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Abstract

We consider the problem of optimization from samples of monotone submodular
functions with bounded curvature. In numerous applications, the function opti-
mized is not known a priori, but instead learned from data. What are the guarantees
we have when optimizing functions from sampled data?
In this paper we show that for any monotone submodular function with curvature
c there is a (1 − c)/(1 + c − c2) approximation algorithm for maximization
under cardinality constraints when polynomially-many samples are drawn from the
uniform distribution over feasible sets. Moreover, we show that this algorithm is
optimal. That is, for any c < 1, there exists a submodular function with curvature
c for which no algorithm can achieve a better approximation. The curvature
assumption is crucial as for general monotone submodular functions no algorithm
can obtain a constant-factor approximation for maximization under a cardinality
constraint when observing polynomially-many samples drawn from any distribution
over feasible sets, even when the function is statistically learnable.

1 Introduction

Traditionally, machine learning is concerned with predictions: assuming data is generated from some
model, the goal is to predict the behavior of the model on data similar to that observed. In many cases
however, we harness machine learning to make decisions: given observations from a model the goal
is to find its optimum, rather than predict its behavior. Some examples include:

• Ranking in information retrieval: In ranking the goal is to select k ∈ N documents that
are most relevant for a given query. The underlying model is a function which maps a set
of documents and a given query to its relevance score. Typically we do not to have access
to the scoring function, and thus learn it from data. In the learning to rank framework, for
example, the input consists of observations of document-query pairs and their relevance
score. The goal is to construct a scoring function of query-document pairs so that given a
query we can decide on the k most relevant documents.

• Optimal tagging: The problem of optimal tagging consists of picking k tags for some new
content to maximize incoming traffic. The model is a function which captures the way in
which users navigate through content given their tags. Since the algorithm designer cannot
know the behavior of every online user, the model is learned from observations on user
navigation in order to make a decision on which k tags maximize incoming traffic.

• Influence in networks: In influence maximization the goal is to identify a subset of individ-
uals who can spread information in a manner that generates a large cascade. The underlying

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



assumption is that there is a model of influence that governs the way in which individuals
forward information from one to another. Since the model of influence is not known, it is
learned from data. The observed data is pairs of a subset of nodes who initiated a cascade
and the total number of individuals influenced. The decision is the optimal set of influencers.

In the interest of maintaining theoretical guarantees on the decisions, we often assume that the
generative model has some structure which is amenable to optimization. When the decision variables
are discrete quantities a natural structure for the model is submodularity. A function f : 2N → R
defined over a ground set N = {e1, . . . , en} of elements is submodular if it exhibits a diminishing
marginal returns property, i.e., fS(e) ≥ fT (e) for all sets S ⊆ T ⊆ N and element e 6∈ T where
fS(e) = f(S ∪ e)− f(S) is the marginal contribution of element e to set S ⊆ N . This diminishing
returns property encapsulates numerous applications in machine learning and data mining and is
particularly appealing due to its theoretical guarantees on optimization (see related work below).

The guarantees on optimization of submodular functions apply to the case in which the algorithm
designer has access to some succinct description of the function, or alternatively some idealized value
oracle which allows querying for function values of any given set. In numerous settings such as in
the above examples, we do not have access to the function or its value oracle, but rather learn the
function from observed data. If the function learned from data is submodular we can optimize it
and obtain a solution with provable guarantees on the learned model. But how do the guarantees
of this solution on the learned model relate to its guarantees on the generative model? If we obtain
an approximate optimum on the learned model which turns out to be far from the optimum of the
submodular function we aim to optimize, the provable guarantees at hand do not apply.

Optimization from samples. For concreteness, suppose that the generative model is a monotone
submodular function f : 2N → R and we wish to find a solution to maxS:|S|≤k f(S). To formalize
the concept of observations in standard learning-theoretic terms, we can assume that we observe sam-
ples of sets drawn from some distribution D and their function values, i.e. {(Si, f(Si))}mi=1. In terms
of learnability, under some assumptions about the distribution and the function, submodular func-
tions are statistically learnable (see discussion about PMAC learnability). In terms of approximation
guarantees for optimization, a simple greedy algorithm obtains a 1− 1/e-approximation.

Recent work shows that optimization from samples is generally impossible [4], even for models that
are learnable and optimizable. In particular, even for maximizing coverage functions, which are a
special case of submodular functions and widely used in practice, no algorithm can obtain a constant
factor approximation using fewer than exponentially many samples of feasible solutions drawn from
any distribution. In practice however, the functions we aim to optimize may be better behaved.

An important property of submodular functions that has been heavily explored recently is that of
curvature. Informally, the curvature is a measure of how far the function is to being modular. A
function f is modular if f(S) =

∑
e∈S f(e), and has curvature c ∈ [0, 1] if fS(e) ≥ (1− c)f(e) for

any S ⊆ N . Curvature plays an important role since the hard instances of submodular optimization
often occur only when the curvature is unbounded, i.e., c close to 1. The hardness results for
optimization from samples are no different, and apply when the curvature is unbounded.

What are the guarantees for optimization from samples of submodular functions
with bounded curvature?

In this paper we study the power of optimization from samples when the curvature is bounded. Our
main result shows that for any monotone submodular function with curvature c there is an algorithm
which observes polynomially-many samples from the uniform distribution over feasible sets and
obtains an approximation ratio of (1− c)/(1+ c− c2)− o(1). Furthermore, we show that this bound
is tight. For any c < 1, there exist monotone submodular functions with curvature c for which no
algorithm can obtain an approximation better than (1− c)/(1 + c− c2) + o(1) given polynomially
many samples. We also perform experiments on synthetic hard instances of monotone submodular
functions that convey some interpretation of our results.

For the case of modular functions a 1− o(1) algorithm can be obtained and as a consequence leads
to a (1− c)2 algorithm for submodular functions with bounded curvature [4]. The goal of this work
is to exploit the curvature property to obtain the optimal algorithm for optimization from samples.
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A high-level overview of the techniques. The algorithm estimates the expected marginal contri-
bution of each element to a random set. It then returns the (approximately) best set between the set of
elements with the highest estimates and a random set. The curvature property is used to bound the
differences between the marginal contribution of each element to: (1) a random set, (2) the set of
elements with highest (estimated) marginal contributions to a random set, and (3) the optimal set. A
key observation in the analysis is that if the difference between (1) and (3) is large, then a random set
has large value (in expectation).

To obtain our matching inapproximability result, we construct an instance where, after viewing
polynomially many samples, the elements of the optimal set cannot be distinguished from a much
larger set of elements that have high marginal contribution to a random set, but low marginal
contribution when combined with each other. The main challenge is constructing the optimal
elements such that they have lower marginal contribution to a random set than to the other optimal
elements. This requires carefully defining the way different types of elements interact with each other,
while maintaining the global properties of monotonicity, submodularity, and bounded curvature.

1.1 Related work

Submodular maximization. In the traditional value oracle model, an algorithm may adaptively
query polynomially many sets Si and obtain via a black-box their values f(Si). It is well known
that in this model, the greedy algorithm obtains a 1 − 1/e approximation for a wide range of
constraints including cardinality constraints [23], and that no algorithm can do better [6]. Submodular
optimization is an essential tool for problems in machine learning and data mining such as sensor
placement [20, 12], information retrieval [28, 14], optimal tagging [24], influence maximization
[19, 13], information summarization [21, 22], and vision [17, 18].

Learning. A recent line of work focuses on learning submodular functions from samples [3, 8, 2,
10, 11, 1, 9]. The standard model to learn submodular functions is α-PMAC learnability introduced
by Balcan and Harvey [3] which generalizes the well known PAC learnability framework from
Valiant [26]. Informally, a function is PAC or PMAC learnable if given polynomially samples, it is
possible to construct a function that is likely to mimic the function for which the samples are coming
form. Monotone submodular functions are α-PMAC learnable from samples coming from a product
distribution for some constant α and under some assumptions [3].

Curvature. In the value oracle model, the greedy algorithm is a (1− e−c)/c approximation algo-
rithm for cardinality constraints [5]. Recently, Sviridenko et al. [25] improved this approximation to
1− c/e with variants of the continuous greedy and local search algorithms. Submodular optimization
and curvature have also been studied for more general constraints [27, 15] and submodular mini-
mization [16]. The curvature assumption has applications in problems such as maximum entropy
sampling [25], column-subset selection [25], and submodular welfare [27].

2 Optimization from samples

We precisely define the framework of optimization from samples. A sample (S, f(S)) of function
f(·) is a set and its value. As with the PMAC-learning framework, the samples (Si, f(Si)) are such
that the sets Si are drawn i.i.d. from a distribution D. As with the standard optimization framework,
the goal is to return a set S satisfying some constraintM⊆ 2N such that f(S) is an α-approximation
to the optimal solution f(S?) with S? ∈M.

A class of functions F is α-optimizable from samples under constraintM and over distribution D
if for all functions f(·) ∈ F there exists an algorithm which, given polynomially many samples
(Si, f(Si)), returns with high probability over the samples a set S ∈M such that

f(S) ≥ α · max
T∈M

f(T ).

In the unconstrained case, a random set achieves a 1/4-approximation for general (not necessarily
monotone) submodular functions [7]. We focus on the constrained case and consider a simple
cardinality constraintM, i.e.,M = {S : |S| ≤ k}. To avoid trivialities in the framework, it is
important to fix a distribution D. We consider the distribution D to be the uniform distribution over
all feasible sets, i.e., all sets of size at most k.
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We are interested in functions that are both learnable and optimizable. It is already known that there
exists classes of functions, such as coverage and submodular, that are both learnable and optimizable
but not optimizable from samples forM and D defined above. This paper studies optimization from
samples under some additional assumption: curvature. We assume that the curvature c of the function
is known to the algorithm designer. In the appendix, we show an impossibility result for learning the
curvature of a function from samples.

3 An optimal algorithm

We design a (1−c)/(1+c−c2)−o(1)-optimization from samples algorithm for monotone submodular
functions with curvature c. In the next section, we show that this approximation ratio is tight. The
main contribution is improving over the (1− c)2 − o(1) approximation algorithm from [4] to obtain
a tight bound on the approximation.

The algorithm. Algorithm 1 first estimates the expected marginal contribution of each element ei
to a uniformly random set of size k − 1, which we denote by R for the remaining of this section.
These expected marginal contributions ER[fR(ei)] are estimated with v̂i. The estimates v̂i are the
differences between the average value avg(Sk,i) := (

∑
T∈Sk,i

f(T ))/|Sk,i| of the collection Sk,i of
samples of size k containing ei and the average value of the collection Sk−1,i−1 of samples of size
k − 1 not containing ei. We then wish to return the best set between the random set R and the set S
consisting of the k elements with the largest estimates v̂i. Since we do not know the value of S, we
lower bound it with v̂S using the curvature property. We estimate the expected value ER[f(R)] of R
with v̂R, which is the average value of the collection Sk−1 of all samples of size k − 1. Finally, we
compare the values of S and R using v̂S and v̂R to return the best of these two sets.

Algorithm 1 A tight (1− c)/(1+ c− c2)− o(1)-optimization from samples algorithm for monotone
submodular functions with curvature c
Input: S = {Si : (Si, f(Si)) is a sample}

1: v̂i ← avg(Sk,i)− avg(Sk−1,i−1)
2: S ← argmax|T |=k

∑
i∈T v̂i

3: v̂S ← (1− c)
∑
ei∈S v̂i a lower bound on the value of f(S)

4: v̂R ← avg(Sk−1) an estimate of the value of a random set R
5: if v̂S ≥ v̂R then
6: return S
7: else
8: return R
9: end if

The analysis. Without loss of generality, let S = {e1, . . . , ek} be the set defined in Line 2 of the
algorithm and define Si to be the first i elements in S, i.e., Si := {e1, . . . , ei}. Similarly, for the
optimal solution S?, we have S? = {e?1, . . . , e?k} and S?i := {e?1, . . . , e?i }. We abuse notation and
denote by f(R) and fR(e) the expected values ER[f(R)] and ER[fR(e)] where the randomization is
over the random set R of size k − 1.

At a high level, the curvature property is used to bound the loss from f(S) to
∑
i≤k fR(ei) and

from
∑
i≤k fR(e

?
i ) to f(S?). By the algorithm,

∑
i≤k fR(ei) is greater than

∑
i≤k fR(e

?
i ). When

bounding the loss from
∑
i≤k fR(e

?
i ) to f(S?), a key observation is that if this loss is large, then it

must be the case that R has a high expected value. This observation is formalized in our analysis
by bounding this loss in terms of f(R) and motivates Algorithm 1 returning the best of R and S.
Lemma 1 is the main part of the analysis and gives an approximation for S. The approximation
guarantee for Algorithm 1 (formalized as Theorem 1) follows by finding the worst-case ratios of
f(R) and f(S).
Lemma 1. Let S be the set defined in Algorithm 1 and f(·) be a monotone submodular function with
curvature c, then

f(S) ≥ (1− o(1))v̂S ≥
(
(1− c)

(
1− c · f(R)

f(S?)

)
− o(1)

)
f(S?).

4



Proof. First, observe that

f(S) =
∑
i≤k

fSi−1
(ei) ≥ (1− c)

∑
i≤k

f(ei) ≥ (1− c)
∑
i≤k

fR(ei)

where the first inequality is by curvature and the second is by monotonicity. We now claim that w.h.p.
and with a sufficiently large polynomial number of samples the estimates of the marginal contribution
of an element are precise,

fR(ei) +
f(S?)

n2
≥ v̂i ≥ fR(ei)−

f(S?)

n2

and defer the proof to the appendix. Thus f(S) ≥ (1 − c)
∑
i≤k v̂i − f(S?)/n ≥ v̂S − f(S?)/n.

Next, by the definition of S in the algorithm, we get

v̂S
1− c

=
∑
i≤k

v̂i ≥
∑
i≤k

v̂?i ≥
∑
i≤k

fR(e
?
i )−

f(S?)

n
.

It is possible to obtain a 1− c loss between
∑
i≤k fR(e

?
i ) and f(S?) with a similar argument as in

the first part. The key idea to improve this loss is to use the curvature property on the elements in R
instead of on the elements e?i ∈ S?. By curvature, we have that fS?(R) ≥ (1 − c)f(R). We now
wish to relate fS?(R) and

∑
i≤k fR(e

?
i ). Note that f(S?)+fS?(R) = f(R∪S?) = f(R)+fR(S

?)

by the definition of marginal contribution and
∑
i≤k fR(e

?
i ) ≥ fR(S

?) by submodularity. We get∑
i≤k fR(e

?
i ) ≥ f(S?) + fS?(R)− f(R) by combining the previous equation and inequality. By

the previous curvature observation, we conclude that∑
i≤k

fR(e
?
i ) ≥ f(S?) + (1− c)f(R)− f(R) =

(
1− c · f(R)

f(S?)

)
f(S?).

Combining Lemma 1 and the fact that we obtain value at least max{f(R), (1 − c)
∑k
i=1 v̂i}, we

obtain the main result of this section.
Theorem 1. Let f(·) be a monotone submodular function with curvature c. Then Algorithm 1 is a
(1− c)/(1 + c− c2)− o(1) optimization from samples algorithm.

Proof. In the appendix, we show that the estimate v̂R of f(R) is precise, the estimate is such that
f(R) + f(S?)/n2 ≥ v̂R ≥ f(R) − f(S?)/n2. In addition, by the first inequality in Lemma 1,
f(S) ≥ (1− o(1))v̂S . So by the algorithm and the second inequality in Lemma 1, the approximation
obtained by the set returned is at least

(1− o(1)) ·max

{
f(R)

f(S?)
,
v̂S

f(S?)

}
≥ (1− o(1)) ·max

{
f(R)

f(S?)
, (1− c)

(
1− c · f(R)

f(S?)

)}
.

Let x := f(R)/f(S∗), the best of f(R)/f(S?) and (1−c) (1− c · f(R)/f(S?))−o(1) is minimized
when x = (1− c)(1− cx), or when x = (1− c)/(1 + c− c2). Thus, the approximation obtained is
at least (1− c)/(1 + c− c2)− o(1).

4 Hardness

We show that the approximation obtained by Algorithm 1 is tight. For every c < 1, there exists
monotone submodular functions that cannot be (1− c)/(1 + c− c2)-optimized from samples. This
impossibility result is information theoretic, we show that with high probability the samples do not
contain the right information to obtain a better approximation.

Technical overview. To obtain a tight bound, all the losses from Algorithm 1 must be tight. We
need to obtain a 1− cf(R)/f(S?) gap between the contribution of optimal elements to a random
set
∑
i≤k fR(e

?
i ) and the value f(S?). This gap implies that as a set grows with additional random

elements, the contribution of optimal elements must decrease. The main difficulty is in obtaining this
decrease while maintaining random sets of small value, submodularity, and the curvature.
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g(s,0
)

b(s)

1/(1+c-c2)loss:

1-closs:
g(s,s P ≥

 k – 2log n)

Figure 1: The symmetric functions g(sG, sP ) and b(sB).

The ground set of elements is partitioned into three parts: the good elements G, the bad elements B,
and the poor elements P . In relation to the analysis of the algorithm, the optimal solution S? is G,
the set S consists mostly of elements in B, and a random set consists mostly of elements in P . The
values of the good, bad, and poor elements are given by the good, bad, and poor functions g(·), b(·),
and p(·) to be later defined and the functions f(·) we construct for the impossibility result are:

fG(S) := g(S ∩G,S ∩ P ) + b(S ∩B) + p(S ∩ P ).
The value of the good function is also dependent on the poor elements to obtain the decrease
in marginal contribution of good elements mentioned above. The proof of the hardness result
(Theorem 2) starts with concentration bounds in Lemma 2 to show that w.h.p. every sample contains
a small number of good and bad elements and a large number of poor elements. Using these
concentration bounds, Lemma 3 gives two conditions on the functions g(·), b(·), and p(·) to obtain
the desired result. Informally, the first condition is that good and bad elements cannot be distinguished
while the second is that G has larger value than a set with a small number of good elements. We
then construct these functions and show that they satisfy the two conditions in Lemma 4. Finally,
Lemma 5 shows that f(·) is monotone submodular with curvature c.
Theorem 2. For every c < 1, there exists a hypothesis class of monotone submodular functions with
curvature c that is not (1− c)/(1 + c− c2) + o(1) optimizable from samples.

The remaining of this section is devoted to the proof of Theorem 2. Let ε > 0 be some small constant.
The set of poor elements P is fixed and has size n − n2/3−ε. The good elements G are then a
uniformly random subset of PC of size k := n1/3, the remaining elements B are the bad elements.
The following concentration bound is used to show that elements in G and B cannot be distinguished.
The proof is deferred to the appendix.
Lemma 2. All samples S are such that |S ∩ (G ∪B)| ≤ log n and |S ∩ P | ≥ k − 2 log n w.h.p..

We now give two conditions on the good, bad, and poor functions to obtain an impossibility result
based on the above concentration bounds. The first condition ensures that good and bad elements
cannot be distinguished. The second condition quantifies the gap between the value of k good
elements and a set with a small number of good elements. We denote by sG the number of good
elements in a set S, i.e., sG := |S ∩G| and define similarly sB and sP . The good, bad, and, poor
functions are symmetric, meaning they each have equal value over sets of equal size, and we abuse
the notation with g(sG, sP ) = g(S ∩ G,S ∩ P ) and similarly for b(sB) and p(sP ). Figure 1 is a
simplified illustration of these two conditions.
Lemma 3. Consider sets S and S′, and assume g(·), b(·), and p(·) are such that

1. g(sG, sP ) + b(sB) = g(s′G, s
′
P ) + b(s′B) if

• sG + sB = s′G + s′B ≤ log n and sP , s′P ≥ k − 2 log n,

2. g(sG, sP ) + b(sB) + p(sP ) < α · g(k, 0) if

• sG ≤ nε and sG + sB + sP ≤ k

then the hypothesis class of functions F = {fG(·) : G ⊆ PC , |G| = k} is not α-optimizable from
samples.
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Proof. By Lemma 2, for any two samples S and S′, sG + sB ≤ log n, s′G + s′B ≤ log n and
sP , s

′
P ≥ k − 2 log n with high probability. If sG + sB = s′G + s′B , then by the first assumption,

g(sG, sP ) + b(sB) = g(s′G, s
′
P ) + b(s′B). Recall that G is a uniformly random subset of the fixed

set PC and that B consists of the remaining elements in PC . Thus, w.h.p., the value fG(S) of all
samples S is independent of which random subset G is. In other words, no algorithm can distinguish
good elements from bad elements with polynomially many samples. Let T be the set returned by the
algorithm. Since any decision of the algorithm is independent from G, the expected number of good
elements in T is tG ≤ k · |G|/|G ∪B| = k2/n2/3−ε = nε. Thus,

EG
[
fG(T )

]
= g(tG, tP ) + b(tB) + p(tP ) ≤ g(nε, tP ) + b(tB) + p(tP ) < α · g(k, 0)

where the first inequality is by the submodularity and monotonicity properties of the good elements
G for fG(·) and the second inequality is by the second condition of the lemma. By expectations, the
set S returned by the algorithm is therefore not an α-approximation to the solution G for at least one
function fG(·) ∈ F and F is not α-optimizable from samples.

Constructing g(·), b(·), p(·). The goal is now to construct g(·), b(·) and p(·) that satisfy the above
conditions. We start with the good and bad function:

g(sG, sP ) =

{
sG ·

(
1−

(
1− 1

1+c−c2

)
· sP · 1

k−2 logn

)
if sp ≤ k − 2 log n

sG · 1
1+c−c2 otherwise

b(sB) =

{
sB · 1

1+c−c2 if sB ≤ log n

(sB − log n) · 1−c
1+c−c2 + log n · 1

1+c−c2 otherwise

These functions exactly exhibit the losses from the analysis of the algorithm in the case where
the algorithm returns bad elements. As illustrated in Figure 1, there is a 1 − c loss between the
contribution 1/(1+ c− c2) of a bad element to a random set and its contribution (1− c)/(1+ c− c2)
to a set with at least log n bad elements. There is also a 1/(1 + c− c2) loss between the contribution
1 of a good element to a set with no poor elements and its contribution 1/(1 + c− c2) to a random
set. We add a function p(sP ) to fG(·) so that it is monotone increasing when adding poor elements.

p(sP ) =

{
sp · 1−c

1+c−c2 ·
k

k−2 logn if sP ≤ k − 2 log n(
(sp − (k − 2 log n)) (1−c)2

1+c−c2 + (k − 2 log n) 1−c
1+c−c2

)
k

k−2 logn otherwise

The next two lemmas show that theses function satisfy Lemma 3 and that fG(·) is monotone
submodular with curvature c, which concludes the proof of Theorem 2.
Lemma 4. The functions g(·), b(·), and p(·) defined above satisfy the conditions of Lemma 3 with
α = (1− c)/(1 + c− c2) + o(1).

Proof. We start with the first condition. Assume sG + sB = s′G + s′B ≤ log n and sP , s′P ≥
k − 2 log n. Then,

g(sG, sP ) + b(sB) = (sG + sB) ·
1

1 + c− c2
= (s′G + s′B) ·

1

1 + c− c2
= g(s′G, s

′
P ) + b(s′B).

For the second condition, assume sG ≤ nε and sG + sB + sP ≤ k. It is without loss to assume that
sB + sP ≥ k − nε, then

fG(S) ≤ (1 + o(1)) · (sB + sP ) ·
1− c

1 + c− c2
≤ k ·

(
1− c

1 + c− c2
+ o(1)

)
.

We conclude by noting that g(k, 0) = k.

Lemma 5. The function fG(·) is a monotone submodular function with curvature c.

Proof. We show that the marginal contributions are positive (monotonicity), decreasing (submodular-
ity), but not by more than a 1− c factor (curvature), i.e., that fS(e) ≥ fT (e) ≥ (1− c)fS(e) ≥ 0 for
all S ⊆ T and e 6∈ T . Let e be a good element, then

fGS (e) =

{(
1−

(
1− 1

1+c−c2

)
· sP · 1

k−2 logn

)
if sp ≤ k − 2 log n

1
1+c−c2 otherwise.
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Since sP ≤ tP for S ⊆ T , we obtain fS(e) ≥ fT (e) ≥ 0. It is also easy to see that we get
fT (e) ≥ 1

1+c−c2 ≥ (1− c) ≥ (1− c)fS(e). For bad elements,

fGS (e) =

{
1

1+c−c2 if sB ≤ log n
1−c

1+c−c2 otherwise.

Thus, fS(e) ≥ fT (e) ≥ (1− c)fS(e) ≥ 0 for all S ⊆ T and e 6∈ T . Finally, for poor elements,

fGS (e) =

−
(
1− 1

1+c−c2

)
· sG · 1

k−2 logn + 1−c
1+c−c2 ·

k
k−2 logn if sP ≤ k − 2 log n

(1−c)2
1+c−c2

k
k−2 logn otherwise.

Since sG ≤ k,
1− c

1 + c− c2
· k

k − 2 log n
≥ fGS (e) ≥ (1− c)2

1 + c− c2
k

k − 2 log n
.

Consider S ⊆ T , then sG ≤ tG, and fS(e) ≥ fT (e) ≥ (1− c)fS(e) ≥ 0.

5 Experiments

Figure 2: The objective f(·) as a function of the
cardinality constraint k.

We perform simulations on simple syn-
thetic functions. These experiments are
meant to complement the theoretical anal-
ysis by conveying some interpretations of
the bounds obtained. The synthetic func-
tions are a simplification of the construc-
tion for the impossibility result. The motiva-
tion for these functions is to obtain hard in-
stances that are challenging for the algorithm.
More precisely, the function considered is

f(S) =

{
|S ∩ (G ∪B)| if |S ∩B| ≤ 10

|S ∩G|+ |S ∩B| · (1− c)− 10c

otherwise, whereG andB are fixed sets of size
102 and 103 respectively. The ground set N
contains 105 elements. It is easy to verify that
f(·) has curvature c. This function is hard to
optimize since the elements inG andB cannot
be distinguished from samples.

Figure 3: The approximation as a function of the
curvature 1− c when k = 100.

We consider several benchmarks. The first is
the value obtained by the learn then optimize
approach where we first learn the function and
then optimize the learned function. Equiva-
lently, this is a random set of size k, since
the learned function is a constant with the algo-
rithm from [3]. We also compare our algorithm
to the value of the best sample observed. The
solution returned by the greedy algorithm is an
upper bound and is a solution obtainable only
in the full information setting. The results are
summarized in Figure 2 and 3. In Figure 2, the
value of greedy, best sample, and random set
do not change for different curvatures c since
w.h.p. they pick at most 10 elements from
B. For curvature c = 0, when the function
is modular, our algorithm performs as well as
the greedy algorithm, which is optimal. As the
curvature increases, the solution obtained by our algorithm worsens, but still significantly outperforms
the best sample and a random set. The power of our algorithm is that it is capable to distinguish
elements in G ∪B from the other elements.
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Appendix

We restate the statement of the missing results for convenience.

A Missing Proof from Section 3

Claim. Let f be a monotone submodular function. Then, with a sufficiently large polynomial number
of samples, the estimations v̂i and v̂R are f(S?)/n2-close to fR(ei) and f(R) with high probability,
i.e.,

fR(ei) +
f(S?)

n2
≥ v̂i ≥ fR(ei)−

f(S?)

n2
,

and

f(R) +
f(S?)

n2
≥ v̂R ≥ f(R)−

f(S?)

n2
.

Proof. We assume that k ≤ n/2 (otherwise, a random subset of size k is a 1/2-approximation). The
size of a sample which is the most likely is k, so the probability that a sample is of size k is at least
2/n. Since

(
n
k−1
)
≥
(
n
k

)
/n, the probability that a sample is of size k − 1 is at least 2/n2. A given

element i has probability at least 1/n of being in a sample and probability at least 1/2 of not being
in a sample. Therefore, to observe at least n5 samples of size k which contain i and at least n5
samples of size k − 1 which do not contain i, n8 samples are sufficient with high probability. Since
f(S) ≤ f(S?) for all samples S, by Hoeffding’s inequality,

Pr
(∣∣avg(Sk,i)− ES : |S|=k,i∈S [f(S)]

∣∣ ≥ f(S?)

2n2

)
≤ 2e−2n

5(f(S?)/2n2)2/f(S?)2 ≤ 2e−n/2.

similarly,

Pr
(∣∣avg(Sk−1,i−1)− ES : |S|=k−1,i6∈S [f(S)]

∣∣ ≥ f(S?)

2n2

)
≤ 2e−n/2

and

Pr
(∣∣avg(Sk−1)− ES : |S|=k−1[f(S)]

∣∣ ≥ f(S?)

2n2

)
≤ 2e−n/2.

Since v̂i = avg(Sk,i)− avg(Sk−1,i−1), fR(ei) = ES : |S|=k,i∈S [f(S)]− ES : |S|=k−1,i6∈S [f(S)],
v̂R = avg(Sk−1), and f(R) = ES : |S|=k−1[f(S)], the claim holds with high probability.

B Missing Proof from Section 4

Lemma. With high probability, all samples S are such that

• |S ∩ (G ∪B)| ≤ log n, and

• |S ∩ P | ≥ k − 2 log n.

Proof. We start by showing the first part. Consider a subset L of G ∪B of size log n. We first bound
the probability that L is a subset of a sample S,

Pr(L ⊆ S) ≤
∏
e∈L

Pr(e ∈ S) ≤
∏
e∈L

k

n
=

(
k

n

)logn

.

We then bound the probability that |S ∩ (G ∪B)| > log n with a union bound over the events that a
set L is a subset of S, for all subsets L of T of size log n:

Pr(|S ∩ (G ∪B)| > log n) ≤
∑

L⊆G∪B : |L|=logn

Pr(L ⊆ S)

≤
(
|G ∪B|
log n

)
·
(
k

n

)logn

≤
(
k · |G ∪B|

n

)logn

≤ n−ε logn.
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We now show that a sample is of size at least k − log n w.h.p., which combined with the first part of
the lemma, implies the second part. We lower bound the ratio of the number of sets of size k to the
number of sets of size at most k − log n:(

n
k

)∑k−logn
i=0

(
n
i

) ≥ (
n
k

)
k ·
(

n
k−logn

)
=

1

k

logn−1∏
i=0

(
n
k−i
)(

n
k−i−1

)
=

1

k

logn−1∏
i=0

n− k + i− 1

k − i

≥ 1

k

(n
k

)logn
(1− o(1))

C Impossibility result for learning curvature

Claim. There exists two functions f0(·) and f1(·) that have curvature 0 and 1 respectively and that
cannot be distinguished from samples.

Proof. Let G be a set of size k = n1/3. Then let

f0(S) = |G ∩ S| and f1(S) = min(|G ∩ S|, log n).

By Lemma 2, all samples contain at most log n elements form G with high probability. Thus
f1(S) = |G ∩ S| = f0(S) for all samples S with high probability and these functions are not
distinguishable from samples. It is easy to verify that these functions have curvature 0 and 1.
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