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A Missing proofs and intuition details from Section 3

A.1 Proof of Statement 1

Proof. The team sizes t, s + 1 ≥ i imply that the search of the optimal sets H and G in max/min
operators of the score

◦
J

(t,s)
i is made over any subset of the already selected features Si−1 (since its

size |Si−1| = i− 1):
◦
J

(t,s)
i (f) = max

H⊆Si−1

min
G⊆Si−1

I(c; f,H | G),

i.e., there is no actual limitation on the sizes |H| and |G|.
For any candidate f ∈ F \ Si−1 and any subsets H,G ⊆ Si−1, on the one hand, the following
inequality holds

I(c; f,H|G) ≥ I(c; f,H|H,G) = I(c; f |H,G).

On the other hand, denoting G1 = H ∪G,

I(c; f |H,G) = I(c; f,H|H,G) = I(c; f,H|G1) ≥ min
G′⊆Si−1

I(c; f,H | G′).

Therefore, for any H ⊆ Si−1, one has

min
G⊆Si−1

I(c; f,H | G) = min
G⊆Si−1

I(c; f | H,G) = min
G⊆Si−1\H

I(c; f | H,G).

Finally, for the score
◦
J

(t,s)
i , we get

◦
J

(t,s)
i (f) = max

H⊆Si−1

min
G⊆Si−1\H

I(c; f | H,G). (A.1)

Let H0 be an optimal set H from Eq. (A.1) with the largest size and let G0 be an optimal set G
from Eq. (A.1) w.r.t. H0. Note that

◦
J

(t,s)
i (f) = I(c; f | H0, G0). We will prove that, in this case,

H0∪G0 = Si−1. To prove this, let us assume the contrary, namely, that there isw ∈ Si−1\(H0∪G0).
On the one hand, by the definition of H0, one has

min
G⊆Si−1\(H0∪{w})

I(c; f | H0, w,G) < I(c; f | H0, G0), (A.2)

where inequality is strong, since H0 ∪ {w} is larger than H0 and, thus, could not be an optimal set H
in Eq. (A.1). On the other hand, by the definition of G0,

I(c; f | H0, G0) ≤ I(c; f | H0, w,G) ∀G ⊆ Si−1. (A.3)

Combining Eq. (A.2) and Eq. (A.3), we get a contradiction. So, the right hand side of Eq. (A.1) is
equal to I(c; f | Si−1), which is the score of CMI.

A.2 Proof of Proposition 1

Proof. Let us demonstrate that the first statement holds. Let H ⊆ Si−1 be such that |H| ≤ s, then,
on the one hand,

min
G⊆Si−1,|G|≤s

I(c; f,H | G) ≤ I(c; f,H | H), (A.4)

since H is in the set over which the minimum is taken. On the other hand,

I(c; f,H | H) = I(c; f,H,H)− I(c;H) = I(c; f,H)− I(c;H) = I(c; f | H). (A.5)

Combining Eq. (A.4) and (A.5), we get the first part of the proposition. For t− 1 ≤ s, this implies
the second statement of the proposition, since, for an optimal complimentary team {f}∪Ho

f , one has

◦
J

(t,s)
i (f) = min

G⊆Si−1,|G|≤s
I(c; f,Ho

f | G) ≤ I(c; f | Ho
f ) ≤ max

H⊆Si−1,|H|≤t−1
I(c; f | H).
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A.3 Proof of Proposition 2 and discussion

First, we prove Proposition 2. Second, we show that the absence of ties is a necessary condition
for the validity of the statement of Proposition 2 (see Remark A.1). Finally, we demonstrate that a
statement similar to Proposition 2 , but for an alternative search of greedy opposing team does not
hold (see Remark A.2).

Proof of Proposition 2. Let us consider the first step of the search of the greedy opposing team Gf ,
i.e., j = 1. Then, since f̃ ∈ Si−1,

0 ≤ min
g∈Si−1

I(c; f | g) ≤ I(c; f | f̃) = I(c; f | f) = 0.

Hence, the equality I(c; f | g1) = 0 holds for g1 as well. Since there are no ties (i.e., the minimum is
unique), g1 = f̃ .

Then, we proceed by induction. We consider an arbitrary step j of the search of the greedy opposing
team Gf s.t. 1 < j ≤ t, and we assume that

I(c; f, h1, . . . , hj−2 | g1, . . . gj−1) = 0,

with g1 = f̃ and gl = hl−1, l = 2, . . . , j − 1. In this case, we search for

gj = argmin
g∈Si−1

I(c; f, h1, . . . , hj−1 | f̃, h1, . . . , hj−2, g).

Since hj−1 ∈ Si−1,

0 ≤ min
g∈Si−1

I(c; f, h1, . . . , hj−1 | f̃, h1, . . . , hj−2, g) ≤ I(c; f, h1, . . . , hj−1 | f̃, h1, . . . , hj−2, hj−1)

= I(c; f, h1, . . . , hj−1 | f, h1, . . . , hj−2, hj−1) = 0

Due to the absence of ties, we get gj = hj−1.

So, for the case, when s = t, we have

J
(t,s)
i (f) = I(c; f, h1, . . . , ht−1 | f̃, h1, . . . , ht−1) = 0. (A.6)

Finally, let us consider the case s > t. Then again, we proceed by induction, where Eq. (A.6) is the
basis for this induction. We assume that for a step j > t of the search of the greedy opposing team
Gf , the following holds

I(c; f, h1, . . . , ht−1 | g1, . . . , gj−1) = 0,

with g1 = f̃ and gl = hl−1, l = 2, . . . , t.

Then,

min
g∈Si−1

I(c; f, h1, . . . , ht−1 | g1, . . . , gj−1, g) ≤ I(c; f, h1, . . . , ht−1 | g1, . . . , gj−1, g1)

= I(c; f, h1, . . . , ht−1 | g1, . . . , gj−1) = 0.

Hence, the equality I(c; f, h1, . . . , ht−1 | g1, . . . , gj−1, g) = 0 holds for any optimal g = gj as well.
So, for the case, when s > t, we have

J
(t,s)
i (f) = I(c; f, h1, . . . , ht−1 | f̃, h1, . . . , ht−1, gt+1, . . . , gs) = 0.

Remark A.1. The statement of Proposition 2 is invalid in the case when a tie exists. Namely, if,
during the greedy search of the opposing team, there is a step j ≤ t at which there are multiple
minimums, and the opposer gj is randomly selected among these minimums, then a copy f ∈ F \Si−1

of an already selected feature f̃ ∈ Si−1 might get a non-zero score J (t,s)
i (f).
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Proof. Consider t = s = 2, features f0, f1, f2, f3 and a target c, such that f0 = f1,

I(c; f0) = I(c; f1) ≤ ε, I(c; f2) ≤ ε, I(c; f3) = I(c; f1, f3) ≤ ε, I(c; f2, f3) ≤ ε,

but
I(c; f1, f2) = H(c)� ε.

Random variables with such properties could be constructed by means of proper Bernoulli distribu-
tions1.

Let us consider the state i = 3, where Si−1 = {f1, f2, f3}2, and we calculate the score J (t,s)
i (f0).

Then, during the greedy search of Hf0 , one has h1 := f2. During the greedy search of Gf0 , at the
first step j = 1, one obtains that, for g = f1,

I(c; f0 | f1) = 0,

and, thus,
min

g∈Si−1

I(c; f0 | g) = 0.

But, for g = f3,
I(c; f0 | f3) = I(c; f0, f3)− I(c; f3) = ε− ε = 0

as well. Let us assume that the algorithm sets g1 := f3 (since ties are resolved randomly). At the
next step j = 2 of the greedy search of Gf0 , one has, for g = f1:

I(c; f0, f2 | f3, f1) = I(c; f0, f2, f3, f1)− I(c; f3, f1) ≥ H(c)− ε > 0,

for g = f2:

I(c; f0, f2 | f3, f2) = I(c; f0, f2, f3, f2)− I(c; f3, f2) ≥ H(c)− ε > 0,

and, for g = f3:

I(c; f0, f2 | f3, f3) = I(c; f0, f2, f3, f3)− I(c; f3, f3) ≥ H(c)− ε > 0.

Therefore,
J

(t,s)
i (f0) = min

g∈Si−1

I(c; f0, h1 | g1, g) > 0.

Remark A.2. The statement of Proposition 1 does not hold for the alternative greedy search strategy,
in which the alternative greedy opposing team Ĝf := {ĝ1, . . . , ĝs} is built by:

ĝj := argmin
g∈Si−1

I(c; f,Hf | ĝ1, . . . , ĝj−1, g), j = 1, . . . , s, (A.7)

where {f} ∪Hf is the greedy complimentary team, defined in Section 3.2.

Proof. Let us consider t = s = 2, features f0, f1, f2, f3, and a target c such that f0 = f1,

I(c; f0) = I(c; f1) ≤ ε, I(c; f2) ≤ ε, I(c; f3) =
1

2
H(c),

I(c; f2, f3) ≤ 1

2
H(c) + ε, I(c; f1, f3) ≤ 1

2
H(c) + ε, I(c; f1, f2) = H(c)� 2ε.

Random variables with such properties could be constructed by means of proper Bernoulli distribu-
tions in a similar way as in the proof of the previous remark.

Let us consider the state i = 3, where Si−1 = {f1, f2, f3}, and we calculate the modification of the
score J (t,s)

i (f0) that is defined by:

Ĵ
(t,s)
i (f) := I(c; f,Hf | Ĝf ), (A.8)

1E.g., we can consider 3 jointly i.i.d. Bernoulli random variables f1, f2, f3 with success probability 1/2.
Then, let f0 = f1, c = f1 + f2( mod 2).

2One can show that this set will be selected by the algorithm in priority to f0 (in the following
order:f3, f1, f2).
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where Ĝf is constructed via Eq. (A.7).

Then, during the greedy search of Hf0 , one has h1 := f2. During the greedy search of Ĝf0 , at the
first step j = 1, one obtains that, for g = f1,

I(c; f0, h1 | f1) = I(c; f0, f2 | f0) = I(c; f0, f2)− I(c; f0) ≥ H(c)− ε,
for g = f2,

I(c; f0, h1 | f2) = I(c; f0, f2 | f2) = I(c; f0, f2)− I(c; f2) ≥ H(c)− ε,
and, for g = f3,

I(c; f0, h1 | f3) = I(c; f0, f2 | f3) = I(c; f0, f2, f3)− I(c; f3) = H(c)− 1

2
H(c),

Since, H(c) > 2ε, the algorithm selects the unique minimum: ĝ1 := f3. At the next step j = 2 the
greedy search of Gf0 , one has, for g = f1:

I(c; f0, f2 | f3, f1) = I(c; f0, f2, f3, f1)− I(c; f3, f1) ≥ H(c)− 1

2
H(c)− ε > 0,

for g = f2:

I(c; f0, f2 | f3, f2) = I(c; f0, f2, f3, f2)− I(c; f3, f2) ≥ H(c)− 1

2
H(c)− ε > 0,

for g = f3:

I(c; f0, f2 | f3, f3) = I(c; f0, f2, f3, f3)− I(c; f3, f3) ≥ H(c)− 1

2
H(c) > 0.

Therefore,
Ĵ

(t,s)
i (f0) = min

g∈Si−1

I(c; f0, h1 | ĝ1, g) > 0.

A.4 Proof of Proposition 3

Proof. The calculation of a joint entropy of m variables over N instances (samples) takes O(mN)
simple operations. Indeed, to compute the empirical entropy H(F ) of a feature vector F of size m,
we group all instances in the dataset by the observed values of the full feature vector F , this takes
O(Nm) operations. Then, for each observed value X , we compute −(NX/N) log(NX/N), where
NX is the number of instances with F = X . This takes not greater than O(Nm) operations. At last,
we sum up the obtained values. Hence, any MI that involve m variables requires O(mN) simple
operations as well.

Let us estimate the number of MIs that are calculated by our algorithm at the i-th SFS iteration for
each candidate feature f ∈ F \ Si−1. So, the search of the complementary team is done via t− 1
steps (lines 11-13 in Alg. 1), where, at each step j, one finds a maximal MI with 2 + j variables over
B[Si−1] ∪B[f ] (line 12 in Alg. 1) . Hence, the search of the complementary team no more than
(t− 1)iν times calls a calculation of MIs that involve no more than t+ 1 variables. Similarly, the
search of the opposing team (lines 14-16 in Alg. 1) no more than t(i− 1)ν times calls a calculation
of MIs that involve no more than 2t+ 1 variables.

These teams are found for each binary representative (lines 10-17 in Alg. 1) of the candidate f . Thus,
the score J (t,t),bin

i (f) requires calculation of
(
(t−1)i+ t(i−1)

)
ν2 of MIs that involve no more than

2t+1 variables . Thus, the overall score requires
(
(t−1)i+ t(i−1)

)
ν2O

(
(2t+1)N

)
= O(iν2t2N)

simple operations. Thus, we proved the first part of the proposition.

In order to estimate the required number of simple operations to select top-k features by CMICOT,
note that the score J (t,t),bin

i is calculated M − i+ 1 times (over the features F \Si−1) at the i-th SFS
iteration (lines 9-19 in Alg. 1). Since we run k SFS iterations, the overall computation complexity is:

O(1) +

k∑
i=1

(M − i+ 1)O(iν2t2N) = O(k2ν2t2MN).
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A.5 Details on some intuitions

A.5.1 Two binary representatives of one feature vs. the ones of two different features

Our technique of binary representatives has been inspired by the intuition that two binary representa-
tives of two different features interact probably on average better than two binary representatives of
one feature.

To clarify this, let us consider a dataset of vectors whose components are 2q-valued features and
assume that the dataset size allows to estimate the entropy of a vector whose domain of values does
not exceed 2qr to achieve a required accuracy level. Let us represent each feature by q binary ones.
Without BR technique (a), interactions are searched among only r q-tuple combinations, while with
BR technique (b), we are able to combine any qr binary features. In the case (b), the algorithm has
more freedom to find high interactions than in the case (a), since the variants in (a) constitutes a
subset of the variants in (b).

B Information on the realizations of baseline methods and employed
classifiers

We utilized the following realizations of our baselines

• the state-of-the-art filters MIFS, mRMR, CMIM, JMI, DISR, FCBF (CBFS), and CMI Brown
et al. (2012): the implementation provided by the FEAST Toolbox from http://www.cs.
man.ac.uk/~gbrown/fstoolbox/;

• RelaxMRMR: the Matlab implementation provided by the authors Vinh et al. (2015);
• IWFS and RCDFS: ours Matlab implementation.

We employ three state-of-the-art classifiers:

• Naive Bayes Classifier (NBC) used in Novovičová et al. (2007); Vergara and Estévez (2010);
Tsimpiris et al. (2012);
• k-Nearest Neighbor (kNN) used in Fleuret (2004); Meyer et al. (2008); Lee et al. (2012): k

is set to 3;
• AdaBoost used in Fleuret (2004): 200 ensemble members in SAMME multi-class AdaBoost

with CART trees of maximum depth 6 as base learners (scikit-learn implementation).

C Details on the synthetic experiments

C.1 The synthetic dataset setup

In our synthetic experiments, we construct our dataset in the following way. Given the number of
desired interacting features n ≥ 2 (a parameter of the dataset), we construct a set F of n+15 features,
which contains a group of jointly interacting relevant features Fint = n, and a part of the target c is a
deterministic function of Fint.

So, first of all, let us consider some auxiliary independent random variables:

• 3 jointly i.i.d. Bernoulli random variables u, ξ, θ with success probability 1/2.
• 1 uniform random variable Ξ over the set Zn−1;
• 1 uniform random variable Θ over the set Z10;
• 5 jointly i.i.d. Bernoulli random variables ε1, . . . , ε5 with success probability 1/2.
• overall, the variables u,Ξ,Θ, ξ, θ, ε1, . . . , ε5 are jointly independent as well.

Based on these variables we define the following variables (let IA be the indicator of the event A):

• n− 1 variables:

w1 := u · ξ · I{Ξ=0}, . . . , wn−1 := u · ξ · I{Ξ=n−2};

6

http://www.cs.man.ac.uk/~gbrown/fstoolbox/
http://www.cs.man.ac.uk/~gbrown/fstoolbox/


• 10 variables:
v1 := u · θ · I{Θ=0}, . . . , v10 := u · θ · I{Θ=9};

Then, we define:

• The target:
c := u

• n relevant and interacting features:

Fint := {u,w1, . . . , wn−1};

• 10 relevant but non-interacting features (each of them (as individual feature) behaves
similarly as one of w1, . . . , wn−1):

Frel−not−int := {v1, . . . , v10};

• 5 irrelevant features:
Firr := {ε1, . . . , ε5}.

Thus, our set consists of
F = Fint ∪ Frel−not−int ∪ Firr.

First, note that w1 + . . .+wn−1 = c ·ξ and v1 + . . .+v10 = c ·θ. Hence, knowing w1, . . . , wn−1, and
ξ, one can restore the target on a half of instances (those where ξ = 1), i.e. these features constitutes
a n-way interaction. But one cannot do a similar derivation for v1, . . . , v10 since the variable θ is not
included in our set of features F . Second, note that the feature ξ is irrelevant (i.e., behave similarly as
the irrelevant features ε1, . . . , ε5) until it is considered without the features w1, . . . , wn−1.

Hence, in this synthetic experiment, a FS method should select the features Fint as earlier as possible
from all 15 + n features F .

In our experiments, for each n = 2, . . . , 11, we randomly sample 100 datasets from the predefined
joint distribution with 1000 instances.

C.2 Details on the results of the synthetic experiments

The performance of a feature selection method on the synthetic datasets is measured in terms of

k0 = min{k | Fint ⊆ Sk}.

The smaller k0, the more effective the considered FS method, since it builds the smaller set of features
needed to construct the best classifier. Hence, for each predefined joint distribution (n = 2, . . . , 11),
for each of 100 random sample, we calculate k0 for each of studied FS methods on these datasets
(namely, 6 the state-of-the-art filters Brown et al. (2012) (MIFS, mRMR, CMIM, JMI, DISR, and
FCBF (CBFS)); all known interaction-aware SFS-based filters (RelaxMRMR Vinh et al. (2015),
IWFS Zeng et al. (2015), and RCDFS Chen et al. (2015)); the CMI method; and our method CMICOT
with t = 2, 4, 6, 8, 10). Finally, we average k0 over the datasets and present the results in Figure C.1.

D Description of the used benchmark datasets

In Table D, we present descriptive statistics of 10 public datasets collected from the UCI Ma-
chine Learning Repository3 and one private dataset of a learning-to-rank problem obtained from
one of the most popular search engines (listed as “ranking"). We preprocessed the data for our
needs (i.e., removed index and nominal columns, discretized continuous target variables, replaced
missing values). Details on the dataset manipulations could be find in Table D. The datasets rep-
resent both binary classification and multi-classification (up to 26 classes) problems. Some of the
datasets have solely binary features (including target feature), while datasets with both discrete
and continuous features are also presented. We discretized features with more than 10 unique
values into 10-value discrete ones using an equal-width binning Dougherty et al. (1995); Brown
et al. (2012). The resulting median number of bins for each dataset is presented in Table D, as

3http://archive.ics.uci.edu/ml/datasets.html
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Figure C.1: Comparison of the performance of SFS-based filters in terms of the average k0 on
synthetic datasets.

well as dataset difficulty ratios (smaller values indicate more complicated tasks) Vinh et al. (2015).

Table D.1: Dataset description (types of features: binary (b), discrete (d), continuous (c)).

Dataset Instances
(N )

Features
(M ) Classes Median

arity
Ratio

(N/M ) Type of features

arrhythmia1 452 279 13 8 1.6 (b) (d) (c)
coil2000 9822 85 8 10 115.6 (b) (d) (c)
gizette 6000 5000 2 10 1.2 (b) (d) (c)
isolet 7797 617 26 10 12.6 (c)
libras 27936 300 2 9 93.1 (c)
madelon 2000 500 2 10 4.0 (d) (c)
poker2 100000 110 2 2 909.1 (b)
ranking3 50000 117 2 2 427.4 (b)
semeion 1593 256 10 2 6.2 (b)
smartphone 10929 561 12 10 19.5 (c)
usps 9298 256 10 10 36.3 (c)

1 missing values were replaced with 0s.
2 sample 100000 rows of the dataset were used, the original 10 categorical features were transformed into 110 binary features using

equal-width and equal-frequency strategies, label was binarized (’0’ was assigned to target value 0, ’1’ was assigned to target values
greater than 0).
3 a private dataset obtained from one of the most popular search engines.
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E Additional information on classification quality experiments

E.1 Aggregated results

E.1.1 Aggregated results over all datasets for each k

The overall performance of a method can be presented as a mean (M)AUC averaged over k = 1..50.
Yet again, CMICOT is better than all the competitors. For the sake of a better comprehension the
(M)AUC values can be transformed to rankings on each k (the method with the highest value has
rank 1, the worst method has rank 11). The averaged rankings confirm the previous conclusions.
Particularly, on kNN CMICOT’s rank is 71% higher than that of the closest competitor, CMIM.

The average values of (M)AUC for k = 1, . . . , 50 and for each of three classification models (NBC,
kNN, and AdaBoost) over all datasets are presented for CMICOT with different t = 1, . . . , 10 in
Fig. E.1, while its (t = 6) comparison with baselines in Fig. E.2.

The average ranks of compared FS methods w.r.t. (M)AUC for k = 1, . . . , 50 and for each of three
classification models (NBC, kNN, and AdaBoost) over all datasets are presented for CMICOT with
different t = 1, . . . , 10 in Fig. E.3, while its (t = 6) comparison with baselines in Fig. E.4.

Figure E.1: The average values of (M)AUC for k = 1, . . . , 50 and for each of three classification
models (NBC, kNN, and AdaBoost) over all datasets for CMICOT with different t = 1, . . . , 10.

NBC kNN AdaBoost

0.70

0.75

0.80

0.85

0.90

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Number of features

(M
)A

U
C

CMI

CMICOT

CMIM

DISR

FCBF

IWFS

JMI

MIFS

mRMR

RCDFS

RelaxMRMR

All datasets

Figure E.2: The average values of (M)AUC for k = 1, . . . , 50 and for each of three classification
models (NBC, kNN, and AdaBoost) over all datasets for all baselines and CMICOT with t = 6.

9



Figure E.3: The average ranks of compared FS methods w.r.t. (M)AUC for k = 1, . . . , 50 and for
each of three classification models (NBC, kNN, and AdaBoost) over all datasets for CMICOT with
different t = 1, . . . , 10.
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Figure E.4: The average ranks of compared FS methods w.r.t. (M)AUC for k = 1, . . . , 50 and for
each of three classification models (NBC, kNN, and AdaBoost) over all datasets for all baselines and
CMICOT with t = 6.

E.1.2 Aggregated results over all k and all dataset

In Table E.1, Table E.2
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Table E.1: Aggregated (M)AUC, averaged over the datasets and k = 1..50.

mAUC NBC kNN AdaBoost

CMI 0.777 0.776 0.851
CMICOT (t = 6) 0.775 0.815 0.866

CMIM 0.786 0.803 0.862
DISR 0.775 0.792 0.854
FCBF 0.783 0.752 0.801
IWFS 0.778 0.796 0.856

JMI 0.778 0.795 0.853
MIFS 0.776 0.774 0.832

mRMR 0.782 0.774 0.841
RCDFS 0.773 0.796 0.856

RelaxMRMR 0.786 0.779 0.845

Table E.2: Aggregated method rank, averaged over the datasets and k = 1..50.

NBC kNN AdaBoost

CMI 6.8 7.4 6.4
CMICOT (t = 6) 6.3 3.5 4.2

CMIM 4.7 5.0 4.8
DISR 7.2 6.9 7.2
FCBF 4.7 6.6 6.5
IWFS 6.5 6.2 6.2

JMI 7.0 6.2 6.9
MIFS 6.0 5.9 5.7

mRMR 5.4 6.6 6.4
RCDFS 6.8 6.0 6.3

RelaxMRMR 4.4 5.6 5.3

E.2 Results per each dataset

We apply 10-fold cross-validation to estimate the significance of differences in quality of FS algo-
rithms for k = 50. In our protocol we launch a new feature selection before each training (so there
are 10 FS rankings). Results are in Table E.6. We utilize Student’s paired two-tailed t-test to evaluate
the statistical significance of the difference between the mean scores.

We also compare the classifier quality at the optimal k point, where the optimal k ∈ 1...50 is the
number of features where the highest (M)AUC is achieved (see Tables E.3, E.4, and E.5). The average
best M(AUC) obtained with CMICOT (with t = 6) feature rankings exceeds that of all other methods.
Interestingly, according to the (M)AUC values, our strongest competitor is CMIM, not one of the
three interaction-aware FS methods.
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Table E.3: (M)AUC at the optimal k (NBC).

NBC CMI CMICOT
(t = 6) CMIM DISR FCBF IWFS JMI MIFS mRMR RCDFS Relax-

MRMR

arrhythmia 0.588 0.579 0.619 0.626 0.631 0.650 0.638 0.630 0.650 0.648 0.648
coil2000 0.690 0.685 0.681 0.705 0.679 0.697 0.688 0.698 0.694 0.687 0.696
gizette 0.903 0.922 0.947 0.954 0.947 0.907 0.933 0.940 0.953 0.894 0.949
isolet 0.976 0.994 0.991 0.980 0.996 0.991 0.976 0.989 0.988 0.968 0.991
libras 0.705 0.699 0.665 0.667 0.701 0.699 0.659 0.750 0.748 0.677 0.747
madelon 0.667 0.684 0.691 0.692 0.648 0.681 0.691 0.657 0.672 0.682 0.671
poker2 0.508 0.509 0.512 0.503 0.508 0.503 0.503 0.508 0.508 0.503 0.508
ranking 0.816 0.818 0.810 0.803 0.798 0.813 0.812 0.807 0.816 0.814 0.819
semeion 0.901 0.966 0.975 0.936 0.933 0.905 0.948 0.957 0.953 0.917 0.960
smartphone 0.973 0.973 0.984 0.959 0.979 0.979 0.960 0.982 0.966 0.980 0.967
usps 0.955 0.986 0.984 0.970 0.987 0.965 0.981 0.979 0.982 0.966 0.984

# times
wins 0 2 3 3 0 1 0 1 0 0 1

Table E.4: (M)AUC at the optimal k (kNN).

kNN CMI CMICOT
(t = 6) CMIM DISR FCBF IWFS JMI MIFS mRMR RCDFS Relax-

MRMR

arrhythmia 0.558 0.590 0.529 0.537 0.563 0.523 0.553 0.533 0.536 0.558 0.511
coil2000 0.669 0.669 0.669 0.669 0.669 0.669 0.669 0.669 0.669 0.669 0.669
gizette 0.960 0.983 0.980 0.971 0.961 0.956 0.973 0.918 0.974 0.956 0.980
isolet 0.951 0.986 0.970 0.954 0.986 0.966 0.938 0.968 0.959 0.926 0.972
libras 0.934 0.947 0.937 0.937 0.681 0.932 0.948 0.920 0.927 0.954 0.929
madelon 0.856 0.935 0.937 0.943 0.639 0.942 0.944 0.657 0.739 0.939 0.726
poker2 0.667 0.735 0.666 0.676 0.505 0.694 0.676 0.685 0.685 0.695 0.692
ranking 0.760 0.766 0.767 0.774 0.752 0.764 0.763 0.754 0.766 0.766 0.763
semeion 0.909 0.961 0.964 0.912 0.949 0.910 0.928 0.966 0.925 0.923 0.934
smartphone 0.920 0.969 0.970 0.944 0.963 0.963 0.926 0.964 0.922 0.954 0.937
usps 0.945 0.991 0.992 0.975 0.993 0.978 0.982 0.989 0.982 0.984 0.988

# times
wins 0 4 1 1 2 0 1 1 0 1 0

Table E.5: (M)AUC at the optimal k (AdaBoost).

AdaBoost CMI CMICOT
(t = 6) CMIM DISR FCBF IWFS JMI MIFS mRMR RCDFS Relax-

MRMR

arrhythmia 0.578 0.664 0.639 0.647 0.661 0.658 0.653 0.661 0.637 0.675 0.646
coil2000 0.712 0.711 0.726 0.758 0.698 0.716 0.712 0.714 0.755 0.712 0.741
gizette 0.979 0.998 0.995 0.985 0.985 0.974 0.988 0.946 0.992 0.978 0.993
isolet 0.992 0.996 0.996 0.992 0.996 0.995 0.986 0.995 0.992 0.986 0.994
libras 0.985 0.982 0.982 0.976 0.779 0.984 0.976 0.964 0.963 0.981 0.962
madelon 0.872 0.955 0.967 0.965 0.599 0.973 0.965 0.634 0.825 0.972 0.787
poker2 0.857 0.840 0.789 0.851 0.508 0.825 0.851 0.840 0.840 0.827 0.830
ranking 0.830 0.828 0.823 0.817 0.811 0.825 0.824 0.818 0.823 0.830 0.834
semeion 0.970 0.991 0.989 0.958 0.981 0.957 0.965 0.989 0.969 0.961 0.970
smartphone 0.975 0.982 0.988 0.976 0.981 0.981 0.973 0.984 0.977 0.985 0.983
usps 0.970 0.998 0.996 0.989 0.997 0.989 0.993 0.997 0.996 0.992 0.996

# times
wins 2 4 2 1 1 1 0 0 0 1 1
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Table E.6: (M)AUC, mean difference between CMICOT (with t = 6) and the baseline methods,
calculated using full 10-fold CV protocol on top 50 features over three representative datasets. Gray
values indicate statistically insignificant results (p-value > 0.05).

NBC
poker semeion usps

CMI 0 0.048 0.026
CMIM -0.002 0.002 0.003
DISR 0.003 0.040 0.020
FCBF -0.005 0.024 0.003
IWFS -0.004 0.041 0.022
JMI 0.004 0.040 0.008
MIFS -0.002 0.004 0.051
mRMR -0.002 0.037 0.007
RCDFS 0 0.039 0.021
RelaxMRMR -0.003 0.025 0.004

kNN
poker semeion usps

CMI 0.122 0.051 0.049
CMIM 0.113 -0.004 0.004
DISR 0.051 0.039 0.016
FCBF 0.282 0.013 0.005
IWFS 0.066 0.047 0.016
JMI 0.051 0.040 0.010
MIFS 0.107 -0.006 0.005
mRMR 0.105 0.032 0.009
RCDFS 0.061 0.047 0.013
RelaxMRMR 0.092 0.022 0.007

AdaBoost
poker semeion usps

CMI 0.014 0.022 0.022
CMIM 0.062 -0.002 0.001
DISR 0.001 0.021 0.008
FCBF 0.350 0.006 0.001
IWFS 0.038 0.020 0.008
JMI -0.002 0.018 0.004
MIFS 0.037 -0.003 0.001
mRMR 0.033 0.016 0.002
RCDFS 0.02 0.021 0.006
RelaxMRMR 0.043 0.010 0.002
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F Other additional experiments

F.1 Comparison of the order of selected features

Figure F.1: Similarity between CMICOT (with t = 6) and the baselines in terms of the order of
selected features measured by Kendall tau rank correlation coefficient Taylor (1987).

In this experiment we evaluate the difference between the order in which features were selected by
one of baseline FS methods and the one of CMICOT (with t = 6). For that purpose we calculate a
Kendall’s tau measure Taylor (1987) of similarity between each baseline order ranking and CMICOT’s
one for top k selected features (we consider k = 10, 20, 50). We do it for each dataset and, then,
calculate an average score over those datasets. The results are shown in Figure F.1.

We see that the top-10 subsets of CMICOT are surprisingly close to those of RCDFS, which is another
interaction-aware filter. There is some degree of similarity to RelaxMRMR as well. Concerning
the groups (b) and (c) of our baselines, the best match is CMI, which is somewhat encouraging,
since the method CMI is the idealistic but practically infeasible (for large k, it requires a drastically
large number of instances to have accurate estimation of MIs in its score, see Sec.2 and Brown et al.
(2012)). The closeness of FS methods to the “true" CMI method (i.e., as if it was calculated based on
known joint distributions of all features) is studied in Appendix F.2.
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F.2 Comparison with the “true" CMI score

As we noted in Section 2, the core intuition of most existing filters based on SFS and conditional
mutual information is to select features f ∈ F \ Si−1 with the largest value of a low-dimensional
approximation Ji(·) of the CMI score JCMI

i (f) = I(c; f | Si−1), since, for large k, it requires
a drastically large number of instances to have accurate estimation of MIs in its score, see Sec.2
and Brown et al. (2012). Hence, one can conduct an experiment to evaluate the FS method with the
score Ji(·) in terms the closeness of the score Ji(·) to the JCMI

i (·).

Figure F.2: Comparison of FS methods in terms of closeness of I(c;Sk) (where top-k features Sk are
selected by means of Ji,D′(f) of a compared FS method) to the true I(c;Sk) (where top-k features
Sk are selected by means of the true score JCMI

i,PD (f) of a compared FS method). We present results
for two sample dataset sizes: 100 instances and 1000 instances. CMICOT is with t = 6.

Thus, we are faced to the problem of calculating the “true" score of CMI method, i.e., as if it was
calculated based on known joint distributions of all features. The general assumption of machine
learning is that the available dataset D of observations (comprising both train and test sets) is
only a small sample of the same (latent) joint distribution P of features f ∈ F and label c. In
this setting, we cannot evaluate the true value of JCMI

i (f) = JCMI
i,P (f) to compare with the score

Ji(·) of the evaluated method, since we don’t have the complete information about distribution P
underlying JCMI

i,P (f). However, we can mimic this setting with the following idea of scaling down
the task. Namely, we substitute dataset D with its bootstrap subsample D′ and consider the empirical
distribution PD defined by D instead of the actual latent distribution P. In this way, we can exactly
evaluate JCMI

i,PD (f) and evaluate closeness of the score Ji,D′(f) calculated over the smaller dataset D′

to JCMI
i,PD (f), and, thus reveal its ability to recover the ordering of features f ∈ F \ Si−1.

We embody those considerations with a simple procedure. We run feature selection on several samples
of a chosen dataset (i.e., poker). The consider sample size equal to either 100 or 1000 instances, the
number of bootstrap replications for each dataset is 30. We picked 6 baselines to compare with: all
the group (a) (it contains interaction-aware methods); and CMI that is estimated by JCMI

i,D′ (f) (i.e., it
approximate the true CMI score JCMI

i,PD (f)). We consider k = 30 and, for each evaluated FS method,
we calculate the MI I(c;Sk) (where top-k features Sk are selected by Ji,D′(f)) for each sample, then
average it across the replications. We use I(c;Sk), calculated on the top k features selected by CMI
on the full dataset (i.e., by means of the true score JCMI

i,PD (f)) as a reference value of I(c;Sk), to which
all the sample MIs converge. In this way, the full dataset simulates the “general population", while
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the results of CMI run on the full dataset approximate the “ground truth" ranking. The estimated
mean scores with confidence intervals are presented in Figure F.2.

Indeed, as was earlier noticed by Brown et al. (2012), CMI performs drastically worse on small
datasets, which is not the case with our approach (the difference between k = 100 and k = 1000 is
insignificant) and other baselines. CMICOT shows closest MI of selected features to the reference
MIs obtained on a full dataset.
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