
A Non-generative Framework and Convex
Relaxations for Unsupervised Learning

Elad Hazan
Princeton University

35 Olden Street 08540
ehazan@cs.princeton.edu.

Tengyu Ma
Princeton University

35 Olden Street, NJ 08540
tengyu@cs.princeton.edu.

Abstract

We give a novel formal theoretical framework for unsupervised learning with two
distinctive characteristics. First, it does not assume any generative model and
based on a worst-case performance metric. Second, it is comparative, namely
performance is measured with respect to a given hypothesis class. This allows
to avoid known computational hardness results and improper algorithms based
on convex relaxations. We show how several families of unsupervised learning
models, which were previously only analyzed under probabilistic assumptions and
are otherwise provably intractable, can be efficiently learned in our framework by
convex optimization.

1 Introduction

Unsupervised learning is the task of learning structure from unlabelled examples. Informally, the
main goal of unsupervised learning is to extract structure from the data in a way that will enable
efficient learning from future labelled examples for potentially numerous independent tasks.

It is useful to recall the Probably Approximately Correct (PAC) learning theory for supervised learn-
ing [28], based on Vapnik’s statistical learning theory [29]. In PAC learning, the learning can access
labelled examples from an unknown distribution. On the basis of these examples, the learner con-
structs a hypothesis that generalizes to unseen data. A concept is said to be learnable with respect to
a hypothesis class if there exists an (efficient) algorithm that outputs a generalizing hypothesis with
high probability after observing polynomially many examples in terms of the input representation.

The great achievements of PAC learning that made it successful are its generality and algorithmic
applicability: PAC learning does not restrict the input domain in any way, and thus allows very
general learning, without generative or distributional assumptions on the world. Another important
feature is the restriction to specific hypothesis classes, without which there are simple impossibility
results such as the “no free lunch” theorem. This allows comparative and improper learning of
computationally-hard concepts.

The latter is a very important point which is often understated. Consider the example of sparse
regression, which is a canonical problem in high dimensional statistics. Fitting the best sparse vector
to linear prediction is an NP-hard problem [20]. However, this does not prohibit improper learning,
since we can use a `1 convex relaxation for the sparse vectors (famously known as LASSO [26]).

Unsupervised learning, on the other hand, while extremely applicative and well-studied, has not seen
such an inclusive theory. The most common approaches, such as restricted Boltzmann machines,
topic models, dictionary learning, principal component analysis and metric clustering, are based
almost entirely on generative assumptions about the world. This is a strong restriction which makes
it very hard to analyze such approaches in scenarios for which the assumptions do not hold. A
more discriminative approach is based on compression, such as the Minimum Description Length
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criterion. This approach gives rise to provably intractable problems and doesn’t allow improper
learning.

Main results. We start by proposing a rigorous framework for unsupervised learning which al-
lows data-dependent, comparative learning without generative assumptions about the world. It is
general enough to encompass previous methods such as PCA, dictionary learning and topic models.
Our main contribution are optimization-based relaxations and efficient algorithms that are shown to
improperly probably learn previous models, specifically:

1. We consider the classes of hypothesis known as dictionary learning. We give a more general
hypothesis class which encompasses and generalizes it according to our definitions. We
proceed to give novel polynomial-time algorithms for learning the broader class. These
algorithms are based on new techniques in sum-of-squares convex relaxations.
As far as we know, this is the first result for efficient improper learning of dictionaries with-
out generative assumptions. Moreover, our result handles polynomially over-complete dic-
tionaries, while previous works [4, 8] apply to at most constant factor over-completeness.

2. We give efficient algorithms for learning a new hypothesis class which we call spectral
autoencoders. We show that this class generalizes, according to our definitions, the class of
PCA (principal component analysis) and its kernel extensions.

Structure of this paper. In the following chapter we a non-generative, distribution-dependent def-
inition for unsupervised learning which mirrors that of PAC learning for supervised learning. We
then proceed to an illustrative example and show how Principal Component Analysis can be for-
mally learned in this setting. The same section also gives a much more general class of hypothesis
for unsupervised learning which we call polynomial spectral decoding, and show how they can be
efficient learned in our framework using convex optimization. Finally, we get to our main contri-
bution: a convex optimization based methodology for improper learning a wide class of hypothesis,
including dictionary learning.

1.1 Previous work

The vast majority of work on unsupervised learning, both theoretical as well as applicative, focuses
on generative models. These include topic models [11], dictionary learning [13], Deep Boltzmann
Machines and deep belief networks [24] and many more. Many times these models entail non-
convex optimization problems that are provably NP-hard to solve in the worst-case.

A recent line of work in theoretical machine learning attempts to give efficient algorithms for these
models with provable guarantees. Such algorithms were given for topic models [5], dictionary
learning [6, 4], mixtures of gaussians and hidden Markov models [15, 3] and more. However, these
works retain, and at times even enhance, the probabilistic generative assumptions of the underlying
model. Perhaps the most widely used unsupervised learning methods are clustering algorithms such
as k-means, k-medians and principal component analysis (PCA), though these lack generalization
guarantees. An axiomatic approach to clustering was initiated by Kleinberg [17] and pursued further
in [9]. A discriminative generalization-based approach for clustering was undertaken in [7] within
the model of similarity-based clustering.

Another approach from the information theory literature studies with online lossless compression.
The relationship between compression and machine learning goes back to the Minimum Description
Length criterion [23]. More recent work in information theory gives online algorithms that attain
optimal compression, mostly for finite alphabets [1, 21]. For infinite alphabets, which are the main
object of study for unsupervised learning of signals such as images, there are known impossibility
results [16]. This connection to compression was recently further advanced, mostly in the context
of textual data [22].

In terms of lossy compression, Rate Distortion Theory (RDT) [10, 12] is intimately related to our
definitions, as a framework for finding lossy compression with minimal distortion (which would
correspond to reconstruction error in our terminology). Our learnability definition can be seen of
an extension of RDT to allow improper learning and generalization error bounds. Another learn-
ing framework derived from lossy compression is the information bottleneck criterion [27], and its
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learning theoretic extensions [25]. The latter framework assumes an additional feedback signal, and
thus is not purely unsupervised.

The downside of the information-theoretic approaches is that worst-case competitive compression
is provably computationally hard under cryptographic assumptions. In contrast, our compression-
based approach is based on learning a restriction to a specific hypothesis class, much like PAC-
learning. This circumvents the impossibility results and allows for improper learning.

2 A formal framework for unsupervised learning

The basis constructs in an unsupervised learning setting are:

1. Instance domain X , such as images, text documents, etc. Target space, or range, Y . We
usually think of X = Rd,Y = Rk with d � k. (Alternatively, Y can be all sparse vectors
in a larger space. )

2. An unknown, arbitrary distribution D on domain X .

3. A hypothesis class of decoding and encoding pairs,

H ⊆ {(h, g) ∈ {X 7→ Y} × {Y 7→ X}},

where h is the encoding hypothesis and g is the decoding hypothesis.

4. A loss function ` : H×X 7→ R>0 that measures the reconstruction error,

`((g, h), x) .

For example, a natural choice is the `2-loss `((g, h), x) = ‖g(h(x)) − x‖22. The ratio-
nale here is to learn structure without significantly compromising supervised learning for
arbitrary future tasks. Near-perfect reconstruction is sufficient as formally proved in Ap-
pendix 6.1. Without generative assumptions, it can be seen that near-perfect reconstruction
is also necessary.

For convenience of notation, we use f as a shorthand for (h, g) ∈ H, a member of the hypothesis
class H. Denote the generalization ability of an unsupervised learning algorithm with respect to a
distribution D as

loss
D

(f) = E
x∼D

[`(f, x)].

We can now define the main object of study: unsupervised learning with respect to a given hypothe-
sis class. The definition is parameterized by real numbers: the first is the encoding length (measured
in bits) of the hypothesis class. The second is the bias, or additional error compared to the best
hypothesis. Both parameters are necessary to allow improper learning.
Definition 2.1. We say that instanceD,X is (k, γ)-C -learnable with respect to hypothesis classH if
exists an algorithm that for every δ, ε > 0, after seeing m(ε, δ) = poly(1/ε, log(1/δ), d) examples,
returns an encoding and decoding pair (h, g) (not necessarily fromH) such that:

1. with probability at least 1− δ, lossD((h, g)) 6 min(h,g)∈H lossD((h, g)) + ε+ γ.

2. h(x) has an explicit representation with length at most k bits.

For convenience we typically encode into real numbers instead of bits. Real encoding can often
(though not in the worst case) be trivially transformed to be binary with a loss of logarithmic factor.

Following PAC learning theory, we can use uniform convergence to bound the generalization error
of the empirical risk minimizer (ERM). Define the empirical loss for a given sample S ∼ Dm as

loss
S

(f) =
1

m
·
∑
x∈S

`(f, x)

Define the ERM hypothesis for a given sample S ∼ Dm as f̂ERM = arg minf̂∈H lossS(f̂) .
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For a hypothesis class H, a loss function ` and a set of m samples S ∼ Dm, define the empirical
Rademacher complexity ofH with respect to ` and S as, 1

RS,`(H) = E
σ∼{±1}m

[
sup
f∈H

1

m

∑
x∈S

σi`(f, x)

]

Let the Rademacher complexity of H with respect to distribution D and loss ` as Rm(H) =
ES∼Dm [RS,`(H)]. When it’s clear from the context, we will omit the subscript `.

We can now state and apply standard generalization error results. The proof of following theorem is
almost identical to [19, Theorem 3.1]. For completeness we provide a proof in Appendix 6.
Theorem 2.1. For any δ > 0, with probability 1− δ, the generalization error of the ERM hypothesis
is bounded by:

loss
D

(f̂ERM ) 6 min
f∈H

loss
D

(f) + 6Rm(H) +

√
4 log 1

δ

2m

An immediate corollary of the theorem is that as long as the Rademacher complexity of a hypothesis
class approaches zero as the number of examples goes to infinity, it can be C learned by an inefficient
algorithm that optimizes over the hypothesis class by enumeration and outputs an best hypothesis
with encoding length k and bias γ = 0. Not surprisingly such optimization is often intractable and
hences the main challenge is to design efficient algorithms. As we will see in later sections, we often
need to trade the encoding length and bias slightly for computational efficiency.

Notations: For every vector z ∈ Rd1⊗Rd2 , we can view it as a matrix of dimension d1×d2, which
is denoted asM(z). Therefore in this notation,M(u⊗ v) = uv>. Let vmax(·) : (Rd)⊗2 → Rd be
the function that compute the top right-singular vector of some vector in (Rd)⊗2 viewed as a matrix.
That is, for z ∈ (Rd)⊗2, then vmax(z) denotes the top right-singular vector of M(z). We also
overload the notation vmax for generalized eigenvectors of higher order tensors. For T ∈ (Rd)⊗`,
let vmax(T ) = argmax‖x‖61 T (x, x, . . . , x) where T (·) denotes the multi-linear form defined by
tensor T .

3 Spectral autoencoders: unsupervised learning of algebraic manifolds

3.1 Algebraic manifolds

The goal of the spectral autoencoder hypothesis class we define henceforth is to learn the represen-
tation of data that lies on a low-dimensional algebraic variety/manifolds. The linear variety, or linear
manifold, defined by the roots of linear equations, is simply a linear subspace. If the data resides in
a linear subspace, or close enough to it, then PCA is effective at learning its succinct representation.

One extension of the linear manifolds is the set of roots of low-degree polynomial equations. For-
mally, let k, s be integers and let c1, . . . , cds−k ∈ Rds be a set of vectors in ds dimension, and
consider the algebraic variety

M =
{
x ∈ Rd : ∀i ∈ [ds − k], 〈ci, x⊗s〉 = 0

}
.

Observe that here each constraint 〈ci, x⊗s〉 is a degree-s polynomial over variables x, and when
s = 1 the varietyM becomes a liner subspace. Let a1, . . . , ak ∈ Rds be a basis of the subspaces
orthogonal to all of c1, . . . , cds−k, and let A ∈ Rk×ds contains ai as rows. Then we have that given
x ∈M, the encoding

y = Ax⊗s

pins down all the unknown information regarding x. In fact, for any x ∈ M, we have A>Ax⊗s =
x⊗s and therefore x is decodable from y. The argument can also be extended to the situation when
the data point is close toM (according to a metric, as we discuss later). The goal of the rest of the
subsections is to learn the encoding matrix A given data points residing close toM.

1Technically, this is the Rademacher complexity of the class of functions ` ◦H. However, since ` is usually
fixed for certain problem, we emphasize in the definition more the dependency onH.
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Warm up: PCA and kernel PCA. In this section we illustrate our framework for agnostic unsu-
pervised learning by showing how PCA and kernel PCA can be efficiently learned within our model.
The results of this sub-section are not new, and given only for illustrative purposes. The class of hy-
pothesis corresponding to PCA operates on domain X = Rd and range Y = Rk for some k < d via
linear operators. In kernel PCA, the encoding linear operator applies to the s-th tensor power x⊗s

of the data. That is, the encoding and decoding are parameterized by a linear operator A ∈ Rk×ds ,

Hpca
k,s =

{
(hA, gA) : hA(x) = Ax⊗s, , gA(y) = A†y

}
,

where A† denotes the pseudo-inverse of A. The natural loss function here is the Euclidean norm,
`((g, h), x) = ‖x⊗s − g(h(x))‖2 = ‖(I −A†A)x⊗s‖2 .
Theorem 3.1. For a fixed constant s > 1, the class Hpca

k,s is efficiently C -learnable with encoding
length k and bias γ = 0.

The proof of the Theorem follows from two simple components: a) finding the ERM among Hpca
k,s

can be efficiently solved by taking SVD of covariance matrix of the (lifted) data points. b) The
Rademacher complexity of the hypothesis class is bounded by O(ds/m) for m examples. Thus by
Theorem 2.1 the minimizer of ERM generalizes. The full proof is deferred to Appendix A.

3.2 Spectral Autoencoders

In this section we give a much broader set of hypothesis, encompassing PCA and kernel-PCA, and
show how to learn them efficiently. Throughout this section we assume that the data is normalized to
Euclidean norm 1, and consider the following class of hypothesis which naturally generalizes PCA:
Definition 3.1 (Spectral autoencoder). We define the classHsa

k,s as the following set of all hypothesis
(g, h),

Hsa
k =

{
(h, g) :

h(x) = Ax⊗s, A ∈ Rk×ds

g(y) = vmax(By), B ∈ Rds×k

}
. (3.1)

We note that this notion is more general than kernel PCA: suppose some (g, h) ∈ Hpca
k,s has re-

construction error ε, namely, A†Ax⊗s is ε-close to x⊗s in Euclidean norm. Then by eigenvector
perturbation theorem, we have that vmax(A†Ax⊗s) also reconstructs x with O(ε) error, and there-
fore there exists a PSCA hypothesis with O(ε) error as well . Vice versa, it’s quite possible that for
every A, the reconstruction A†Ax⊗s is far away from x⊗s so that kernel PCA doesn’t apply, but
with spectral decoding we can still reconstruct x from vmax(A†Ax⊗s) since the top eigenvector of
A†Ax⊗s is close x.

Here the key matter that distinguishes us from kernel PCA is in what metric x needs to be close to
the manifold so that it can be reconstructed. Using PCA, the requirement is that x is in Euclidean
distance close to M (which is a subspace), and using kernel PCA x⊗2 needs to be in Euclidean
distance close to the null space of ci’s. However, Euclidean distances in the original space and lifted
space typically are meaningless for high-dimensional data since any two data points are far away
with each other in Euclidean distance. The advantage of using spectral autoencoders is that in the
lifted space the geometry is measured by spectral norm distance that is much smaller than Euclidean
distance (with a potential gap of d1/2). The key here is that though the dimension of lifted space is
d2, the objects of our interests is the set of rank-1 tensors of the form x⊗2. Therefore, spectral norm
distance is a much more effective measure of closeness since it exploits the underlying structure of
the lifted data points.

We note that spectral autoencoders relate to vanishing component analysis [18]. When the data is
close to an algebraic manifold, spectral autoencoders aim to find the (small number of) essential
non-vanishing components in a noise robust manner.

3.3 Learnability of polynomial spectral decoding

For simplicity we focus on the case when s = 2. Ideally we would like to learn the best encoding-
decoding scheme for any data distribution D. Though there are technical difficulties to achieve such
a general result. A natural attempt would be to optimize the loss function f(A,B) = ‖g(h(x)) −
x‖2 = ‖x− vmax(BAx⊗2)‖2. Not surprisingly, function f is not a convex function with respect to
A,B, and in fact it could be even non-continuous (if not ill-defined)!
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Here we make a further realizability assumption that the data distribution D admits a reasonable
encoding and decoding pair with reasonable reconstruction error.
Definition 3.2. We say a data distribution D is (k, ε)-regularly spectral decodable if there exist
A ∈ Rk×d2 and B ∈ Rd2×k with ‖BA‖op 6 τ such that for x ∼ D, with probability 1, the
encoding y = Ax⊗2 satisfies that

M(By) =M(BAx⊗2) = xx> + E , (3.2)
where ‖E‖op 6 ε. Here τ > 1 is treated as a fixed constant globally.

To interpret the definition, we observe that if data distributionD is (k, ε)-regularly spectrally decod-
able, then by equation (3.2) and Wedin’s theorem (see e.g. [30] ) on the robustness of eigenvector to
perturbation,M(By) has top eigenvector2 that isO(ε)-close to x itself. Therefore, definition 3.2 is a
sufficient condition for the spectral decoding algorithm vmax(By) to return x approximately, though
it might be not necessary. Moreover, this condition partially addresses the non-continuity issue of
using objective f(A,B) = ‖x−vmax(BAx⊗2)‖2, while f(A,B) remains (highly) non-convex. We
resolve this issue by using a convex surrogate.

Our main result concerning the learnability of the aforementioned hypothesis class is:
Theorem 3.2. The hypothesis classHsa

k,2 is C - learnable with encoding length O(τ4k4/δ4) and bias
δ with respect to (k, ε)-regular distributions in polynomial time.

Our approach towards finding an encoding and decoding matrice A,B is to optimize the objective,

minimize f(R) = E
[∥∥Rx⊗2 − x⊗2

∥∥
op

]
(3.3)

s.t. ‖R‖S1
6 τk

where ‖ · ‖S1
denotes the Schatten 1-norm. Suppose D is (k, ε)-regularly decodable, and suppose

hA and gB are the corresponding encoding and decoding function. Then we see that R = AB will
satisfies that R has rank at most k and f(R) 6 ε. On the other hand, suppose one obtains some R
of rank k′ such that f(R) 6 δ, then we can produce hA and gB with O(δ) reconstruction simply by
choosing A ∈ Rk′×d2B and B ∈ Rd2×k′ such that R = AB.

We use (non-smooth) Frank-Wolfe to solve objective (3.3), which in particular returns a low-rank
solution. We defer the proof of Theorem 3.2 to the Appendix A.1. With a slightly stronger assump-
tions on the data distribution D, we can reduce the length of the code to O(k2/ε2) from O(k4/ε4).
See details in Appendix B.

4 A family of optimization encodings and efficient dictionary learning

In this section we give efficient algorithms for learning a family of unsupervised learning algorithms
commonly known as ”dictionary learning”. In contrast to previous approaches, we do not construct
an actual ”dictionary”, but rather improperly learn a comparable encoding via convex relaxations.

We consider a different family of codes which is motivated by matrix-based unsupervised learning
models such as topic-models, dictionary learning and PCA. This family is described by a matrix
A ∈ Rd×r which has low complexity according to a certain norm ‖ ·‖α, that is, ‖A‖α 6 cα. We can
parametrize a family of hypothesisH according to these matrices, and define an encoding-decoding
pair according to

hA(x) = arg min
‖y‖β6k

1

d
|x−Ay|1 , gA(y) = Ay

We choose `1 norm to measure the error mostly for convenience, though it can be quite flexible.
The different norms ‖ · ‖α, ‖ · ‖β over A and y give rise to different learning models that have been
considered before. For example, if these are Euclidean norms, then we get PCA. If ‖ · ‖α is the max
column `2 or `∞ norm and ‖ · ‖b is the `0 norm, then this corresponds to dictionary learning (more
details in the next section).

The optimal hypothesis in terms of reconstruction error is given by

A? = arg min
‖A‖α6cα

E
x∼D

[
1

d
|x− gA(hA(x))|1

]
= arg min
‖A‖α6cα

E
x∼D

[
min

y∈Rr:‖y‖β6k

1

d
|x−Ay|1

]
.

2Or right singular vector whenM(By) is not symmetric
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The loss function can be generalized to other norms, e.g., squared `2 loss, without any essential
change in the analysis. Notice that this optimization objective derived from reconstruction error
is identically the one used in the literature of dictionary learning. This can be seen as another
justification for the definition of unsupervised learning as minimizing reconstruction error subject to
compression constraints.

The optimization problem above is notoriously hard computationally, and significant algorithmic
and heuristic literature attempted to give efficient algorithms under various distributional assump-
tions(see [6, 4, 2] and the references therein). Our approach below circumvents this computational
hardness by convex relaxations that result in learning a different creature, albeit with comparable
compression and reconstruction objective.

4.1 Improper dictionary learning: overview

We assume the max column `∞ norm of A is at most 1 and the `1 norm of y is assumed to be at
most k. This is a more general setting than the random dictionaries (up to a re-scaling) that previous
works [6, 4] studied. 3In this case, the magnitude of each entry of x is on the order of

√
k if y has

k random ±1 entries. We think of our target error per entry as much smaller than 14. We consider
Hkdict that are parametrized by the dictionary matrix A = Rd×r,

Hdict
k =

{
(hA, gA) : A ∈ Rd×r, ‖A‖`1→`∞ 6 1

}
,

where hA(x) = arg min
‖y‖16k

|x−Ay|1 , gA(y) = Ay

Here we allow r to be larger than d, the case that is often called over-complete dictionary. The
choice of the loss can be replaced by `2 loss (or other Lipschitz loss) without any additional efforts,
though for simplicity we stick to `1 loss. Define A? to be the the best dictionary under the model
and ε? to be the optimal error,

A? = arg min‖A‖`1→`∞61 Ex∼D
[
miny∈Rr:‖y‖16k |x−Ay|1

]
(4.1)

ε? = Ex∼D
[

1
d · |x− gA?(hA?(x))|1

]
.

Algorithm 1 group encoding/decoding for improper dictionary learning
Inputs: N data points X ∈ Rd×N ∼ DN . Convex set Q. Sampling probability ρ.

1. Group encoding: Compute

Z = arg min
C∈Q

|X − C|1 , (4.2)

and let Y = h(X) = PΩ(Z) , where PΩ(B) is a random sampling of B where each entry
is picked with probability ρ.

2. Group decoding: Compute g(Y ) = arg minC∈Q |PΩ(C)− Y |1 .

Theorem 4.1. For any δ > 0, p > 1, the hypothesis class Hdict
k is C -learnable with encoding length

Õ(k2r1/p/δ2), bias δ +O(ε?) and sample complexity dO(p) in time nO(p2)

We note that here r can be potentially much larger than d since by choosing a large constant p the
overhead caused by r can be negligible. Since the average size of the entries is

√
k, therefore we

can get the bias δ smaller than average size of the entries with code length roughly ≈ k.

The proof of Theorem 4.1 is deferred to supplementary. To demonstrate the key intuition and tech-
nique behind it, in the rest of the section we consider a simpler algorithm that achieves a weaker
goal: Algorithm 1 encodes multiple examples into some codes with the matching average encoding
length Õ(k2r1/p/δ2), and these examples can be decoded from the codes together with reconstruc-
tion error ε? + δ. Next, we outline the analysis of Algorithm 1, and we will show later that one can
reduce the problem of encoding a single examples to the problem of encoding multiple examples.

3The assumption can be relaxed to that A has `∞ norm at most k and `2-norm at most
√
d straightforwardly.

4We are conservative in the scaling of the error here. Error much smaller than
√
k is already meaningful.
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Here we overload the notation gA?(hA?(·)) so that gA?(hA?(X)) denotes the collection of all the
gA?(hA?(xj)) where xj is the j-th column of X . Algorithm 1 assumes that there exists a convex set
Q ⊂ Rd×N such that{

gA?(hA?(X)) : X ∈ Rd×N
}
⊂ {AY : ‖A‖`1→`∞ 6 1, ‖Y ‖`1→`1 6 k} ⊂ Q . (4.3)

That is, Q is a convex relaxation of the group of reconstructions allowed in the class Hdict. Algo-
rithm 1 first uses convex programming to denoise the data X into a clean version Z, which belongs
to the set Q. If the set Q has low complexity, then simple random sampling of Z ∈ Q serves as a
good encoding.

The following Lemma shows that if Q has low complexity in terms of sampling Rademacher width,
then Algorithm 1 will give a good group encoding and decoding scheme.
Lemma 4.2. Suppose convex Q ⊂ Rd×N satisfies condition (4.3). Then, Algorithm 1 gives a group
encoding and decoding pair such that with probability 1 − δ, the average reconstruction error is
bounded by ε? + O(

√
SRWm(Q) + O(

√
log(1/δ)/m) where m = ρNd and SRWm(·) is the

sampling Rademacher width (defined in appendix), and the average encoding length is Õ(ρd).

Towards analyzing the algorithm, we will show that the difference between Z and X is comparable
to ε?, which is a direct consequence of the optimization over a large set Q that contains optimal
reconstruction. Then we prove that the sampling procedure doesn’t lose too much information given
a denoised version of the data is already observed, and thus one can reconstruct Z from Y .

The novelty here is to use these two steps together to denoise and achieve a short encoding. The
typical bottleneck of applying convex relaxation on matrix factorization based problem (or any other
problem) is the difficulty of rounding. Here instead of pursuing a rounding algorithm that output the
factor A and Y , we look for a convex relaxation that preserves the intrinsic complexity of the set
which enables the trivial sampling encoding. It turns out that controlling the width/complexity of
the convex relaxation boils down to proving concentration inequalities with sum-of-squares (SoS)
proofs, which is conceptually easier than rounding.

Therefore, the remaining challenge is to design convex set Q that simultaneously has the following
properties (a) is a convex relaxation in the sense of satisfying condition (4.3). (b) admits an efficient
optimization algorithm. (c) has low complexity (that is, sampling rademacher width Õ(N poly(k))).
Concretely, we have the following theorem. We note that these three properties (with Lemma 4.2)
imply that Algorithm 1 with Q = Qsos

p and ρ = O(k2r2/pd−1/δ2 · log d) gives a group encoding-
decoding pair with average encoding length O(k2r2/p/δ2 · log d) and bias δ.
Theorem 4.3. For every p > 4, let N = dc0p with a sufficiently large absolute constant c0. Then,
there exists a convex set Qsos

p ⊂ Rd×N such that (a) it satisfies condition 4.3; (b) The optimiza-
tion (4.2) and (2) are solvable by semidefinite programming with run-time nO(p2); (c) the sampling
Rademacher width of Qsos

p is bounded by
√
SRWm(Q) 6 Õ(k2r2/pN/m).

5 Conclusions

We have defined a new framework for unsupervised learning which replaces generative assumptions
by notions of reconstruction error and encoding length. This framework is comparative, and allows
learning of particular hypothesis classes with respect to an unknown distribution by other hypothesis
classes. We demonstrate its usefulness by giving new polynomial time algorithms for two unsuper-
vised hypothesis classes. First, we give new polynomial time algorithms for dictionary models in
significantly broader range of parameters and assumptions. Another domain is the class of spectral
encodings, for which we consider a new class of models that is shown to strictly encompass PCA
and kernel-PCA. This new class is capable, in contrast to previous spectral models, learn algebraic
manifolds. We give efficient learning algorithms for this class based on convex relaxations.
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6 Proof of Theorem 2.1

Proof of Theorem 2.1. [19, Theorem 3.1] asserts that with probability at least 1 − δ, we have that
for every hypothesis f ∈ H,

loss
D

(f) 6 loss
S

(f) + 2Rm(H) +

√
log 1

δ

2m

by negating the loss function this gives

| loss
D

(f)− loss
S

(f)| 6 2Rm(H) +

√
log 2

δ

2m

and therefore, letting f∗ = arg minf∈H lossD(f), we have

loss
D

(f̂ERM ) 6 loss
S

(f̂ERM ) + 2Rm(H) +

√
log 1

δ

2m
(by [19, Theorem 3.1])

6 loss
S

(f∗) + 2Rm(H) +

√
log 1

δ

2m
( by definition of ERM)

6 loss
D

(f∗) + 6Rm(H) +

√
4 log 1

δ

2m
( using [19, Theorem 3.1] again)

6.1 Low reconstruction error is sufficient for supervised learning

This section observes that low reconstruction error is a sufficient condition for unsupervised learning
to allow supervised learning over any future task.
Lemma 6.1. Consider any supervised learning problem with respect to distribution D over X × L
that is agnostically PAC-learnable with respect to L-Lipschitz loss function ` and with bias γ1.

Suppose that unsupervised hypothesis class H is C -learnable with bias γ2 over distribution D and
domain X , by hypothesis f : X 7→ Y . Then the distribution D̃f over Y × L, which gives the pair
(f(x), y) the same measure as D gives to (x, y), is agnostically PAC-learnable with bias γ1 + Lγ2.

Proof. Let h : X 7→ Y be a hypothesis that PAC-learns distribution D. Consider the hypothesis

h̃ : Y 7→ L , h̃(y) = (h ◦ g)(y)

Then by definition of reconstruction error and the Lipschitz property of ` we have

loss
D̃f

(h̃) = E
(y,l)∼D̃f

[`(h̃(y), l)]

= E
(y,l)∼D̃f

[`((h ◦ g)(y), l)]

= E
(x,l)∼D

[`(h(x̃), l)] (D(x) = D̃f (y))

= E
(x,l)∼D

[`(h(x), l)] + E
(x,l)∼D

[`(h(x̃), l)− `(h(x), l)]

= γ1 + E
(x,l)∼D

[`(h(x̃), l)− `(h(x), l)] ( PAC learnability)

6 γ1 + L E
x∼D
‖x− x̃‖ ( Lipschitzness of ` ◦ h)

= γ1 + L E
x∼D
‖x− g ◦ f(x)‖

6 γ1 + Lγ2 ( C -learnability)
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A Proof of Theorem 3.1

Proof of Theorem 3.1. We assume without loss of generality s = 1. For s > 1 the proof will be
identical since one can assume x⊗s is the data points (and the dimension is raised to ds).

Let x1, . . . , xm be a set of examples ∼ Dm. It can be shown that any minimizer of ERM

A∗ = arg min
A∈Rd×k

‖xi −A†Axi‖2 (A.1)

satisfies that (A∗)†A∗ is the the projection operator to the subspace of top k eigenvector of∑m
i=1 xix

>
i . Therefore ERM (A.1) is efficiently solvable.

According to Theorem 2.1, the ERM hypothesis generalizes with rates governed by the Rademacher
complexity of the hypothesis class. Thus, it remains to compute the Rademacher complexity of the
hypothesis class for PCA. We assume for simplicity that all vectors in the domain have Euclidean
norm bounded by one.

RS(Hpca
k ) = E

σ∼{±1}m

[
sup

(h,g)∈Hpca
k

1

m

∑
i∈S

σi`((h, g), xi)

]

= E
σ∼{±1}m

[
sup

A∈Rd×k

1

m

∑
i∈S

σi‖xi −A†Axi‖2
]

= E
σ∼{±1}m

[
sup

A∈Rd×k

1

m

∑
i∈S

σiTr((I −A†A)

(
m∑
i=1

xix
>
i

)
(I −A†A)>)

]

= E
σ∼{±1}m

[
sup

A∈Rd×k
Tr

(
(I −A†A)

(
1

m

m∑
i=1

σixix
>
i

))]
.

Then we apply Holder inequality, and effectively disentangle the part about σ and A:

E
σ∼{±1}m

[
sup

A∈Rd×k
Tr

(
(I −A†A)

(
1

m

m∑
i=1

σixix
>
i

))]

6 E
σ∼{±1}m

[
sup

A∈Rd×k
‖I −A†A‖F

∥∥∥∥∥ 1

m

m∑
i=1

σixix
>
i

∥∥∥∥∥
F

]
(Holder inequality)

6
√
d E
σ∼{±1}m

[∥∥∥∥∥ 1

m

m∑
i=1

σixix
>
i

∥∥∥∥∥
F

]
( since A†A is a projection, ‖I −A†A‖ 6 1.)

6
√
d E
σ∼{±1}m

∥∥∥∥∥ 1

m

m∑
i=1

σixix
>
i

∥∥∥∥∥
2

F

1/2

(Cauchy-Schwarz inequality)

6
√
d

√√√√ 1

m2

m∑
i=1

〈σixix>i , σixix>i 〉 (since E[σiσj ] = 0 for i 6= j)

6
√
d/m . (by ‖x‖ 6 1)

Thus, from Theorem 2.1 we can conclude that the class Hpca
k is learnable with sample complexity

Õ( dε2 )5.

A.1 Proof of Theorem 3.2

Theorem 3.2 follows from the following lemmas and the generalization theorem 2.1 straightfor-
wardly.

5For ` > 1 the sample complexity is Õ(d`/ε2).
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Lemma A.1. Suppose distribution D is (k, ε)-regularly spectral decodable. Then for any δ > 0,
solving convex optimization (3.3) with non-smooth Frank-Wolfe algorithm [14, Theorem 4.4] with
k′ = O(τ4k4/δ4) steps gives a solution R̂ of rank k′ such that f(R̂) 6 δ + ε.
Lemma A.2. The Rademacher complexity of the class of function Φ ={∥∥Rx⊗2 − x⊗2

∥∥
op : R s.t. ‖R‖S1

6 τk
}

with m examples is bounded from above by at

mostRm(Φ) 6 2τk ·
√

1/m

Here Lemma A.2 follows from the fact that
∥∥Rx⊗2 − x⊗2

∥∥
op is bounded above by 2τk when ‖x‖ 6

1 and ‖R‖S1
6 τk. The rest of the section focuses on the proof of Lemma A.1.

Lemma A.1 basically follows from the fact that f is Lipschitz and guarantees of the Frank-Wolfe
algorithm.
Proposition A.3. The objective function f(R) is convex and 1-Lipschitz. Concretely, Let `x(R) =
‖Rx⊗2 − x⊗2‖op. Then

∂`x 3 (u⊗ v)(x⊗2)>

where ∂`x is the set of sub-gradients of `x with respect to R, and u, v ∈ Rd are (one pair of) top left
and right singular vectors ofM(Rx⊗2 − x⊗2).

Proof. This simply follows from calculating gradient with chain rule. Here we use the fact that
A ∈ (Rd)⊗2, the sub-gradient of ‖A‖op contains the vector a⊗ b where a, b are the top left and right
singular vectors ofM(A). We can also verify by definition that (u⊗ v)(x⊗2)> is a sub-gradient.

f(R′)− f(R) > (u⊗ v)>(R′x⊗2 −Rx⊗2) (by convexity of ‖ · ‖op)

= 〈(u⊗ v)(x⊗2)>, R′ −R〉 .

Now we are ready to prove Lemma A.1.

Proof of Lemma A.1. Since D is (k, ε)-regularly decodable, we know that there exists a rank-k so-
lution R∗ with f(R∗) 6 ε. Since ‖R∗‖op 6 τ , we have that ‖R‖S1

6 rank(R∗) · ‖R‖op 6 τk.
Therefore R∗ is feasible solution for the objective (3.3) with f(R∗) 6 ε.

By Proposition A.3, we have that f(R) is 1-Lipschitz. Moreover, for any R,S with ‖R‖S1
6

τk, ‖S‖S1
6 τk we have that ‖R − S‖F 6 ‖R‖F + ‖S‖F 6 ‖R‖S1

+ ‖S‖S1
6 2τk. Therefore

the diameter of the constraint set is at most τk.

By [14, Theorem 4.4], we have that Frank-Wolfe algorithm returns solutionR with f(R)−f(R∗) 6

ε+ δ in
(
τk
δ

)4
iteration.

B Shorter codes with relaxed objective for Polynomial Spectral Components
Analysis

Notations. For a matrix A, let σ1(A) > σ2(A) > .. be its singular values. Then the Schatten
p-norm, denoted by ‖ · ‖Sp , for p > 1 is defined as ‖A‖Sp = (

∑
i σi(A)p)

1/p. For even integer p,
an equivalent and simple definition is that ‖A‖pSp , Tr((A>A)p/2).

In this section we consider the following further relaxation of objective (3.3).

minimize f4(R) := E
[∥∥Rx⊗2 − x⊗2

∥∥2

Sp

]
(B.1)

s.t. ‖R‖S1 6 τk

Since ‖A‖F > ‖A‖S4
> ‖A‖S∞ = ‖A‖, this is a relaxation of the objective (3.3), and it interpolates

between kernal PCA and spectral decoding. Our assumption is weaker than kernal PCA but stronger
than spectral decodable.
Definition B.1 (Extension of definition 3.2). We say a data distributionD is (k, ε)-regularly spectral
decodable with ‖ · ‖Sp norm if the error E in equation (??) is bounded by ‖E‖Sp 6 ε.
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We can reduce the length of the code from O(k4) to O(k2) for any constant p.
Theorem B.1. Suppose data distribution is (k, ε)-spectral decodable with norm ‖·‖Sp for p = O(1),
then solving (B.1) using (usual) Frank-Wolfe algorithm gives a solution R̂ of k′ = O(k2τ2/ε2) with
f(R) 6 ε + δ. As a direct consequence, we obtain encoding and decoding pair (gA, hB) ∈ Hsa

k′

with k′ = O(k2τ2/ε2) and reconstruction error ε+ δ.

The main advantage of using relaxed objective is its smoothness. This allows us to optimize over
the Schatten 1-norm constraint set much faster using usual Frank-Wolfe algorithm. Therefore the
key here is to establish the smoothness of the objective function. Theorem B.1 follows from the
following proposition straightforwardly.
Proposition B.2. Objective function fp (equation (B.1)) is convex and O(p)-smooth.

Proof. Since ‖ ·‖Sp is convex and composition of convex function with linear function gives convex
function. Therefore,

∥∥Rx⊗2 − x⊗2
∥∥
Sp

is a convex function. The square of an non-negative convex
function is also convex, and therefore we proved that fp is convex. We prove the smoothness by
first showing that ‖A‖2Sp is a smooth function with respect to A. We use the definition ‖A‖pSp =

Tr((A>A)p/2). Let E be a small matrix that goes to 0, we have

‖A+ E‖pSp = Tr((A>A)p/2) + T1 + T2 + o(‖E‖2F ) (B.2)

where T1, T2 denote the first order term and second order term respectively. Let U = A>E +
E>A and V = A>A. We note that T2 is a sum of the traces of matrices like UV UV Up/2−2.
By Lieb-Thirring inequality, we have that all these term can be bounded by Tr(Up/2−2V 2) =
2Tr((A>A)p/2−2A>EE>A) + 2Tr((A>A)p/2−2A>EA>E>). For the first term, we have that

Tr((A>A)p/2−2A>EE>A) 6 ‖(AA>)(p−2)/4E‖2 6 ‖(AA>)(p−2)/4‖2S∞‖E‖
2
F = ‖A‖p−2

S∞
‖E‖2F

where in the first inequality we use Cauchy-Schwarz. Then for the second term we have

Tr((A>A)p/2−2A>EA>E>) 6 ‖(A>A)(p−2)/4E‖F ‖AE(A>A)(p−4)/4‖F
6 ‖(A>A)(p−2)/4E‖2F (by Lieb-Thirring inequality)

6 ‖(AA>)(p−2)/4‖2‖E‖2F = ‖A‖p−2
S∞
‖E‖2F (B.3)

Therefore, finally we got

T2 6 O(p2) · ‖A‖p−2
Sp−2
‖E‖2F (B.4)

Therefore, we complete the proof by having,

‖A+ E‖2Sp 6 (‖A‖pSp + T1 + T2 + o(‖E‖2))2/p 6 ‖A‖Sp(1 + T ′1 +
2

p‖A‖p/2Sp

T2) + o(‖E‖2)

(by (1 + x)p/2 6 1 + 2x/p+ o(‖x‖2))

6 ‖A‖2Sp + T ′′1 +O(p)‖E‖2 + o(‖E‖2) (by equation (B.3))

C Toolbox

Lemma C.1. Let p > 2 be a power of 2 and u = [u1, . . . , un] and v = [v1, . . . , vn] be indetermi-
nants. Then there exists SoS proof,

`

∑
j

uiv
p−1
j

p

6

(∑
i

upi

)(∑
vpi

)p−1

(C.1)

Proof Sketch. The inequality follows from repeated application of Cauchy-Schwarz. For example,
for p = 4 we have

`

(∑
i

u4
i

)(∑
v4
i

)3

>

(∑
i

u2
i v

2
i

)2 (∑
v4
i

)2

(by Cauchy-Schwarz)
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>

(∑
i

uiv
3
i

)4

(by Cauchy-Schwarz again)

For p = 2s with s > 2, the statement can be proved inductively.
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