A Appendix

For notational convenience, let

Vo= Y meixa)

z:A?z:bf mod 2

denote a random variable representing the projected marginal likelihood, where the randomness is over the
choice of the matrices A%, b%, and

59 (x) = min Dicr. (a6 (2l%)|| Rlyx 5 [po (1))

denote the minimum KL-divergence within an approximating family of distributions Q and the true posterior
projected using A, bF.

Before proving Theorem 3.1 and Theorem 3.2, we first extend an important result from earlier work to our
setting.

A.1 Extension of Theorem 2 from [Hsu et al., 2016]

Lemma A.l. Forany A > 0, let T > L (log(2n/A)). Let A} € {0,1}F*" i Bernoulli(1) and b} €

{0,1}" o Bernoulli(}) for k € {0,1,...,n} andt € {1,...,T}. Let D denote the set of degenerate
(deterministic) probability distributions. Then there exists a positive constant o such that with probability at
least (1 — A)

po(x)/32 < z exp (Median ( — 0P (x) + log V¥ (x)))2k71 < 32ps(x) (8)
=0 te[T]

i.e., it is a 32-approximation to pg(X).

Proof. By definition,

EP=min Y aulebe)[logas(ab) —logp(x,2)] + log V().
z:Affz:b;f7 mod 2

For a degenerate distribution, ¢ € D, the entropy is zero and all its mass is at a single point. Hence,

5P (x)

k
max Y gs(z]x) - logpa(x,2) + log Y[ (x)
z:A;fz:b{c mod 2

=-1- max log po (x,2z) + log V" (x).

z:Afz:b’tC mod 2

Rearranging terms,

—6FP(x) + log Y/ (x) = max log po (x, ).

z:Affz:bic mod 2

Substituting the above expression into Eq. (@), we get

Zexp (Medicm ( max log po(x,2),- -, max log po (x, z))) 2kt

k=0 z:AIfz:be mod 2 Z:Al%z:bl% mod 2

= Z Median (exp ( max log po (x, z)) Joet, EeXP < max log po (x, z)>> okt

z:AIfzzb’f mod 2 z:z:A]%z:b’% mod 2

k=0
= Z Median max po(x,2), -, max po(x,2) 2kt
=0 z:A]fz:bllc mod 2 z:A’,}z:b’,} mod 2
The result then follows directly from Theorem 1 from [Ermon et al., 2013b]. O
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A.2 Proof of Theorem 3.1: Upper bound based on mean aggregation
From the non-negativity of KL divergence we have that for any ¢ € Q,

log V" (x) > > q0(2|x) [ log po (x, z) — log g4 (2)]

z:Ai“z:biC mod 2
> max ( > q0(z|x)[log po(x, z) — log %(Z)])
z:Affz:bic mod 2
Exponentiating both sides,
def
v zen(my( X w@kllemn @] ) ) Ll O
z:A’fz:bé"’ mod 2
Taking an expectation on both sides w.r.t AF pF
Eyp 1 [V ()] = E pp s 1 ()]
Using Lemma 3.1, we get:

Eak bk [t ()] < 27 pa(x)

A.3 Proof of Theorem 3.2: Upper bound based on median aggregation
From Markov’s inequality, since Y;*(x) is non-negative,

P [V (x) > BV (] <

Using Lemma 3.1,
1
E .

Since Y;*(x) > ¢ (x) from Eq. @), setting ¢ = 4 and k = k* we get

P [Y}k (x)2k > cpg(x)] <

* * 1
P (02 2 ape(x)] < 5 (10)
From Chernoff’s inequality, if for any non-negative € < 0.5,

P [’yf*(x)Zk* > 4pg(x)] < (1 - e) (11)
then,
P [4])9 (x) < Median (’yf* (%), 7 (x)) 2‘“*] < exp(—2¢>T) (12)

From Eq. (I0) and Eq. (TT)), e < 0.25. Hence, taking the complement of Eq. (I2)) and given a positive constant
o < 0.125 such that for any A > 0,if T > L log(2n/A) > Llog(1/A), then

P [4p9(x) > Median (’yf* (x),--- e (x)) 2’“*} >1-A.

A4 Proof of Theorem 3.2: Lower bound based on median aggregation

Since the conditions of Lemma@are satisfied, we know that Eq. (E[) holds with probability at least 1 — 4.
Also, since the terms in the sum are non-negative we have that the maximum element is at least 1/(n + 1) of the
sum. Hence,

1 1
. _ <k,D k . _skD k k=1 L .
max exp (Medzan ( 077 (x) +log Yi¥ (%), -+, =07 (x) + log Y7 (x))) 2577 > 32p9(x) ]
13)
Therefore, there exists k* (corresponding to the arg max in Eq. ) such that
Median (*5f*’D(X) +log Vi (%), , —05 P (x) + log V£ (X)) + (k" —1)log2 > —log 32 + log p(x) — log(n + 1).

Since D C Q, we also have
5 2(x) < 0P (x)).
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Thus,
Median (—5f*’g(x) +1log Vi (%), —(5§*’Q(x) +log Vi (x)) + (k* —1)log2 > —log 32 + log po(x) — log(n + 1).
From Eq. (3)), note that

log 7/ (x) = max > 44 (2|x) (log po(x,z) — log ¢4(z|x))

z:Afz:biC mod 2

= max Y. 4s(alx)(logpe(z|x) — log gs(2lx)) + log po(x)
z:A?z:bf mod 2

— —682(x) + log Y;* (x).
Plugging in we get,
Median (log A (x),---,log A (x)) + (k™ —1)log2 > —log 32 — log(n + 1) + log pe (%)
and also
- k* k* *
Median (log’yl (%), ,logvyr (X)) + k" log2 > —log 32 — log(n + 1) + log pe(x).
with probability at least 1 — A.
. * * * X
Median (’Vf (X)7 e 7’7’? (X)) Qk > %
Combining the lower and upper bounds, we get
4 S T () > Po(X)
pg(x) = ~Md (X) = 32(1’L+ 1)
with probability at least 1 — 2A by union bound by choosing a small enough value for a.

A.5 Proof of Theorem 3.1: Lower bound based on mean aggregation

We first prove a useful inequality relating to the mean and median of non-negative reals.
Lemma A.2. For a set of non-negative reals F = { f; L

¢

1 1

— P> = ) .
Y igzl fi> 2Meclzcm(F)

Proof. Without loss of generality, we assume for notational convenience that elements in F' are sorted by their
indices, i.e., fi < f2 -+ < fo. By definition of median, we have for all < € {|£/2], [£/2| + 1,...,¢}

fi > Median(F).
Adding all the above inequalities, we get

¢
Z fi> [g-‘ Median(F).
i=[¢/2]
Since all f; are non-negative,

‘
S iz ’é-‘ Median(F).
i=1
The median of non-negative reals is also non-negative, and hence,
¢
Zfi > gMedian(F)
i=1
finishing the proof. O
Substituting for F in the above lemma with {~}" (x)}7_,, we get
1 e g 1 .
7 2 () 2 S Median (4 (0, 9F ().
t=1

Now using the lower bound in Theorem 3.2, with probability at least 1 — 2A,

LS 2 > 200
T2 = 64(n+ 1)
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