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Abstract

Deep kernel learning combines the non-parametric flexibility of kernel methods
with the inductive biases of deep learning architectures. We propose a novel deep
kernel learning model and stochastic variational inference procedure which gener-
alizes deep kernel learning approaches to enable classification, multi-task learning,
additive covariance structures, and stochastic gradient training. Specifically, we
apply additive base kernels to subsets of output features from deep neural archi-
tectures, and jointly learn the parameters of the base kernels and deep network
through a Gaussian process marginal likelihood objective. Within this framework,
we derive an efficient form of stochastic variational inference which leverages local
kernel interpolation, inducing points, and structure exploiting algebra. We show
improved performance over stand alone deep networks, SVMs, and state of the
art scalable Gaussian processes on several classification benchmarks, including an
airline delay dataset containing 6 million training points, CIFAR, and ImageNet.

1 Introduction

Large datasets provide great opportunities to learn rich statistical representations, for accurate
predictions and new scientific insights into our modeling problems. Gaussian processes are promising
for large data problems, because they can grow their information capacity with the amount of available
data, in combination with automatically calibrated model complexity [21, 25].

From a Gaussian process perspective, all of the statistical structure in data is learned through a kernel
function. Popular kernel functions, such as the RBF kernel, provide smoothing and interpolation,
but cannot learn representations necessary for long range extrapolation [22, 25]. With smoothing
kernels, we can only use the information in a large dataset to learn about noise and length-scale
hyperparameters, which tell us only how quickly correlations in our data vary with distance in the
input space. If we learn a short length-scale hyperparameter, then by definition we will only make
use of a small amount of training data near each testing point. If we learn a long length-scale, then
we could subsample the data and make similar predictions.

Therefore to fully use the information in large datasets, we must build kernels with great repre-
sentational power and useful learning biases, and scale these approaches without sacrificing this
representational ability. Indeed many recent approaches have advocated building expressive kernel
functions [e.g., 22, 9, 26, 25, 17, 31], and emerging research in this direction takes inspiration from
deep learning models [e.g., 28, 5, 3]. However, the scalability, general applicability, and interpretabil-
ity of such approaches remain a challenge. Recently, Wilson et al. [30] proposed simple and scalable
deep kernels for single-output regression problems, with promising performance on many experi-
ments. But their approach does not allow for stochastic training, multiple outputs, deep architectures
with many output features, or classification. And it is on classification problems, in particular, where
we often have high dimensional input vectors, with little intuition about how these vectors should
correlate, and therefore most want to learn a flexible non-Euclidean similarity metric [1].

*Equal contribution. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona,
Spain.



In this paper, we introduce inference procedures and propose a new deep kernel learning model
which enables (1) classification and non-Gaussian likelihoods; (2) multi-task learning1; (3) stochastic
gradient mini-batch training; (4) deep architectures with many output features; (5) additive covariance
structures; and (5) greatly enhanced scalability.

We propose to use additive base kernels corresponding to Gaussian processes (GPs) applied to subsets
of output features of a deep neural architecture. We then linearly mix these Gaussian processes,
inducing correlations across multiple output variables. The result is a deep probabilistic neural
network, with a hidden layer composed of additive sets of infinite basis functions, linearly mixed
to produce correlated output variables. All parameters of the deep architecture and base kernels
are jointly learned through a marginal likelihood objective, having integrated away all GPs. For
scalability and non-Gaussian likelihoods, we derive stochastic variational inference (SVI) which
leverages local kernel interpolation, inducing points, and structure exploiting algebra, and a hybrid
sampling scheme, building on Wilson and Nickisch [27], Wilson et al. [29], Titsias [24], Hensman
et al. [10], and Nickson et al. [18]. The resulting approach, SV-DKL, has a complexity ofO(m1+1/D)
for m inducing points and D input dimensions, versus the standard O(m3) for efficient stochastic
variational methods.

We achieve good predictive accuracy and scalability over a wide range of classification tasks,
while retaining a straightforward, general purpose, and highly practical probabilistic non-parametric
representation, with code available at https://people.orie.cornell.edu/andrew/code.

2 Background
Throughout this paper, we assume we have access to vectorial input-output pairs D = {xi,yi},
where each yi is related to xi through a Gaussian process and observation model. For example,
in regression, one could model y(x)|f(x) ∼ N (y(x); f(x), σ2I), where f(x) is a latent vector of
independent Gaussian processes f j ∼ GP(0, kj), and σ2I is a noise covariance matrix.

The computational bottleneck in working with Gaussian processes typically involves computing
(KX,X + σ2I)−1y and log |KX,X | over an n× n covariance matrix KX,X evaluated at n training
inputs X . Standard procedure is to compute the Cholesky decomposition of KX,X , which incurs
O(n3) computations and O(n2) storage, after which predictions cost O(n2) per test point. Gaussian
processes are thus typically limited to at most a few thousand training points. Many promising
approaches to scalability have been explored, for example, involving randomized methods [20, 16, 31]
, and low rank approximations [23, 19]. Wilson and Nickisch [27] recently introduced the KISS-GP
approximate kernel matrix K̃X,X′ = MXKZ,ZM

>
X′ , which admits fast computations, given the

exact kernel matrix KZ,Z evaluated on a latent multidimensional lattice of m inducing inputs Z, and
MX , a sparse interpolation matrix. Without requiring any grid structure in X , KZ,Z decomposes
into a Kronecker product of Toeplitz matrices, which can be approximated by circulant matrices [29].
Exploiting such structure in combination with local kernel interpolation enables one to use many
inducing points, resulting in near-exact accuracy in the kernel approximation, and O(n) inference.
Unfortunately, this approach does not typically apply to D > 5 dimensional inputs [29].

Moreover, the Gaussian process marginal likelihood does not factorize, and thus stochastic gradient
descent does not ordinarily apply. To address this issue, Hensman et al. [10] extended the variational
approach from Titsias [24] and derived a stochastic variational GP posterior over inducing points
for a regression model which does have the required factorization for stochastic gradient descent.
Hensman et al. [12], Hensman et al. [11], and Dezfouli and Bonilla [6] further combine this with
a sampling procedure for estimating non-conjugate expectations. These methods have O(m3)
sampling complexity which becomes prohibitive where many inducing points are desired for accurate
approximation. Nickson et al. [18] consider Kronecker structure in the stochastic approximation of
Hensman et al. [10] for regression, but do not leverage local kernel interpolation or sampling.

To address these limitations, we introduce a new deep kernel learning model for multi-task classifica-
tion, mini-batch training, and scalable kernel interpolation which does not require low dimensional
input spaces. In this paper, we view scalability and flexibility as two sides of one coin: we most want
the flexible models on the largest datasets, which contain the necessary information to discover rich

1We follow the GP convention where multi-task learning involves a function mapping a single input to
multiple correlated output responses (class probabilities, regression responses, etc.). Unlike NNs which naturally
have correlated outputs by sharing hidden basis functions (and multi-task can have a more specialized meaning),
most GP models perform multiple binary classification, ignoring correlations between output classes. Even
applying a GP to NN features for deep kernel learning does not naturally produce multiple correlated outputs.
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Figure 1: Deep Kernel Learning for Multidimensional Outputs. Multidimensional inputs x ∈ RD are mapped
through a deep architecture, and then a series of additive Gaussian processes f1, . . . , fJ , with base kernels
k1, . . . , kJ , are each applied to subsets of the network features h

(L)
1 , . . . , h

(L)
Q . The thick lines indicate a

probabilistic mapping. The additive Gaussian processes are then linearly mixed by the matrix A and mapped to
output variables y1, . . . , yC (which are then correlated through A). All of the parameters of the deep network,
base kernel, and mixing layer, γ = {w,θ, A} are learned jointly through the (variational) marginal likelihood of
our model, having integrated away all of the Gaussian processes. We can view the resulting model as a Gaussian
process which uses an additive series of deep kernels with weight sharing.

statistical structure. We show that the resulting approach can learn very expressive and interpretable
kernel functions on large classification datasets, containing millions of training points.

3 Deep Kernel Learning for Multi-task Classification
We propose a new deep kernel learning approach to account for classification and non-Gaussian
likelihoods, multiple correlated outputs, additive covariances, and stochastic gradient training.

We propose to build a probabilistic deep network as follows: 1) a deep non-linear transformation
h(x,w), parametrized by weights w, is applied to the observed input variable x, to produce Q
features at the final layer L, h(L)

1 , . . . , h
(L)
Q ; 2) J Gaussian processes, with base kernels k1, . . . , kJ ,

are applied to subsets of these features, corresponding to an additive GP model [e.g., 7]. The base
kernels can thus act on relatively low dimensional inputs, where local kernel interpolation and learning
biases such as similarities based on Euclidean distance are most natural; 3) these GPs are linearly
mixed by a matrix A ∈ RC×J , and transformed by an observation model, to produce the output
variables y1, . . . , yC . The mixing of these variables through A produces correlated multiple outputs,
a multi-task property which is uncommon in Gaussian processes or SVMs. The structure of this
network is illustrated in Figure 1. Critically, all of the parameters in the model (including base kernel
hyperparameters) are trained through optimizing a marginal likelihood, having integrated away the
Gaussian processes, through the variational inference procedures described in section 4.

For classification, we consider a special case of this architecture. Let C be the number of classes, and
we have data {xi,yi}ni=1, where yi ∈ {0, 1}C is a one-shot encoding of the class label. We use the
softmax observation model:

p(yi|f i, A) =
exp(A(f i)

>yi)∑
c exp(A(f i)

>ec)
, (1)

where f i ∈ RJ is a vector of independent Gaussian processes followed by a linear mixing layer
A(f i) = Af i; and ec is the indicator vector with the cth element being 1 and the rest 0.

For the jth Gaussian process in the additive GP layer, let f j = {fij}ni=1 be the latent functions on
the input data features. By introducing a set of latent inducing variables uj indexed by m inducing
inputs Z, we can write [e.g., 19]

p(f j |uj) = N (f j |K(j)
X,ZK

(j),−1
Z,Z uj , K̃

(j)) , K̃ = KX,X −KX,ZK
−1
Z,ZKZ,X . (2)

Substituting the local interpolation approximation KX,X′ = MKZ,ZM
> of Wilson and Nickisch

[27] into Eq. (2), we find K̃(j) = 0; it therefore follows that f j = KX,ZK
−1
Z,Zu =Mu. In section 4

we exploit this deterministic relationship between f and u, governed by the sparse matrix M , to
derive a particularly efficient stochastic variational inference procedure.

3



Eq. (1) and Eq. (2) together form the additive GP layer and the linear mixing layer of the proposed
deep probabilistic network in Figure 1, with all parameters (including network weights) trained jointly
through the Gaussian process marginal likelihood.

4 Structure Exploiting Stochastic Variational Inference
Exact inference and learning in Gaussian processes with a non-Gaussian likelihood is not analytically
tractable. Variational inference is an appealing approximate technique due to its automatic regulariza-
tion to avoid overfitting, and its ability to be used with stochastic gradient training, by providing a
factorized approximation to the Gaussian process marginal likelihood. We develop our stochastic
variational method equipped with a fast sampling scheme for tackling any intractable marginalization.

Let u = {uj}Jj=1 be the collection of the inducing variables of the J additive GPs. We assume a
variational posterior over the inducing variables q(u). By Jensen’s inequality we have

log p(y) ≥ Eq(u)p(f |u)[log p(y|f)]− KL[q(u)‖p(u)] , L(q), (3)

where we have omitted the mixing weights A for clarity. The KL divergence term can be interpreted
as a regularizer encouraging the approximate posterior q(u) to be close to the prior p(u). We aim
at tightening the marginal likelihood lower bound L(q) which is equivalent to minimizing the KL
divergence from q to the true posterior.

Since the likelihood function typically factorizes over data instances: p(y|f) =
∏n

i=1 p(yi|f i),
we can optimize the lower bound with stochastic gradients. In particular, we specify q(u) =∏

j N (uj |µj ,Sj) for the independent GPs, and iteratively update the variational parameters
{µj ,Sj}Jj=1 and the kernel and deep network parameters using a noisy approximation of the gradient
of the lower bound on minibatches of the full data. Henceforth we omit the index j for clarity.

Unfortunately, for general non-Gaussian likelihoods the expectation in Eq (3) is usually intractable.
We develop a sampling method for tackling this intractability which is highly efficient with structured
reparameterization, local kernel interpolation, and structure exploiting algebra.

Using local kernel interpolation, the latent function f is expressed as a deterministic local interpolation
of the inducing variables u (section 3). This result allows us to work around any difficult approximate
posteriors on f which typically occur in variational approaches for GPs. Instead, our sampler only
needs to account for the uncertainty on u. The direct parameterization of q(u) yields a straightforward
and efficient sampling procedure. The latent function samples (indexed by t) are then computed
directly through interpolation f (t) =Mu(t).

As opposed to conventional mean-field methods, which assume a diagonal variational covariance
matrix, we use the Cholesky decomposition for reparameterizing u in order to preserve structures
within the covariance. Specifically, we let S = LTL, resulting in the following sampling procedure:

u(t) = µ+ Lε(t); ε(t) ∼ N (0, I).

Each step of the above standard sampler has complexity of O(m2), where m is the number of
inducing points. Due to the matrix vector product, this sampling procedure becomes prohibitive
in the presence of many inducing points, which are required for accuracy on large datasets with
multidimensional inputs – particularly if we have an expressive kernel function [27].

We scale up the sampler by leveraging the fact that the inducing points are placed on a grid (taking
advantage of both Toeplitz and circulant structure), and additionally imposing a Kronecker decompo-
sition on L =

⊗D
d=1 Ld, where D is the input dimension of the base kernel. With the fast Kronecker

matrix-vector products, we reduce the above sampling cost of O(m2) to O(m1+1/D). Our approach
thus greatly improves over previous stochastic variational methods which typically scale with O(m3)
complexity, as discussed shortly.

Note that the KL divergence term between the two Gaussians in Eq (3) has a closed form without the
need for Monte Carlo estimation. Computing the KL term and its derivatives, with the Kronecker
method, isO(Dm 3

D ). With T samples of u and a minibatch of data points of size B, we can estimate
the marginal likelihood lower bound as

L ' N

TB

T∑
t=1

B∑
i=1

log p(yi|f
(t)
i )− KL[q(u)‖p(u)], (4)
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and the derivatives ∇L w.r.t the model hyperparameters γ and the variational parameters
{µ, {Ld}Dd=1} can be taken similarly. We provide the detailed derivation in the supplement.

Although a small body of pioneering work has developed stochastic variational methods for Gaussian
processes, our approach distinctly provides the above representation-preserving variational approx-
imation, and exploits algebraic structure for significant advantages in scalability and accuracy. In
particular, a similar variational lower bound as in Eq (3) was proposed in [24, 10] for a sparse GP,
which were extended to non-conjugate likelihoods, with the intractable integrals estimated using
Gaussian quadrature as in the KLSP-GP [11] or univariate Gaussian samples as in the SAVI-GP [6].
Hensman et al. [12] estimates nonconjugate expectations with a hybrid Monte Carlo sampler (denoted
as MC-GP). The computations in these approaches can be costly, with O(m3) complexity, due to
a complicated variational posterior over f as well as the expensive operations on the full inducing
point matrix. In addition to its increased efficiency, our sampling scheme is much simpler, without
introducing any additional tuning parameters. We empirically compare with these methods and show
the practical significance of our algorithm in section 5.

Variational methods have also been used in GP regression for stochastic inference (e.g., [18, 10]),
and some of the most recent work in this area applied variational auto-encoders [14] for coupled
variational updates (aka back constraints) [4, 2]. We note that these techniques are orthogonal and
complementary to our inference approach, and can be leveraged for further enhancements.

5 Experiments

We evaluate our proposed approach, stochastic variational deep kernel learning (SV-DKL), on a
wide range of classification problems, including an airline delay task with over 5.9 million data
points (section 5.1), a large and diverse collection of classification problems from the UCI repository
(section 5.2), and image classification benchmarks (section 5.3). Empirical results demonstrate the
practical significance of our approach, which provides consistent improvements over stand-alone
DNNs, while preserving a GP representation, and dramatic improvements in speed and accuracy over
modern state of the art GP models. We use classification accuracy when comparing to DNNs, because
it is a standard for evaluating classification benchmarks with DNNs. However, we also compute the
negative log probability (NLP) values (supplement), which show similar trends.

All experiments were performed on a Linux machine with eight 4.0GHz CPU cores, one Tesla K40c
GPU, and 32GB RAM. We implemented deep neural networks with Caffe [13].

Model Training For our deep kernel learning model, we used deep neural networks which produce
C-dimensional top-level features. Here C is the number of classes. We place a Gaussian process on
each dimension of these features. We used RBF base kernels. The additive GP layer is then followed
by a linear mixing layer A ∈ RC×C . We initialized A to be an identity matrix, and optimized in the
joint learning procedure to recover cross-dimension correlations from data.

We first train a deep neural network using SGD with the softmax loss objective, and rectified linear
activation functions. After the neural network has been pre-trained, we fit an additive KISS-GP
layer, followed by a linear mixing layer, using the top-level features of the deep network as inputs.
Using this pre-training initialization, our joint SV-DKL model of section 3 is then trained through the
stochastic variational method of section 4 which jointly optimizes all the hyperparameters γ of the
deep kernel (including all network weights), as well as the variational parameters, by backpropagating
derivatives through the proposed marginal likelihood lower bound of the additive Gaussian process in
section 4. In all experiments, we use a relatively large mini-batch size (specified according to the
full data size), enabled by the proposed structure exploiting variational inference procedures. We
achieve good performance setting the number of samples T = 1 in Eq. 4 for expectation estimation
in variational inference, which provides additional confirmation for a similar observation in [14].

5.1 Airline Delays

We first consider a large airline dataset consisting of flight arrival and departure details for all
commercial flights within the US in 2008. The approximately 5.9 million records contain extensive
information about the flights, including the delay in reaching the destination. Following [11], we
consider the task of predicting whether a flight was subject to delay based on 8 features (e.g., distance
to be covered, day of the week, etc).
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Classification accuracy Table 1 reports the classification accuracy of 1) KLSP-GP [11], a recent
scalable variational GP classifier as discussed in section 4; 2) stand-alone deep neural network (DNN);
3) DNN+, a stand-alone DNN with an extra Q× c fully-connected hidden layer with Q, c defined as
in Figure 1; 4) DNN+GP which is a GP applied to a pre-trained DNN (with same architecture as in 2);
and 5) our stochastic variational DKL method (SV-DKL) (same DNN architecture as in 2). For DNN,
we used a fully-connected architecture with layers d-1000-1000-500-50-c.2 The DNN component of
the SV-DKL model has the exact same architecture. The SV-DKL joint training was conducted using
a large minibatch size of 50,000 to reduce the variance of the stochastic gradient. We can use such a
large minibatch in each iteration (which is daunting for regular GP even as a whole dataset) due to the
efficiency of our inference strategy within each mini-batch, leveraging structure exploiting algebra.

From the table we see that SV-DKL outperforms both the alternative variational GP model (KLSP-
GP) and the stand-alone deep network. DNN+GP outperforms stand-alone DNNs, showing the
non-parametric flexibility of kernel methods. By combining KISS-GP with DNNs as part of a joint
SV-DKL procedure, we obtain better results than DNN and DNN+GP. Besides, both the plain DNN
and SV-DKL notably improve on stand-alone GPs, indicating a superior capacity of deep architectures
to learn representations from large but finite training sets, despite the asymptotic approximation
properties of Gaussian processes. By contrast, adding an extra hidden layer, as in DNN+, does not
improve performance.

Figure 2(a) further studies how performance changes as data size increases. We observe that the
proposed SV-DKL classifier trained on 1/50 of the data already can reach a competitive accuracy as
compared to the KLSP-GP model trained on the full dataset. As the number of the training points
increases, the SV-DKL and DNN models continue to improve. This experiment demonstrates the
value of expressive kernel functions on large data problems, which can effectively capture the extra
information available as seeing more training instances. Furthermore, SV-DKL consistently provides
better performance over the plain DNN, through its non-parametric flexibility.

Scalability We next measure the scalability of our variational DKL in terms of the number of
inducing points m in each GP. Figure 2(c) shows the runtimes in seconds, as a function of m, for
evaluating the objective and any relevant derivatives. We compare our structure exploiting variational
method with the scalable variational inference in KLSP-GP, and the MCMC-based variational method
in MC-GP [12]. We see that our inference approach is far more efficient than previous scalable
algorithms. Moreover, when the number of inducing points is not too large (e.g., m = 70), the added
time for SV-DKL over DNN is reasonable (e.g., 0.39s vs. 0.27s), especially considering the gains in
performance and expressive power. Figure 2(d) shows the runtime scaling of different variational
methods as m grows. We can see that the runtime of our approach increases only slowly in a wide
range of m (< 2, 000), greatly enhancing the scalability over the other methods. This empirically
validates the improved time complexity of our new inference method as presented in section 4.

We next investigate the total training time of the models. Table 1, right panel, lists the time cost of
training KLSP-GP, DNN, and SV-DKL; and Figure 2(b) shows how the training time of SV-DKL and
DNN changes as more training data is presented. We see that on the full dataset DKL, as a GP model,
saves over 60% time as compared to the modern state of the art KLSP-GP, while at the same time
achieving over an 18% improvement in predictive accuracy. Generally, the training time of SV-DKL
increases slowly with growing data sizes, and has only modest additional overhead compared to
stand-alone architectures, justified by improvements in performance, and the general benefits of a
non-parametric probabilistic representation. Moreover, the DNN was fully trained on a GPU, while
in SV-DKL the base kernel hyperparameters and variational parameters were optimized on a CPU.
Since most updates of the SV-DKL parameters are computed in matrix forms, we believe the already
modest time gap between SV-DKL and DNNs can be almost entirely closed by deploying the whole
SV-DKL model on GPUs.

5.2 UCI Classification Tasks

The second evaluation of our proposed algorithm (SV-DKL) is conducted on a number of commonly
used UCI classification tasks of varying sizes and properties. Table 1 (supplement) lists the classi-
fication accuracy of SVM, DNN, DNN+ (a stand-alone DNN with an extra Q× c fully-connected
hidden layer with Q, c defined as in Figure 1), DNN+GP (a GP trained on the top level features of a
trained DNN without the extra hidden layer), and SV-DKL (same architecture as DNN).

2We obtained similar results with other DNN architectures (e.g., d-1000-1000-500-50-20-c).

6



Table 1: Classification accuracy and training time on the airline delay dataset, with n data points, d input
dimensions, and c classes. KLSP-GP is a stochastic variational GP classifier proposed in [11]. DNN+ is the
DNN with an extra hidden layer. DNN+GP is a GP applied to fixed pre-trained output layer of the DNN (without
the extra hidden layer). Following Hensman et al. [11], we selected a hold-out sets of 100,000 points uniformly
at random, and the results of DNN and SV-DKL are averaged over 5 runs ± one standard deviation. Since the
code of KLSP-GP is not publicly available we directly show the results from [11].

Datasets n d c
Accuracy Total Training Time (h)

KLSP-GP [11] DNN DNN+ DNN+GP SV-DKL KLSP-GP DNN SV-DKL

Airline 5,934,530 8 2 ∼0.675 0.773±0.001 0.722±0.002 0.7746±0.001 0.781±0.001 ∼11 0.53 3.98
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Figure 2: (a) Classification accuracy vs. the number of training points (n). We tested the deep models, DNN
and SV-DKL, by training on 1/50, 1/10, 1/3, and the full dataset, respectively. For comparison, the cyan diamond
and black dashed line show the accuracy level of KLSP-GP trained on the full data. (b) Training time vs. n. The
cyan diamond and black dashed line show the training time of KLSP-GP on the full data. (c) Runtime vs. the
number of inducing points (m) on airline task, by applying different variational methods for deep kernel learning.
The minibatch size is fixed to 50,000. The runtime of the stand-alone DNN does not change as m varies. (d)
The scaling of runtime relative to the runtime of m = 70. The black dashed line indicates a slope of 1.

The plain DNN, which learns salient features effectively from raw data, gives notably higher accuracy
compared to an SVM, the mostly widely used kernel method for classification problems. We see that
the extra layer in DNN+GP can sometimes harm performance. By contrast, non-parametric flexibility
of DNN+GP consistently improves upon DNN. And SV-DKL, by training a DNN through a GP
marginal likelihood objective, consistently provides further enhancements (with particularly notable
performance on the Connect4 and Covtype datasets).

5.3 Image Classification

We next evaluate the proposed scalable SV-DKL procedure for efficiently handling high-dimensional
highly-structured image data. We used a minibatch size of 5,000 for stochastic gradient training of
SV-DKL. Table 2 compares SV-DKL with the most recent scalable GP classifiers. Besides KLSP-GP,
we also collected the results of the MC-GP [12] which uses a hybrid Monte Carlo sampler to tackle
non-conjugate likelihoods, SAVI-GP [6] which approximates with a univariate Gaussian sampler,
as well as the distributed GP latent variable model (denoted as D-GPLVM) [8]. We see that on the
respective benchmark tasks, SV-DKL improves over all of the above scalable GP methods by a large
margin. We note that these datasets are very challenging for conventional GP methods.

We further compare SV-DKL to stand-alone convolutional neural networks, and GPs applied to
fixed pre-trained CNNs (CNN+GP). On the first three datasets in Table 2, we used the reference
CNN models implemented in Caffe; and for the SVHN dataset, as no benchmark architecture is
available, we used the CIFAR10 architecture which turned out to perform quite well. As we can see,
the SV-DKL model outperforms CNNs and CNN+GP on all datasets. By contrast, the extra hidden
Q× c hidden layer CNN+ does not consistently improve performance over CNN.

ResNet Comparison: Based on one of the best public implementations on Caffe, the ResNet-20 has
0.901 accuracy on CIFAR10, and SV-DKL (with this ResNet base architecture) improves to 0.910.

ImageNet: We randomly selected 20 categories of images with an AlexNet variant as the base NN
[15], which has an accuracy of 0.6877, while SV-DKL achieves 0.7067 accuracy.

5.3.1 Interpretation

In Figure 3(a) we investigate the deep kernels learned on the MNIST dataset by randomly selecting 4
classes and visualizing the covariance matrices of respective dimensions. The covariance matrices are
evaluated on the set of test inputs, sorted in terms of the labels of the input images. We see that the
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Table 2: Classification accuracy on the image classification benchmarks. MNIST-Binary is the task to
differentiate between odd and even digits on the MNIST dataset. We followed the standard training-test set
partitioning of all these datasets. We have collected recently published results of a variety of scalable GPs.
For CNNs, we used the respective benchmark architectures (or with slight adaptations) from Caffe. CNN+ is
a stand-alone CNN with Q × c fully connected extra hidden layer. See the text for more details, including a
comparison with ResNets on CIFAR10.

Datasets n d c
Accuracy

MC-GP [12] SAVI-GP [6] D-GPLVM [8] KLSP-GP [11] CNN CNN+ CNN+GP SV-DKL

MNIST-Binary 60K 28×28 2 — — — 0.978 0.9934 0.8838 0.9938 0.9940
MNIST 60K 28×28 10 0.9804 0.9749 0.9405 — 0.9908 0.9909 0.9915 0.9920
CIFAR10 50K 3×32×32 10 — — — — 0.7592 0.7618 0.7633 0.7704
SVHN 73K 3×32×32 10 — — — — 0.9214 0.9193 0.9221 0.9228
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Figure 3: (a) The induced covariance matrices on classes 2, 3, 6, and 8, on test cases of the MNIST dataset
ordered according to the labels. (b) The final mixing layer (i.e., matrix A) on MNIST digit recognition.

deep kernel on each dimension effectively discovers the correlations between the images within the
corresponding class. For instance, in c = 2 the data points between 2k-3k (i.e., images of digit 2) are
strongly correlated with each other, and carry little correlation with the rest of the images. Besides,
we can also clearly observe that the rest of the data points also form multiple “blocks”, rather than
being crammed together without any structure. This validates that the DKL procedure and additive
GPs do capture the correlations across different dimensions.

To further explore the learnt dependencies between the output classes and the additive GPs serving
as the bases, we visualized the weights of the mixing layer (A) in Fig. 3(b), enabling the correlated
multi-output (multi-task) nature of the model. Besides the expected high weights along the diagonal,
we find that class 9 is also highly correlated with dimension 0 and 6, which is consistent with the
visual similarity between digit “9” and “0”/“6”. Overall, the ability to interpret the learned deep
covariance matrix as discovering an expressive similarity metric across data instances is a distinctive
feature of our approach.

6 Discussion
We introduced a scalable Gaussian process model which leverages deep learning, stochastic variational
inference, structure exploiting algebra, and additive covariance structures. The resulting deep kernel
learning approach, SV-DKL, allows for classification and non-Gaussian likelihoods, multi-task
learning, and mini-batch training. SV-DKL achieves superior performance over alternative scalable
GP models and stand-alone deep networks on many significant benchmarks.

Several fundamental themes emerge from the exposition: (1) kernel methods and deep learning
approaches are complementary, and we can combine the advantages of each approach; (2) expressive
kernel functions are particularly valuable on large datasets; (3) by viewing neural networks through
the lens of metric learning, deep learning approaches become more interpretable.

Deep learning is able to obtain good predictive accuracy by automatically learning structure which
would be difficult to a priori feature engineer into a model. In the future, we hope deep kernel
learning approaches will be particularly helpful for interpreting these learned features, leading to new
scientific insights into our modelling problems.
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