
Supplementary Material: Stochastic Variational Deep
Kernel Learning

Andrew Gordon Wilson*
Cornell University

Zhiting Hu*
CMU

Ruslan Salakhutdinov
CMU

Eric P. Xing
CMU

Please see https://people.orie.cornell.edu/andrew/code for new results, updates, and
code.

1 UCI Classification Results

The second evaluation of our proposed algorithm (SV-DKL) is conducted on a number of commonly
used UCI classification tasks of varying sizes and properties. Table 1 lists the classification accuracy
of SVM, DNN, DNN+ (a stand-alone DNN with an extra Q× c fully-connected hidden layer with Q,
c defined as in Figure 1 of the main text, DNN+GP (a GP trained on the top level features of a trained
DNN without the extra hidden layer), and SV-DKL (same architecture as DNN).

The plain DNN, which learns salient features effectively from raw data, gives notably higher accuracy
compared to an SVM, the mostly widely used kernel method for classification problems. We see that
the extra layer in DNN+GP can sometimes harm performance. By contrast, non-parametric flexibility
of DNN+GP consistently improves upon DNN. And SV-DKL, by training a DNN through a GP
marginal likelihood objective, consistently provides further enhancements (with particularly notable
performance on the Connect4 and Covtype datasets).

Table 1: Classification accuracy on the UCI datasets. We report the average accuracy ± one standard
deviation using 5-fold cross validation. To compare with an SVM, we used the popular libsvm [1]
toolbox. RBF kernel was used in SVM, and optimal hyper-parameters are selected automatically
using the built-in functionality. On each dataset we used a fully-connected DNN which has the same
architecture as in the airline delay task, except for DNN+ which has an additional hidden layer.

Datasets n d c Accuracy

SVM DNN DNN+ DNN+GP SV-DKL

Adult 48,842 14 2 0.849±0.001 0.852±0.001 0.845±0.001 0.853±0.001 0.857±0.001
Connect4 67,557 42 3 0.773±0.002 0.805±0.005 0.804±0.009 0.811±0.005 0.841±0.006
Diabetes 101,766 49 25 0.869±0.000 0.889±0.001 0.890±0.001 0.891±0.001 0.896±0.001
Covtype 581,012 54 7 0.796±0.006 0.824±0.004 0.811±0.002 0.827±0.006 0.860±0.006

2 Negative Log Probability (NLP) Results

Tables 2, 3, and 4 show the negative log probability values on different tasks. Generally we observed
similar trends as from the classification accuracy results.

*Equal contribution. 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona,
Spain.

https://people.orie.cornell.edu/andrew/code

Table 3: Negative log probability results on the UCI datasets, with the same experimental setting as
in section 5.2.

Datasets n d c NLP

DNN DNN+GP SV-DKL

Adult 48,842 14 2 0.316±0.003 0.314±0.003 0.312±0.003
Connect4 67,557 42 3 0.495±0.003 0.478±0.003 0.449±0.002
Diabetes 101,766 49 25 0.404±0.001 0.396±0.002 0.385±0.002
Covtype 581,012 54 7 0.435±0.004 0.429±0.005 0.365±0.004

Table 2: Negative log probability results on the airline delay dataset, with the same experimental
setting as in section 5.1.

Datasets n d c NLP

KLSP-GP DNN DNN+GP SV-DKL

Airline 5,934,530 8 2 ∼0.61 0.474±0.001 0.473±0.001 0.461±0.001

Table 4: Negative log probability results on the image classification benchmarks, with the same
experimental setting as in section 5.3.

Datasets n d c NLP

MC-GP KLSP-GP CNN CNN+GP SV-DKL

MNIST-Binary 60K 28×28 2 — 0.069 0.020 0.019 0.018
MNIST 60K 28×28 10 0.064 — 0.028 0.028 0.028
CIFAR10 50K 3×32×32 10 — — 0.738 0.738 0.734
SVHN 73K 3×32×32 10 — — 0.309 0.310 0.308

3 Stochastic Variational Inference for Deep Kernel Learning Classification

Recall the SV-DKL classification model

p(yi|f i,A) =
exp(a(f i)

Tyi)∑
c exp(a(f i)

Tec)

p(f j |uj) =M (j)uj

p(uj) = N (uj |0,K(j)
Z,Z),

(1)

Let u = {uj}Jj=1. We assume a variational posterior over the inducing variables

q(u) =
∏
j

N (uj |µj ,Sj) (2)

By Jensen’s inequality we have

log p(y) ≥ Eq(u)p(f |u)[log p(y|f)]− KL[q(u)‖p(u)]
, L(q),

(3)

In the following we omit the GP index j when there is no ambiguity. Due to the deterministic
mapping, we can obtain latent function samples from the samples of u:

f (t) =Mu(t). (4)

To sample from q(u), we use the Cholesky decomposition for reparameterizing u in order to preserve
structures within the covariance. Specifically, we let S = LTL. This results in the following sampling
procedure for u:

u(t) = µ+ Lε(t); ε(t) ∼ N (0, I).
2

We further scale up the sampler by leveraging the fact that the inducing points are placed on a grid,
and imposing Kronecker decomposition on L =

⊗D
d=1 Ld, where D is the input dimension of the

base kernel. With the fast Kronecker matrix-vector products, the sampling cost is O(m1+1/D). Note
that

S =
(⊗

Ld

)T (⊗
Ld

)
=

D⊗
d=1

LTd Ld :=

D⊗
d=1

Sd

With the samples, then for any h(u), we have

Eq(u)[h(u)] '
1

T

T∑
t=1

h(u(t))

=
1

T

T∑
l=1

h(µ+ Lε(t))

' Ep(ε)[h(µ+ Lε)]

(5)

Next we give the derivation of the objective lower bound and its derivatives in detail. In the following
we denote K := KZ,Z for clarity.

Computation of the marginal likelihood lower bound The expectation term of objective lower
bound Eq (3) can be computed straightforwardly following Eq (5). The KL term has a closed form
(we omit the GP index j):

KL(q(u)‖p(u)) = 1

2

{
log |K| − log |S| −D + tr(K−1S) + µTK−1µ

}
. (6)

With the Kronecker product representation of the covariance matrices, all the above matrix operations
can be conducted efficiently:

log detS = log

D∏
d=1

det(LdL
T
d)

rankd

= 2

D∑
d=1

rankd
md∑
p=1

logLd,pp

tr(K−1S) =

D∏
d=1

tr(K−1d Sd),

(7)

where md is the number of inducing points in dimension d (we have m =
∏D
d=1md); rankd =∏

d′ 6=d rank(Sd′); and K =
⊗D

d=1Kd.

Derivatives w.r.t the base kernel hyperparameters Note that the base kernel hyperparameters θ
are only involved in the KL term of Eq (3). The derivative is

∂L
∂θ

=
∂KL(q‖p)

∂θ

=
1

2

{
tr(K−1

∂K

∂θ
) + tr(

∂K−1

∂θ
S)− µTK−1

∂K

∂θ
K−1µ

}
=

1

2

{
tr(K−1

∂K

∂θ
)− tr(K−1 ∂K

∂θ
K−1S)− µTK−1

∂K

∂θ
K−1µ

} (8)

Note that the matrix inversions and traces can be computed efficiently by leveraging the Kronecker
product as in Eq (7).

Derivatives w.r.t other model parameters Other model parameters, including the deep network
weights and the top-layer mixing weights, are only involved in the likelihood expectation term in
Eq (3), and can be computed conveniently by following Eq (5) with h(·) replaced by the respective
derivatives of the softmax likelihood in Eq (1).

3

Derivatives w.r.t the variational parameters We only show the derivatives w.r.t the variational
covariance parameters L. The derivatives w.r.t the variational means µ can be derived similarly.

(1) The derivative of the softmax expectation term of input i w.r.t the (p, q)-th element of L(j)
d ,

denoted as λ for clarity, is given by

∇λ log p(yi|f i) = Ep(ε)

[(∑
c

1(yic = 1)Acj −
exp(a(f i)

Tyi)∑
c exp(a(f i)

T ec)
Acj

)
M

(j)
i· ∇λL

(j)ε

]
,

where M (j)
i· is the ith row of the interpolation matrix (i.e., the interpolation vector of input i); and

∇λL(j) = L
(j)
1 ⊗ · · · ⊗ ∇λL

(j)
d ⊗ · · · ⊗ L

(j)
D . Note that for D = 1, we can directly write down the

derivatives w.r.t the whole matrix L(j) which is efficient for computing:

∇L(j) log p(yi|f i) = Ep(ε)

[(∑
c

1(yic = 1)Acj −
exp(a(f i)

Tyi)∑
c exp(a(f i)

Tec)
Acj

)
(εM

(j)
i·)T

]
.

(2) The derivative of the KL term is (index j omitted):

∇λKL[q(u)‖p(u)] = 1

2

∂ − log |S|+ tr(K−1S)

∂λ

= −(L−1d)pq + tr(K−11 S1) · · · tr(K−1d Ld∇λLTd) · · · tr(K−1D SD),

where tr(K−1d Ld∇λLTd) = (K−1d· Ld)pq. Note that the Kronecker factor matrices are small (with
size md ×md) and thus the above computations are fast.

References
[1] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM Transactions on

Intelligent Systems and Technology (TIST), 2(3):27, 2011.

4

	UCI Classification Results
	Negative Log Probability (NLP) Results
	Stochastic Variational Inference for Deep Kernel Learning Classification

