
A Appendix

For notational convenience, let

Y kt (x) =
∑

z:Ak
t z=b

k
t mod 2

pθ(x, z)

denote a random variable representing the projected marginal likelihood, where the randomness is over the
choice of the matrices Akt , bkt , and

δk,Qt (x) = min
q∈Q

DKL
(
qφ(z|x)||RkAk

t ,b
k
t
[pθ(z|x)]

)
.

denote the minimum KL-divergence within an approximating family of distributionsQ and the true posterior
projected using Akt , bkt .

Before proving Theorem 3.1 and Theorem 3.2, we first extend an important result from earlier work to our
setting.

A.1 Extension of Theorem 2 from [Hsu et al., 2016]

Lemma A.1. For any ∆ > 0, let T ≥ 1
α

(log(2n/∆)). Let Akt ∈ {0, 1}k×n
iid∼ Bernoulli( 1

2
) and bkt ∈

{0, 1}k iid∼ Bernoulli( 1
2
) for k ∈ {0, 1, . . . , n} and t ∈ {1, . . . , T}. Let D denote the set of degenerate

(deterministic) probability distributions. Then there exists a positive constant α such that with probability at
least (1−∆)

pθ(x)/32 ≤
n∑
k=0

exp

(
Median
t∈[T ]

(
− δk,Dt (x) + log Y kt (x)

))
2k−1 ≤ 32pθ(x) (8)

i.e., it is a 32-approximation to pθ(x).

Proof. By definition,

δk,Dt (x) = min
q∈D

∑
z:Ak

t z=b
k
t mod 2

qφ(z|x)
[

log qφ(z|x)− log pθ(x, z)
]

+ log Y kt (x).

For a degenerate distribution, q ∈ D, the entropy is zero and all its mass is at a single point. Hence,

δk,Dt (x) = −max
q∈D

∑
z:Ak

t z=b
k
t mod 2

qφ(z|x) · log pθ(x, z) + log Y kt (x)

= −1 · max
z:Ak

t z=b
k
t mod 2

log pθ(x, z) + log Y kt (x).

Rearranging terms,

−δk,Dt (x) + log Y kt (x) = max
z:Ak

t z=b
k
t mod 2

log pθ(x, z).

Substituting the above expression into Eq. (8), we get

n∑
k=0

exp

(
Median

(
max

z:Ak
1z=b

k
1 mod 2

log pθ(x, z), · · · , max
z:Ak

T
z=bk

T
mod 2

log pθ(x, z)

))
2k−1

=

n∑
k=0

Median

(
exp

(
max

z:Ak
1z=b

k
1 mod 2

log pθ(x, z)

)
, · · · , exp

(
max

z:z:Ak
T
z=bk

T
mod 2

log pθ(x, z)

))
2k−1

=

n∑
k=0

Median

(
max

z:Ak
1z=b

k
1 mod 2

pθ(x, z), · · · , max
z:Ak

T
z=bk

T
mod 2

pθ(x, z)

)
2k−1.

The result then follows directly from Theorem 1 from [Ermon et al., 2013b].
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A.2 Proof of Theorem 3.1: Upper bound based on mean aggregation

From the non-negativity of KL divergence we have that for any q ∈ Q,

log Y kt (x) ≥
∑

z:Ak
t z=b

k
t mod 2

qφ(z|x)
[

log pθ(x, z)− log qφ(z)
]

≥ max
q∈Q

( ∑
z:Ak

t z=b
k
t mod 2

qφ(z|x)
[

log pθ(x, z)− log qφ(z)
])

Exponentiating both sides,

Y kt (x) ≥ exp

(
max
q∈Q

( ∑
z:Ak

t z=b
k
t mod 2

qφ(z|x)
[

log pθ(x, z)− log qφ(z)
])) def

= γkt (x). (9)

Taking an expectation on both sides w.r.t Akt , bkt ,

EAk
t ,b

k
t
[Y kt (x)] ≥ EAk

t ,b
k
t
[γkt (x)]

Using Lemma 3.1, we get:

EAk
t ,b

k
t
[γkt (x)] ≤ 2−kpθ(x)

A.3 Proof of Theorem 3.2: Upper bound based on median aggregation

From Markov’s inequality, since Y kt (x) is non-negative,

P
[
Y kt (x) ≥ cE[Y kt (x)]]

]
≤ 1

c
.

Using Lemma 3.1,

P
[
Y kt (x)2k ≥ cpθ(x)

]
≤ 1

c
.

Since Y kt (x) ≥ γkt (x) from Eq. (9), setting c = 4 and k = k? we get

P
[
γk

?

t (x)2k
?

≥ 4pθ(x)
]
≤ 1

4
. (10)

From Chernoff’s inequality, if for any non-negative ε ≤ 0.5,

P
[
γk

?

t (x)2k
?

≥ 4pθ(x)
]
≤
(

1

2
− ε
)

(11)

then,

P
[
4pθ(x) ≤Median

(
γk

?

1 (x), · · · , γk
?

T (x)
)

2k
?
]
≤ exp(−2ε2T ) (12)

From Eq. (10) and Eq. (11), ε ≤ 0.25. Hence, taking the complement of Eq. (12) and given a positive constant
α ≤ 0.125 such that for any ∆ > 0, if T ≥ 1

α
log(2n/∆) ≥ 1

α
log(1/∆), then

P
[
4pθ(x) ≥Median

(
γk

?

1 (x), · · · , γk
?

T (x)
)

2k
?
]
≥ 1−∆.

A.4 Proof of Theorem 3.2: Lower bound based on median aggregation

Since the conditions of Lemma A.1 are satisfied, we know that Eq. (8) holds with probability at least 1 − δ.
Also, since the terms in the sum are non-negative we have that the maximum element is at least 1/(n+ 1) of the
sum. Hence,

max
k

exp
(
Median

(
−δk,D1 (x) + log Y k1 (x), · · · ,−δk,DT (x) + log Y kT (x)

))
2k−1 ≥ 1

32
pθ(x)

1

n+ 1
.

(13)

Therefore, there exists k? (corresponding to the arg max in Eq. (13)) such that

Median
(
−δk

?,D
1 (x) + log Y k

?

1 (x), · · · ,−δk
?,D
T (x) + log Y k

?

T (x)
)

+ (k? − 1) log 2 ≥ − log 32 + log pθ(x)− log(n+ 1).

Since D ⊆ Q, we also have
δk

?,Q
t (x) ≤ δk

?,D
t (x)).
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Thus,

Median
(
−δk

?,Q
1 (x) + log Y k

?

1 (x), · · · ,−δk
?,Q
T (x) + log Y k

?

T (x)
)

+ (k? − 1) log 2 ≥ − log 32 + log pθ(x)− log(n+ 1).

From Eq. (5), note that

log γkt (x) = max
q∈Q

∑
z:Ak

t z=b
k
t mod 2

qφ(z|x)
(

log pθ(x, z)− log qφ(z|x)
)

= max
q∈Q

∑
z:Ak

t z=b
k
t mod 2

qφ(z|x)
(

log pθ(z|x)− log qφ(z|x)
)

+ log pθ(x)

= −δk,Qt (x) + log Y kt (x).

Plugging in we get,

Median
(

log γk
?

1 (x), · · · , log γk
?

T (x)
)

+ (k? − 1) log 2 ≥ − log 32− log(n+ 1) + log pθ(x)

and also

Median
(

log γk
?

1 (x), · · · , log γk
?

T (x)
)

+ k? log 2 ≥ − log 32− log(n+ 1) + log pθ(x).

with probability at least 1−∆.

Median
(
γk

?

1 (x), · · · , γk
?

T (x)
)

2k
?

≥ pθ(x)

32(n+ 1)
.

Combining the lower and upper bounds, we get

4pθ(x) ≥ Lk
?,T
Md (x) ≥ pθ(x)

32(n+ 1)

with probability at least 1− 2∆ by union bound by choosing a small enough value for α.

A.5 Proof of Theorem 3.1: Lower bound based on mean aggregation

We first prove a useful inequality relating to the mean and median of non-negative reals.
Lemma A.2. For a set of non-negative reals F = {fi}`i=1,

1

`

∑̀
i=1

fi ≥
1

2
Median(F ).

Proof. Without loss of generality, we assume for notational convenience that elements in F are sorted by their
indices, i.e., f1 ≤ f2 · · · ≤ f`. By definition of median, we have for all i ∈ {b`/2c, b`/2c+ 1, . . . , `}

fi ≥Median(F ).

Adding all the above inequalities, we get ∑̀
i=b`/2c

fi ≥
⌈
`

2

⌉
Median(F ).

Since all fi are non-negative, ∑̀
i=1

fi ≥
⌈
`

2

⌉
Median(F ).

The median of non-negative reals is also non-negative, and hence,∑̀
i=1

fi ≥
`

2
Median(F )

finishing the proof.

Substituting for F in the above lemma with {γk
?

t (x)}Tt=1, we get

1

T

T∑
t=1

γk
?

t (x) ≥ 1

2
Median

(
γk

?

1 (x), · · · , γk
?

T (x)
)
.

Now using the lower bound in Theorem 3.2, with probability at least 1− 2∆,

1

T

T∑
t=1

γk
?

t (x) · 2k
?

≥ pθ(x)

64(n+ 1)
.
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