
Appendix

A. Proof of Theorem 1

This section provides the detailed proof of Theorem 1. The following error decomposition is proved
in terms of the definitions of gλ and ĝλ in Section 3.

Proposition 1 Denote D(λ) = inf
g∈H
{E(g)−E(fρ) + λ‖g‖2H}. For any z ∈ Zm, the excess general-

ization error of fz in Section 3 can be decomposed as below:

E(π(fz))− E(fρ) ≤ E1 + E2 +D(λ),

where

E1 = E(π(fz))− Ez(π(fz)) + Ez(ĝλ)− E(ĝλ)

and

E2 = E(ĝλ) + λm‖ĝλ‖2`2 − E(gλ)− λ‖gλ‖2H.

Proof: It is easy to deduce that

E(π(fz))− E(fρ)

≤ E(π(fz))− Ez(π(fz)) + Ez(fz)− E(fρ)

≤ E(π(fz))− Ez(π(fz)) + [Ez(fz) + λm‖fz‖2`2 − (Ez(ĝλ) + λm‖ĝλ‖2`2)]

+Ez(ĝλ)− E(ĝλ) + E(ĝλ) + λm‖ĝλ‖2`2 − E(fρ)

≤ E1 + E(ĝλ) + λm‖ĝλ‖2`2 − E(fρ),

where the last inequality follows from the definitions of fz, ĝλ.

According to the definition gλ, we can see that

E(ĝλ) + λm‖ĝλ‖2`2 − E(fρ) = E2 + E(gλ)− E(fρ) + λ‖gλ‖2H.

Combining the above two estimates, we get the desired result. �

The error term E1 depends on the full samples and the subsampling set, which usually is called as the
sample error in learning theory [1]. The error term E2 is induced by the vary from the data dependent
hypothesis spaceHm to data independent hypothesis spaceH, which is called the hypothesis error
[2, 4]. The last term is the approximation error, which reflects the approximation ability of learning
model to the regression function.

Before error estimates, we provide the upper bounds of fz and fλ.

Lemma 1 For any z ∈ Zm, there holds

‖fz‖`1 ≤
1√
λ
and ‖fλ‖∞ ≤

√
D(λ)

λ
.

Proof: From the definition of fz, we can see that λm‖fz‖2`2 ≤ Ez(0) ≤ 1, which means

‖fz‖`1 ≤
√
m‖fz‖`2 ≤

1√
λ
.

To estimate fλ, we introduce an auxiliary function φ : R→ R defined as

φ(θ) =

∫
X

(LK(fλ + θh)− fρ)2dρX + λ

∫
X

(fλ + θh)2dρX ,

where h is any fixed function in L2
ρX .
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Note that φ(0) = D(λ) + E(fρ). It means that dφ(θ)dθ |θ=0 = 0. Then

φ′(0) = 2

∫
X

(LKfλ(x)− fρ(x))[

∫
X
h(t)K(x, t)dρX (t)]dρX (x) + λ

∫
X
fλ(x)h(x)dρX = 0.

According to the arbitrariness of h, we get

λfλ(t) = −
∫
X

(LKfλ(x)− fρ(x))K(x, t)dρX (x),∀t ∈ X .

Then, for any t ∈ X ,

|fλ(t)| = λ−1|
∫
X

(LKfλ(x)− fρ(x))K(x, t)dρX (x)|

≤ λ−1

√∫
X

(LKfλ(x)− fρ(x))2dρX (x)

√∫
X
K2(x, t)dρX (x)

≤
√
D(λ)

λ
.

This completes the proof of Lemma 1. �

A.1. Hypothesis error estimate

The hypothesis error E2 involves the random variables with values in Hilbert space. To bound this
term, we introduce the following concentration inequality in [3].

Lemma 2 LetH be a Hilbert space and ξ be independent random variable on Z with values inH.
Assume that ‖ξ‖H ≤ M̃ < ∞ almost surely. Let {zi}mi=1 be independent random samples from ρ.
Then, for any δ ∈ (0, 1),

∥∥∥ 1

m

m∑
i=1

ξ(zi)− Eξ
∥∥∥
H
≤

2M̃ log( 1
δ )

m
+

√
2E‖ξ‖2H log( 1

δ )

m

holds true with confidence 1− δ.

Proposition 2 For any 0 < δ < 1, with confidence 1− δ, there holds

E(ĝλ)− E(gλ) ≤ D(λ)
(

1 +
4 log(1/δ)

mλ
+

8 log2(1/δ)

m2λ2

)
and

E2 ≤ D(λ)
(

1 +
6 log(2/δ)

mλ
+

8 log2(2/δ)

m2λ2
+

√
2 log(2/δ)

mλ

)
.

Proof: From the definitions of gλ and ĝλ, we have

mλ‖ĝλ‖2`2 − λ‖gλ‖
2
H = λ

( 1

m

m∑
i=1

(fλ(x̄i))
2 −

∫
X

(fλ(x))2dρX (x)
)
.

Let ξ1(x) = (fλ(x))2. From Lemma 1, we get |ξ1(x)| ≤ D(λ)/λ2 for any x ∈ X and

Eξ21 ≤
D(λ)

λ2

∫
X

(fλ(x))2dρX (x) ≤ (D(λ))2

λ3
.

Applying Lemma 2 to random variable ξ1, we get for any δ ∈ (0, 1)

mλ‖ĝλ‖2`2 − λ‖gλ‖
2
H ≤

2D(λ) log(1/δ)

mλ
+D(λ)

√
2 log(1/δ)

mλ
(1)
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with confidence 1− δ.

Now we turn to estimate E(ĝλ)− E(gλ). Observe that

E(ĝλ)− E(gλ) = ‖ĝλ − fρ‖2L2
ρX
− ‖gλ − fρ‖2L2

ρX

≤ ‖ĝλ − gλ‖L2
ρX
· ‖ĝλ + gλ − 2fρ‖L2

ρX

≤ ‖ĝλ − gλ‖L2
ρX
· (‖ĝλ − gλ‖L2

ρX
+ 2‖gλ − fρ‖L2

ρX
)

≤ 2‖ĝλ − gλ‖2L2
ρX

+D(λ), (2)

where the last inequality follows from

2‖gλ − fρ‖L2
ρX
· ‖ĝλ − gλ‖L2

ρX
≤ ‖gλ − fρ‖2L2

ρX
+ ‖ĝλ − gλ‖2L2

ρX
.

Denote ξ2(x) = fλ(x)K(x, t). Then, ‖ξ2‖∞ ≤ ‖fλ‖∞ ≤
√
D(λ)/λ and E‖ξ2‖2 ≤ ‖fλ‖2L2

ρX
≤

D(λ)/λ. Applying Lemma 2 to ξ2, we get with confidence 1− δ,

‖ĝλ − gλ‖L2
ρX

=
∥∥∥ 1

m

m∑
i=1

ξ2(x̄i)− Eξ2
∥∥∥
L2
ρX

≤
2
√
D(λ)

mλ
log(1/δ) +

√
2D(λ) log(1/δ)

mλ
.

Then, from (2), there holds

E(ĝλ)− E(gλ) ≤ D(λ) +
4D(λ) log(1/δ)

mλ
+

8D(λ) log2(1/δ)

m2λ2
. (3)

Combining the estimates (1) and (3), we get the desired upper bound of E2. �

A.2. Sample error estimate

Given any R > 0, define a class of functions as

BR =
{
f =

m∑
i=1

αiK(ui, ·) :

m∑
i=1

|αi| ≤ R, {ui}mi=1 ∈ Xm
}
. (4)

Recently, some tight estimates have been established in [4, 5] to bound the empirical covering number
of B1. Now recall some basic definitions for covering numbers.

Definition 1 Let (U , d) be a pseudo-metric space and denote a subset S ⊂ U . For every ε > 0, the
covering number N (S, ε, d) of S with respect to ε, d is defined as the minimal number of balls of
radius ε whose union covers S, that is,

N (S, ε, d) = min
{
l ∈ N : S ⊂

l⋃
j=1

B(sj , ε) for some {sj}lj=1 ⊂ U
}
,

where B(sj , ε) = {s ∈ U : d(s, sj) ≤ ε} is a ball in U .

The empirical covering number with `2 metric is defined as below.

Definition 2 LetF be a set of functions onX , u = (xi)
k
i=1 andF|u = {(f(ui))

k
i=1 : f ∈ F} ⊂ Rk.

Set N2,u(F , ε) = N (F|u, ε, d2). The `2 empirical covering number of F is defined by

N2(F , ε) = sup
k∈N

sup
u∈Xk

N2,u(F , ε), ε > 0,

where `2 metric

d2(a,b) =
(1

k

k∑
i=1

|ai − bi|2
) 1

2

,∀a = (ai)
k
i=1 ∈ Rk,b = (bi)

k
i=1 ∈ Rk.
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The following concentration inequality, proved in [6], is used for our sample error analysis.

Lemma 3 Assume that there are constants B, c > 0 and α ∈ [0, 1] such that ‖f‖∞ ≤ B and
Ef2 ≤ c(Ef)α for every f ∈ F . If for some a > 0 and p ∈ (0, 2),

log(N2(F , ε)) ≤ aε−p,∀ε > 0,

then there exists a constant c′p depending only on p such that for any t > 0, with probability at least
1− e−t, there holds

Ef − 1

n

n∑
i=1

f(zi) ≤
1

2
η1−α(Ef)α + c′pη + 2

(ct
n

) 1
2−α

+
18Bt

n
,∀f ∈ F ,

where

η := max
{
c

2−p
4−2α+pα

(a
n

) 2
4−2α+pα

, B
2−p
2+p

(a
n

) 2
2+p
}
.

The sample error E1 can be further decomposed as
E1 = E11 + E12,

where
E11 = E(π(fz))− E(fρ)− (Ez(π(fz))− Ez(fρ))

and
E12 = Ez(ĝλ)− Ez(fρ)− (E(ĝλ)− E(fρ)).

Now we provide the estimates for E11 and E12.

Lemma 4 Suppose that X is compact subset of Rd and K ∈ Cs(X × X ) for some s > 0. For any
δ ∈ (0, 1), with confidence 1− δ, there holds

E11 ≤
1

2
(E(π(fz))− E(fρ)) + c1(λ

p
2+pn−

2
2+p + n−1 log(1/δ)),

where c1 is a positive constant independent of n, λ, δ, and p is defined in Theorem 1.

Proof: From Lemma 1 and the definition of BR in (4), we can see that fz ∈ BR with R = λ−
1
2 .

Denote
GR = {g(z) = (y − π(f)(x))2 − (y − fρ(x))2 : f ∈ BR, z = (x, y) ∈ Z}.

It follows that for any z ∈ Z, g ∈ GR
|g(z)| = |2y − π(f)(x)− fρ(x)| · |π(f)(x)− fρ(x)| ≤ 8 (5)

and
Eg2 = E|2y − π(f)(x)− fρ(x)|2 · |π(f)(x)− fρ(x)|2 ≤ 16Eg. (6)

For any f1, f2 ∈ BR and z = (x, y) ∈ Z , denote g1(z) = (y − π(f1)(x))2 − (y − fρ(x))2 and
g2(z) = (y − π(f2)(x))2 − (y − fρ(x))2. Then,

|g1(z)− g2(z)| = |2y − π(f)(x)− fρ(x)| · |π(f)(x)− fρ(x)|
≤ 4|π(f1)(x)− π(f2)(x)|
≤ 4|f1(x)− f2(x)|.

It means that

logN2(GR, ε) ≤ logN2(BR,
ε

4
) ≤ logN2(B1,

ε

4R
) ≤ cp(4R)pε−p, (7)

where the last inequality follows from Theorem 2 in [4] and Theorem 3 in [5].

The inequalities (5)-(7) tells us that Lemma 3 holds true for any g ∈ GR with a = cp(4R)p, c = 16,
α = 1 and B = 8. Then, for any g ∈ GR, with confidence 1− δ

Eg − 1

n

n∑
i=1

g(zi) ≤
1

2
(E(π(f))− E(fρ)) + c̃1((λ−

p
2+pn−

2
2+p + log(1/δ)n−1),

where c̃1 is a positive constant independent of n, δ, λ. This competes the proof. �
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Lemma 5 Suppose that X is a compact subset of Rd and K ∈ Cs(X ×X ) for some s > 0. For any
δ ∈ (0, 1), with confidence 1− δ, there holds

E12 ≤
1

2
(E(ĝλ)− E(gλ)) +

1

2
D(λ) + c2D(λ)(λ−2n−

2
2+p + λ−2n−1 log(1/δ)),

where c2 is a positive constant independent of λ, δ, n.

Proof: Denote

G = {ĝ : ĝ := ĝv(·) =
1

m

m∑
i=1

fλ(vi)K(vi, ·),v = (vi)
m
i=1 ∈ Xm}

and
H = {h|h(z) = (y − ĝ(x))2 − (y − fρ(x))2, ĝ ∈ G}.

It is follows that ĝλ ∈ G by the definition of ĝλ and using vi = x̄i, i ∈ {1, ...,m}. For any g ∈ G

‖g‖∞ ≤ ‖fλ‖∞ ≤ R :=

√
D(λ)

λ
,

where the last inequality follows from Lemma 1. Moreover, for any h ∈ H
‖h‖∞ = sup

(x,y)

|2y − ĝ(x)− fρ(x)| · |ĝ(x)− fρ(x)| ≤ (3 +R)2 (8)

and
Eh2 ≤ (3 +R)2E(ĝ(x)− fρ(x))2 ≤ (3 +R)2Eh.

For any ĝ1, ĝ2 ∈ G, we have
|h1(z)− h2(z)| ≤ 2(1 +R)|ĝ1(x)− ĝ2(x)|.

This means
logN2(H, ε) ≤ logN2

(
G, ε

2 + 2R

)
≤ logN2

(
B1,

ε

2R(1 +R)

)
≤ cs2p(R2 +R)pε−p, (9)

where the covering number bounds in [4, 5] are used for the last inequality.

The estimates (8)-(9) verifies the conditions of Lemma 3. Then, for any 0 < δ < 1, we get with
confidence at least 1− δ,

E12 ≤ 1

2

(
E(ĝλ)− E(gλ)

)
+ c̃
(
R2n−

2
2+p + (R+ 3)2n−1 log(1/δ)

)
≤ 1

2

(
E(ĝλ)− E(gλ)

)
+ 2c̃λ−2D(λ)

(
n−

2
2+p + n−1 log(1/δ)

)
,

where c̃ is a constant independence of n, δ, λ. This completes the proof. �

Combining Lemma 4 and Lemma 5, we obtain the estimate of sample error E1.

Proposition 3 Suppose that X is compact subset of Rd and K ∈ Cs(X × X ) for some s > 0. For
any δ ∈ (0, 1), with confidence 1− 2δ, there holds

E1 ≤ 1

2
(E(π(fz)− E(fρ) + E(ĝλ)− E(gλ)) + c1(λ−

p
2+pn−

2
2+p + n−1 log(1/δ))

+c2λ
−2D(λ)(n−

2
2+p + n−1 log(1/δ)).

where c1, c2 is a positive constant independent of n, λ, δ, and p is defined in Theorem 1.

A.3. Proof of Theorem 1

The proof of Theorem 1 is provided as below.

Proof of Theorem 1. Combining Propositions 1-3, we have with confidence 1− 4δ

E(π(fz))− E(fρ) ≤ 1

2
(E(π(fz))− E(π(fρ))) + c1(λ−

p
2+pn−

2
2+p + n−1 log(1/δ))

+c2λ
−2D(λ)(n−

2
2+p + n−1 log(1/δ))

+D(λ)
(

4 +
16 log(2/δ)

mλ
+

32 log2(2/δ)

m2λ2
+

√
log(2/δ)

mλ

)
.

By a direct computation and setting δ̃ = 4δ, we obtain the desired result of Theorem 1. �
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B. Proof of Theorem 2

Proof of Theorem 2. Under the approximation condition D(λ) ≤ cβλ
β , Theorem 1 yields with

confidence 1− δ
E(π(fz))− E(fρ)

≤ c̃ log2(8/δ)
(
λ−

p
2+pn−

2
2+p + λβ + λβ−1m−1 + λβ−2m−2 + λβ−2n−

2
2+p

)
.

We have m−2 ≥ n−
2

2+p as m ≤ n
1

2+p . Then, the above estimate implies that with confidence 1− δ

E(π(fz))− E(fρ) ≤ 2c̃ log2(8/δ)
(
λ−

p
2+pm−2 + λβ + λβ−1m−1 + λβ−2m−2

)
.

Setting λ = m−θ for some θ > 0, we get with confidence 1− δ

E(π(fz))− E(fρ) ≤ 2c̃ log2(8/δ)
(
m−(2−

pθ
2+p ) +m−βθ +m−(1−θ+βθ) +m−(2−2θ+βθ)

)
≤ 8c̃ log2(8/δ)m−γ ,

where

γ = min
{

2− pθ

2 + p
, 2 + βθ − 2θ, βθ, 1 + βθ − θ

}
.

This completes the proof of Theorem 2. �

C. Proof of Theorem 3

Proof of Theorem 3. Observe that
n∑
i=1

pi = 1. Then

S(p1, ..., pn) =

n∑
i=1

1− Lii
pi

‖Ki‖22 ·
n∑
i=1

pi =

n∑
i=1

(√1− Lii√
pi

‖Ki‖2
)2
·
n∑
i=1

(
√
pi)

2

≥
n∑
i=1

(√
1− Lii‖Ki‖2

)2
,

where the last inequality follows from the Cauchy-Schwarz inequality.

Here the Cauchy-Schwarz inequality holds under equality when
√
1−Lii√
pi
‖Ki‖2 =

√
pi, i = 1, ..., n.

Thus, we can set pi = k−1‖Ki‖2
√

1− Lii such that
∑n
i=1 pi = 1. This yields the desired result in

Theorem 3. �
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