the linear approximation

sp(D;w, b) ≈ 1

|D|
∑
x∈D

(〈w, x〉 − b),

giving:

sp(D
A;w, b)− sp(DB ;w, b) ≈ 1

|DA|
∑
x∈DA

(〈w, x〉 − b)− 1

|DB |
∑
x∈DB

(〈w, x〉 − b) = 〈w, x̄〉 ,

where x̄ is defined as in Equation 8. We can therefore implement the approach of Zafar et al. [27]
within our framework by adding the constraints:

〈w, x̄〉 ≤ c ⇐⇒ max{0, 1− 〈w, x̄〉} ≤ c+ 1

c ≤ 〈w, x̄〉 ⇐⇒ max{0, 1 + 〈w, x̄〉} ≤ c+ 1,

and solving the hinge constrained optimization problem described in Problem 3. Going further, we
could implement these constraints as egregious examples using the constraint:

〈w, x̄〉 ≤ c ⇐⇒
〈
w,

1

4c
x̄

〉
≤ 1

4
⇐⇒ 1

2
+

〈
w,

1

4c
x̄

〉
≤ 3

4

⇐⇒ min

{
max

{
1

2
+

〈
w,

1

4c
x̄

〉
, 0

}
, 1

}
≤ 3

4
⇐⇒ rp(x̄) ≤ 3

4
,

permitting us to perform an analogue of their approximations in ramp form.

E Cutting plane algorithm
We’ll now discuss some variants of Algorithm 2. We assume that z(v) is the function that we wish
to maximize for v ∈ V , where:

1. V ⊆ Rm is compact and convex.
2. z : V → R is concave.
3. z has a (not necessarily unique) maximizer v∗ = argmaxv∈V z (v).

For the purposes of Algorithm 2, we would take z to be as in Equation 6, but the same approach can
be applied more generally.

E.1 Maximization-based

We’re primarily interested in proving convergence rates, and will do so in Appendix E.2. With
that said, there is one easy-to-implement variant of Algorithm 2 for which we have not proved a
convergence rate, but that we use in some of our experiments due to its simplicity:

Definition 1. (Maximization-based Algorithm 2) CutChooser chooses v(t) = argmaxv∈V ht (v)
and εt = (Ut − Lt)/2.

Observe that this v(t) can be found at the same time as Ut is computed, since both result from
optimization of the same linear program. However, despite the ease of implementing this variant, we
have not proved any convergence rates about it.

E.2 Center of mass-based

We’ll now discuss a variant of Algorithm 2 that chooses v(t) and εt based on the center of mass
of the “superlevel hypograph” determined by ht and Lt, which we define as the intersection of

14



the hypograph of ht (the set of m + 1-dimensional points (v, z) for which z ≤ ht(z)) and the
half-space containing all points (v, z) for which z ≥ Lt. Notice that, in the context of Algorithm 2,
the superlevel hypograph defined by ht and Lt corresponds to the set of pairs of candidate maximizers
and their possible function values at the tth iteration. Because this variant is based on finding a
cut center in the m + 1-dimensional hypograph, rather than an m-dimensional level set (which is
arguably more typical), this is an instance of what Boyd and Vandenberghe [5] call an “epigraph
cutting plane method”.

Throughout this section, we will take µ to be the Lebesgue measure (either 1-dimensional, m-
dimensional, or m+ 1-dimensional, depending on context). We also must define some notation for
dealing with superlevel sets and hypographs. For a concave f : V → R and y ∈ R, define:

S` (f, y) = {v ∈ V | f (v) ≥ y} (11)

as the superlevel set of f at y. Further define:

Sh (f, y) = {(v, z) ∈ V × R | f (v) ≥ z ≥ y} (12)

as the superlevel hypograph of f above y. With these definitions in place, we’re ready to explicitly
state the center of mass-based rule for the CutChooser function on line 8 of Algorithm 2:

Definition 2. (Center of mass-based Algorithm 2) CutChooser takes (v(t), zt) to be the center of
mass of Sh(ht, Lt), and chooses εt = (zt − Lt)/2.

Finding the center of mass of a polytope is a difficult problem in general [20, 21], so our convergence
results for this version of CutChooser are mostly of theoretical interest. With that said, for one
dimensional problems (the setting of Appendix F.2) it may be implemented efficiently.

Our final bit of “setup” before getting to our results is to state two classic theorems, plus a corollary,
which will be needed for our proofs. The first enables us to interpolate the areas of superlevel sets:

Theorem 2. Suppose that the superlevel sets of a concave f : V → R at y1 and y2 are nonempty,
and take γ ∈ [0, 1]. Then:

(µ (S` (f, γy1 + (1− γ) y2)))
1/m ≥ γ (µ (S` (f, y1)))

1/m
+ (1− γ) (µ (S` (f, y2)))

1/m
.

Proof. This is the Brunn-Minkowski inequality [e.g. 1].

This theorem has the immediate useful corollary:

Corollary 1. Suppose that f : V → R is concave with a maximizer v∗ ∈ V , and that δ ≥ 0. Then:(
δ

m+ 1

)
µ (S` (f, f (v∗)− δ)) ≤ µ (Sh (f, f (v∗) + δ)) ≤ δµ (S` (f, f (v∗)− δ)) .

Proof. By Theorem 2 (lower-bounding the second term on the RHS by zero), for 0 ≤ z ≤ δ:

µ (S` (f, f (v∗)− z)) ≥
(z
δ

)m
µ (S` (f, f (v∗)− δ)) ,

from which integrating µ (Sh (f, f (v∗)− δ)) =
∫ δ
0
µ (S` (f, f (v∗)− z))mµ(z) yields the claimed

lower bound. The upper bound follows immediately from the fact that the superlevel sets shrink as z
increases (i.e. µ (S` (f, z′)) ≤ µ (S` (f, z)) for z′ ≥ z).

The second classic result enables us to bound how much “progress” is made by a cut based on the
center of mass of a superlevel hypograph:

Theorem 3. Suppose that S ⊆ Rm is a convex set. If we let z ∈ S be the center of mass of S, then
for any half-space H 3 z:

µ (S ∩H)

µ (S)
≥
(

m

m+ 1

)m
≥ 1

e
.

Proof. This is Theorem 2 of Grünbaum [14].

15



With the preliminaries out of the way, we’re ready to move on to our first result: bounding the
volumes of the superlevel hypographs of our hts, assuming that we base our cuts on the centers of
mass of the superlevel hypographs:

Lemma 3. In the context of Algorithm 2, suppose that we choose v(t) and εt as in Definition 2. Then:

µ (Sh (ht+1, Lt+1)) ≤
(

1− 1

2e

)
µ (Sh (ht, Lt)) ,

from which it follows that:

µ (Sh (ht, Lt)) ≤
(

1− 1

2e

)t−1
(u0 − l0)µ (V) ,

for all t.

Proof. We’ll consider two cases: ut ≤ zt and ut > zt, corresponding to making a “deep” or “shallow”
cut, respectively.

Deep cut case: If ut ≤ zt, then the hyperplane ut +
〈
g(t), v − v(t)

〉
passes below the center of mass

of Sh(ht, Lt), implying by Theorem 3 that:

µ (Sh (ht+1, Lt+1)) ≤ µ (Sh (ht+1, Lt)) ≤
(

1− 1

e

)
µ (Sh (ht, Lt)) .

Shallow cut case: Now suppose that ut > zt. Applying Theorem 3 to the level cut {(v, z) | z ≤ zt}
at zt:

1

e
µ (Sh (ht, Lt)) ≤

∫ zt

Lt

µ ({v ∈ V | ht (v) ≥ z}) dµ(z)

≤
∫ (zt+Lt)/2

Lt

µ ({v ∈ V | ht (v) ≥ z}) dµ(z)

+

∫ zt

(zt+Lt)/2

µ ({v ∈ V | ht (v) ≥ z}) dµ(z).

Since ht is concave, its superlevel sets shrink for larger z, so the first integral on the RHS above is
larger than the second, implying that:

1

2e
µ (Sh (ht, Lt)) ≤

∫ (zt+Lt)/2

Lt

µ ({v ∈ V | ht (v) ≥ z}) dµ(z).

The fact that εt = (zt − Lt)/2 implies that lt > (zt + Lt)/2, so Lt+1 > (zt + Lt)/2, and:

1

2e
µ (Sh (ht, Lt)) ≤

∫ Lt+1

Lt

µ ({v ∈ V | ht (v) ≥ z}) dµ(z),

showing that we will cut off at least a 1/2e-proportion of the total volume, completing the proof of
the first claim.

The second claim follows immediately by iterating the first, and observing that µ (Sh (h1, L1)) =
(u0 − l0)µ (V).

The above result shows that the volumes of the superlevel hypographs of the hts shrink at an
exponential rate. However, our actual stopping condition (line 5 of Algorithm 2) depends not on the
volume, but rather the “height” Ut − Lt, so we would prefer a bound on this height, rather than the
volume. We find such a bound in the (proof of the) following lemma, which establishes how many
iterations must elapse before the stopping condition is satisfied:

Lemma 4. In the context of Algorithm 2, suppose that we choose v(t) and εt as in Definition 2. Then
there is a iteration count Tε satisfying:

Tε = O

(
m ln

(
u0 − l0
ε

)
+ ln

(
µ (V)

µ (S` (z, l0))

))
,

such that, if t ≥ Tε, then Ut − Lt ≤ ε. Hence, Algorithm 2 will terminate after Tε iterations.

16



Proof. By Corollary 1:

µ (Sh (ht, Lt)) ≥
(
Ut − Lt
m+ 1

)
µ (S` (ht, Lt)) .

If Lt ≤ z (v∗) − ε, then µ (S` (ht, Lt)) ≥ µ (S` (ht,z (v∗)− ε)) because ht is concave. If
Lt > z (v∗)− ε, then by Theorem 2:

µ (S` (ht, Lt)) ≥
(

Ut − Lt
Ut −z (v∗) + ε

)m
µ (S` (ht,z (v∗)− ε)) .

In either case, Lt ≤ z (v∗) by definition, and we’ll assume that Ut − Lt > ε (this will lead to a
contradiction), so:

µ (Sh (ht, Lt)) ≥ 2−m
(
Ut − Lt
m+ 1

)
µ (S` (ht,z (v∗)− ε)) .

Applying Lemma 3 yields that:(
1− 1

2e

)t−1
(u0 − l0)µ (V) ≥ 2−m

(
Ut − Lt
m+ 1

)
µ (S` (ht,z (v∗)− ε)) .

Next observe that, by Theorem 2:

µ (S` (ht,z (v∗)− ε)) ≥
(
Ut −z (v∗) + ε

Ut − l0

)m
µ (S` (ht, l0)) ≥

(
ε

u0 − l0

)m
µ (S` (z, l0)) .

Combining the previous two equations gives:

Ut − Lt ≤
(

1− 1

2e

)t−1
(m+ 1)

(
2

ε

)m
(u0 − l0)

m+1

(
µ (V)

µ (S` (z, l0))

)
.

Simplifying this inequality yields that, if we have performed the claimed number of iterations, then
Ut − Lt ≤ ε (this contradicts our earlier assumption that Ut − Lt > ε, so this is technically a proof
by contradiction).

The second term in the bound on Tε measures how closely V matches with the set of all points z
on which z (z) exceeds our initial lower bound l0. Observe that if l0 ≤ z (v) for all v ∈ V , then
µ (S` (z, l0)) = µ (V), and this term will vanish.

Bounding the number of cutting-plane iterations that will be performed is not enough to establish
how quickly our procedure will converge, since we rely on performing an inner SVM optimizations
with target suboptimality εt, and the runtime of these inner optimizations naturally will depend on
the magnitudes of the εts, which are bounded in our final lemma:

Lemma 5. In the context of Algorithm 2, suppose that we choose v(t) and εt as in Definition 2. Then:

εt ≥
Ut − Lt

2e (m+ 1)
,

and in particular, for all t (before termination):

εt ≥
ε

2e (m+ 1)
,

since we terminate as soon as Ut − Lt ≤ ε.

Proof. Because ht is concave:

µ (Sh (ht, Lt))− µ (Sh (ht, zt)) ≤ (zt − Lt)µ (S` (ht, Lt)) ,

where zt is as in Lemma 3. By Corollary 1, µ (S` (ht, Lt)) ≤ m+1
Ut−Ltµ (Sh (ht, Lt)), which combined

with the above inequality gives that:

µ (Sh (ht, Lt))− µ (Sh (ht, zt))

µ (Sh (ht, Lt))
≤ zt − Lt
Ut − Lt

(m+ 1) .

By Theorem 3, the LHS is at least 1/e, and zt − Lt = 2εt, giving the claimed result.

17



F SVM optimization
We’ll now move onto a discussion of how we propose implementing the SVMOptimizer of Algo-
rithm 2. The easier-to-analyze approach, based on an inner SDCA optimization over w [24] and an
outer cutting plane optimization over b (Algorithm 3), will be described in Appendices F.1 and F.2.
The easier-to-implement version, which simply calls an off-the-shelf SVM solver, will be described
in Appendix F.3.

F.1 SDCA w-optimization

To simplify the presentation, we’re going to begin by reformulating Equation 7 in such a way that all
of the datasets are “mashed together”, with the coefficients being defined on a per-example basis,
rather than per-dataset. To this end, for fixed w′ and b′, we define, for every i ∈ {1, . . . , k} and every
x ∈ Di:

α̌
(0)
i,x =

{
α
(0)
i if 〈w′, x〉 − b′ ≤ 1/2

0 otherwise
(13)

β̌
(0)
i,x =

{
β
(0)
i if 〈w′, x〉 − b′ ≥ −1/2

0 otherwise
.

This takes care of the loss coefficients. For the constraint coefficients, define:

α̌
(j)
i,x =

{
α
(j)
i if 〈w′, x〉 − b′ ≤ 1/2

0 otherwise
(14)

β̌
(j)
i,x =

{
β
(j)
i if 〈w′, x〉 − b′ ≥ −1/2

0 otherwise
.

and finally, we need to handle the constraint upper bounds:

γ̌(j) =γ(j) −
k∑
i=1

1

|Di|

(
α
(j)
i |{x ∈ Di | 〈w′, x〉 − b′ > 1/2}| (15)

+β
(j)
i |{x ∈ Di | 〈w′, x〉 − b′ < −1/2}|

)
.

Observe that the α̌(0)
i,xs, β̌(0)

i,x s, α̌(j)
i,xs, β̌(j)

i,x s, and γ̌(j)s all have implicit dependencies on w′ and b′. In
terms of these definitions, the Ψ defined in Equation 7 can be written as:

Ψ (w, b, v;w′, b′) =

k∑
i=1

1

|Di|
∑
x∈Di

α̌(0)
i,x +

m∑
j=1

vjα̌
(j)
i,x

max

{
0,

1

2
+ (〈w, x〉 − b)

}

+

β̌(0)
i,x +

m∑
j=1

vj β̌
(j)
i,x

max

{
0,

1

2
− (〈w, x〉 − b)

}
+
λ

2
‖w‖22 −

m∑
j=1

vj γ̌
(j).

This formulation makes it clear that minimizing Ψ as a function of w and b is equivalent to optimizing
an SVM, since Ψ is just a positive linear combination of hinge losses, plus a `2 regularizer, plus a
term that does not depend on w or b. Since Ψ can have both “positive” and “negative” hinge losses
associated with the same example, however, it’s slightly simpler to combine both hinge losses together
into a single piecewise linear per-example loss, rather than decomposing it into two separate hinges:

`i,x (z) = α̌i,x max

{
0,

1

2
+ z

}
+ β̌i,x max

{
0,

1

2
− z
}
, (16)

where:

α̌i,x =
n

|Di|

α̌(0)
i,x +

m∑
j=1

vjα̌
(j)
i,x

 and β̌i,x =
n

|Di|

β̌(0)
i,x +

m∑
j=1

vj β̌
(j)
i,x

 . (17)

18



Here, n =
∑k
i=1 |Di| is the total number of examples across all of the datasets—we introduced the n

factor here so that Ψ will be written in terms of the average loss (rather than the total loss). Although
it is not represented explicitly in our notation, it should be emphasized that `i,x implicitly depends on
v, w′ and b′.

As the sum of two hinges, the `i,xs are Lipschitz continuous in z, with the Lipschitz constant being:

L = max
i∈{1,...,k}

n

|Di|

(α(0)
i + β

(0)
i

)
+

m∑
j=1

vj

(
α
(j)
i + β

(j)
i

) . (18)

Notice that, if the datasets are comparable in size, then n/ |Di| will be on the order of k, so L will
typically not be as large as the n-dependence of its definition would appear to imply.

We may now write Ψ in terms of the loss functions `i,x:

Ψ (w, b, v;w′, b′) =
1

n

k∑
i=1

∑
x∈Di

`i,x (〈w, x〉 − b) +
λ

2
‖w‖22 −

m∑
j=1

vj γ̌
(j).

This is the form considered by Shalev-Shwartz and Zhang [24], so we may apply SDCA:
Theorem 4. If we use SDCA [24] to optimize Equation 19 for fixed b and v, then we will find a
suboptimal solution with duality gap ε′′ after performing at most:

Tε′′ = O

(
max

{
0, n ln

(
λn

L2X2

)}
+ n+

L2X2

λε′′

)
iterations, where X = maxi∈{1,...,k}maxx∈Di ‖x‖2 is a uniform upper bound on the norms of the
training examples.

Proof. This is Theorem 2 of Shalev-Shwartz and Zhang [24].

SDCA works by, rather than directly minimizing Ψ over w, instead maximizing the following over
the dual variables ξ:

Ψ∗ (ξ, b, v;w′, b′) = (19)

− 1

n

k∑
i=1

∑
x∈Di

`∗i,x (ξi,x)− 1

2λ

∥∥∥∥∥ 1

n

k∑
i=1

∑
x∈Di

ξi,xx

∥∥∥∥∥
2

2

− 1

n

k∑
i=1

∑
x∈Di

ξi,xb−
m∑
j=1

vj γ̌
(j),

using stochastic coordinate ascent, where:

w = − 1

λn

k∑
i=1

∑
x∈Di

ξi,xx

is the primal solution w corresponding to a given set of dual variables ξ, and:

`∗i,x (ξi,x) =
1

2

∣∣ξi,x − α̌i,x + β̌i,x
∣∣− 1

2

(
α̌i,x + β̌i,x

)
is the Fenchel conjugate of `i,x, and is defined for −β̌i,x ≤ ξi,x ≤ α̌i,x (these bounds become box
constraints on the ξs of Equation 19).

F.2 Cutting plane b-optimization

Having described in the previous section how we may optimize over w for fixed b and v using SDCA,
we now move on to the problem of creating the SVMOptimizer needed by Algorithm 2, which must
optimize over both w and b.

Many linear SVM optimizers do not natively handle an unregularized bias parameter b, and this has
long been recognized as a potential issue. For example, Shalev-Shwartz et al. [25] suggest using
Pegasos to perform inner optimizations over w, and a bisection-based outer optimization over b.
Our proposal is basically this, except that Algorithm 3, rather than using bisection, optimizes over b
using essentially the same cutting plane algorithm as we used in Algorithm 2, except that optimizing
over b is a minimization problem (over v is maximization), and we might increase u′0 on line 2 of
Algorithm 3 for a technical reason (it will be needed by the proof of Lemma 6, but is probably not
helpful in practice).

19



Algorithm 3 Skeleton of a cutting-plane algorithm that finds a b ∈ B minimizing (to within ε)
minb∈B,w∈Rd Ψ(w, b, v;w′, b′), where B ⊆ R is a closed interval. It is assumed that ũ′0 ∈ R is a
finite upper bound on minb∈B,w∈Rd Ψ(w, b, v;w′, b′), while by the definition of Ψ (Equation 7), the
l′0 chosen on line 1 will lower bound the same quantity. The u′0 increase that is “maybe” performed
on line 2, and the CutChooser function on line 9, are discussed in Appendix F.2. The SDCAOptimizer
function is as described in Appendix F.1.

SVMOptimizer (v, ũ′0, ε
′)

1 Initialize g′0 ∈ R to zero and l′0 = −
∑m
j=1 vj γ̌

(j)

2 Maybe set u′0 = 2ũ′0 − l′0, otherwise u′0 = ũ′0 // needed for Lemma 6
3 For t ∈ {1, 2, . . . }
4 Let h′t (b) = maxs∈{0,1,...,t−1} (l′s + g′s (b− bs))
5 Let L′t = minb∈B h

′
t (b) and U ′t = mins∈{0,1,...,t−1} u

′
s

6 If U ′t − L′t ≤ ε′ then
7 Let s ∈ {1, . . . , t− 1} be an index minimizing u′s
8 Return w(s), bs, L′t
9 Let bt, ε′t = CutChooser (h′t, U

′
t)

10 Let ξ(t), w(t) = SDCAOptimizer (bt, v, ε
′
t)

11 Let u′t = Ψ(w(t), bt, v;w′, b′)
12 Let l′t = Ψ∗(ξ(t), bt, v;w′, b′) and g′t = ∂

∂′
b
Ψ∗(ξ(t), bt, v;w′, b′)

F.2.1 Minimization-based

Perhaps the easiest-to-implement version of Algorithm 3 is based on the idea of simply solving for
the minimizer of h′t at every iteration.

Definition 3. (Minimization-based Algorithm 3) Do not increase u′0 on line 2, and have CutChooser
choose bt = argminb∈B h

′
t (b) and ε′t = (Ut − Lt)/2.

As was the case in Appendix E.1, we have no convergence rates for this version. Furthermore, since
this is a one-dimensional problem, the center of mass-based version of Algorithm 3 is implementable
and efficient, so this minimization-based approach is not recommended.

F.2.2 Center of mass-based

Essentially the same center of mass-based approach as was described in Appendix E.2 can be used in
this setting, except that we must find the center of mass of a 2-dimensional sublevel epigraph, rather
than an m+ 1-dimensional superlevel hypograph:

Definition 4. (Center of mass-based Algorithm 3) Do increase u′0 on line 2, have CutChooser take
(bt, zt) to be the center of mass of {(b, z) | h′t (b) ≤ z ≤ U ′t}, and choose ε′t = (U ′t − zt)/2.

Unlike in Appendix E.1, the fact that this problem is one-dimensional enables us to efficiently
implement this CutChooser by explicitly representing each h′t as a set of piecewise linear segments,
over which computing an integral (and therefore the center of mass) is straightforward, with a runtime
that is linear in the number of segments.

Due to the similarity between Algorithms 3 and 2, we can simply recycle the results of Appendix E.2,
with the troublesome second term in the bound of Lemma 4 removed by combining the “maybe”
portion of Algorithm 3 with the Lipschitz continuity of Ψ as a function of b:

Lemma 6. In the context of Algorithm 3, suppose that we choose bt and ε′t as in Definition 4. Then
there is a iteration count Tε′ satisfying:

Tε′ = O

(
ln

(
LB (ũ′0 − l′0)

ε′

))
,

such that, if t ≥ Tε′ , then U ′t − L′t ≤ ε′, where B is the length of B and L is as in Equation 18.
Hence, Algorithm 3 will terminate after Tε′ iterations.

20



Proof. Starting from (and adapting) the final equation in the proof of Lemma 4:

U ′t − L′t ≤4

(
1− 1

2e

)t−1(
1

ε′

)
(u′0 − l′0)

2

·
(

B

µ ({b ∈ B | minw∈Rd Ψ (w, b, v;w′, b′) ≤ u′0})

)
.

Observe that, as a function of b, Ψ (w, b, v;w′, b′) is L-Lipschitz. Hence, if we let w∗ ∈ Rd, b∗ ∈ B
be the optimal weight and bias, then:

µ ({b ∈ B | Ψ (w∗, b, v;w′, b′) ≤ u′0}) ≥ min

{
B,

u′0 −Ψ (w∗, b∗, v;w′, b′)

L

}
.

Since minw∈Rd Ψ (w, b, v;w′, b′) ≤ Ψ (w∗, b, v;w′, b′), it follows that:

U ′t − L′t ≤ 4

(
1− 1

2e

)t−1(
1

ε′

)
(u′0 − l′0)

2
max

{
1,

LB

u′0 −Ψ (w∗, b∗, v;w′, b′)

}
.

This is the reason that we increased u′0 on line 2 of Algorithm 3, since doing so has the result that
u′0 −Ψ (w∗, b∗, v;w′, b′) ≥ ũ′0 − l′0. Since we also have that u′0 − l′0 = 2(ũ′0 − l′0):

U ′t − L′t ≤ 16

(
1− 1

2e

)t−1(
1

ε′

)
(ũ′0 − l′0) max {ũ′0 − l′0, LB} .

The same reasoning as was used in the proof of Lemma 4 then gives the claimed bound on Tε′ .

In addition to the above result, the obvious analogue of Lemma 5 holds as well:

Lemma 7. In the context of Algorithm 3, suppose that we choose bt and ε′t as in Definition 4. Then:

ε′t ≥
U ′t − L′t

2e
,

and in particular, for all t (before termination):

ε′t ≥
ε′

2e
,

since we terminate as soon as U ′t − L′t ≤ ε′.

Proof. Same as Lemma 5.

In Appendix G, we’ll combine these results with those of Appendices F.1 and E to bound the overall
convergence rate of Algorithm 2.

F.3 Kernelization

The foregoing discussion covers the case in which we wish to learn a linear classifier, and use an
SVM optimizer (SDCA) that doesn’t handle an unregularized bias. It’s clear that we could freely
substitute another linear SVM optimizer for SDCA, as long as it finds both a primal and dual solution
so that we can calculate the lower and upper bounds required by Algorithm 2.

Our technique is easily kernelized—the resulting algorithm simply depends on inner kernel SVM
optimizations, rather than linear SVM optimizations. SDCA can be used in the kernel setting, but the
per-iteration cost increases from O(d) arithmetic operations to O(n) kernel evaluations, where n is
the total size of all of the datasets. Kernel-specific optimizers, such as LIBSVM [6], will generally work
better than SDCA in practice, since they typically have the same per-iteration cost, but each iteration
is “smarter”. More importantly, such optimizers usually jointly optimize over w and b, eliminating
the need for Algorithm 3 entirely—in other words, these algorithms could be used to implement
the higher-level SVMOptimizer, instead of the lower-level SDCAOptimizer. For this reason, an
implementation based on such an optimizer is the simplest version of our proposed approach.

21



G Overall convergence rates
We may now combine the results in Appendices E and F into one bound on the overall convergence
rate of Algorithm 2, assuming that we use Algorithm 3, rather than an off-the-shelf SVM solver, to
implement the SVMOptimizer:

Theorem 5. Suppose that we take l0 = −
∑m
j=1 vjγ

(j) in Algorithm 2, that SVMOptimizer is
implemented as in Algorithm 3, and that the CutChooser functions in Algorithms 2 and 3 are
implemented using the center of mass (as in Definitions 2 and 4). Then Algorithm 2 will perform:

O

(
m ln

(
u0 − l0
ε

)
+ ln

(
µ (V)

µ (S` (z, l0))

))
iterations, each of which contains a single call to Algorithm 3, with each such call requiring:

O

(
ln

(
LBm (u0 − l0)

ε

))
iterations, each of which contains a single call to SDCAOptimizer, with each such call requiring:

O

(
max

{
0, n ln

(
λn

L2X2

)}
+ n+

L2X2m

λε

)
iterations, each of which requires O(d) arithmetic operations.

Proof. Notice that u0 ≥ ũ′0 ≥ l′0 ≥ l0 (the first inequality because Algorithm 2 passes a quantity
upper bounded by u0 to SVMOptimizer, and the second by our choice of l0). By Lemma 5, we also
have that ε′ ≥ ε/2e(m + 1). The claimed results follow immediately from these facts, combined
with Lemmas 4, 5, 6 and 7 and Theorem 4.

We can simplify (or perhaps oversimplify) this result by considering only the total number of training
examples n, number of constraints m, number of datasets k, dimension d and desired suboptimality ε,
dropping all of the other factors, and assuming that the sizes of the k datasets differ only by a constant
factor (so that, as explained in Appendix F.1, we can take the Lipschitz constant L to be of order k).
Then the overall cost of finding an ε-suboptimal solution to Problem 3 will be Õ

(
dnm+ dm2k2/ε

)
total arithmetic operations in the inner SDCA optimizers, plus O

(
m ln2 (k/ε)

)
calls to the center

of mass oracles in Algorithms 2 and 3, and another O
(
m ln2 (k/ε)

)
calls to a linear programming

oracle for finding Ut in Algorithm 2 and Lt in Algorithm 3.

We must reiterate that, as we mentioned in Appendix E.2, finding the center of mass is a compu-
tationally difficult problem. Hence, our reliance on a center of mass oracle for the optimization
over v is unrealistic (there is no problem when optimizing over b, since the underlying problem is
one-dimensional). With that said, we hope that these results can provide a basis for future work.

22


