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Abstract

We consider the problem of how to optimize multi-stage campaigning over social
networks. The dynamic programming framework is employed to balance the high
present reward and large penalty on low future outcome in the presence of exten-
sive uncertainties. In particular, we establish theoretical foundations of optimal
campaigning over social networks where the user activities are modeled as a mul-
tivariate Hawkes process, and we derive a time dependent linear relation between
the intensity of exogenous events and several commonly used objective functions
of campaigning. We further develop a convex dynamic programming framework
for determining the optimal intervention policy that prescribes the required level
of external drive at each stage for the desired campaigning result. Experiments on
both synthetic data and the real-world MemeTracker dataset show that our algo-
rithm can steer the user activities for optimal campaigning much more accurately
than baselines.

1 Introduction
Obama was the first US president in history who successfully leveraged online social media in pres-
idential campaigning, which has been popularized and become a ubiquitous approach to electoral
politics (such as in the on-going 2016 US presidential election) in contrast to the decreasing rele-
vance of traditional media such as TV and newspapers [1, 2]. The power of campaigning via social
media in modern politics is a consequence of online social networking being an important part of
people’s regular daily social lives. It has been quite common that individuals use social network sites
to share their ideas and comment on other people’s opinions. In recent years, large organizations,
such as governments, public media, and business corporations, also start to announce news, spread
ideas, and/or post advertisements in order to steer the public opinion through social media platform.
There has been extensive interest for these entities to influence the public’s view and manipulate
the trend by incentivizing influential users to endorse their ideas/merits/opinions at certain monetary
expenses or credits. To obtain most cost-effective trend manipulations, one needs to design an opti-
mal campaigning strategy or policy such that quantities of interests, such as influence of opinions,
exposure of a campaign, adoption of new products, can be maximized or steered towards the target
amount given realistic budget constraints.

The key factor differentiating social networks from traditional media is peer influence. In fact, events
in an online social network can be categorized roughly into two types: endogenous events where
users just respond to the actions of their neighbors within the network, and exogenous events where
users take actions due to drives external to the network. Then it is natural to raise the following
fundamental questions regarding optimal campaigning over social networks: can we model and
exploit those event data to steer the online community to a desired exposure level? More specifically,
can we drive the overall exposure to a campaign to a certain level (e.g., at least twice per week per
user) by incentivizing a small number of users to take more initiatives? What about maximizing the
overall exposure for a target group of people?
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More importantly, those exposure shaping tasks are more effective when the interventions are imple-
mented in multiple stages. Due to the inherent uncertainty in social behavior, the outcome of each
intervention may not be fully predictable but can be anticipated to some extent before the next in-
tervention happens. A key aspect of such situations is that interventions can’t be viewed in isolation
since one must balance the desire for high present reward with the penalty of low future outcome.

In this paper, the dynamic programming framework [3] is employed to tackle the aforementioned
issues. In particular, we first establish the fundamental theory of optimal campaigning over social
networks where the user activities are modeled as a multivariate Hawkes process (MHP) [4, 5] since
MHP can capture both endogenous and exogenous event intensities. We also derive a time dependent
linear relation between the intensity of exogenous events and the overall exposure to the campaign.
Exploiting this connection, we develop a convex dynamic programming framework for determining
the optimal intervention policy that prescribes the required level of external drive at each stage in
order for the campaign to reach a desired exposure profile. We propose several objective functions
that are commonly considered as campaigning criteria in social networks. Experiments on both
synthetic data and real world network of news websites in the MemeTracker dataset show that our
algorithms can shape the exposure of campaigns much more accurately than baselines.

2 Basics and Background
An n-dimensional temporal point process is a random process whose realization consists of a
list of discrete events in time and their associated dimension, {(tk, dk)} with tk ∈ R+ and
dk ∈ {1, . . . , n}. Many different types of data produced in online social networks can be rep-
resented as temporal point processes, such as likes and tweets. A temporal point process can be
equivalently represented as a counting process, N (t) = (N 1(t), . . . ,Nn(t))⊤ associated to n users
in the social network. Here, N i(t) records the number of events user i performs before time t for
1 ≤ i ≤ n. Let the history Hi(t) be the list of times of events {t1, t2, . . . , tk} of the i-th user up
to time t. Then, the number of observed events in a small time window [t, t + dt) of length dt is
dN i(t) =

∑
tk∈Hi(t) δ(t− tk) dt, and hence N i(t) =

∫ t
0 dN i(s), where δ(t) is a Dirac delta func-

tion. The point process representation of temporal data is fundamentally different from the discrete
time representation typically used in social network analysis. It directly models the time interval
between events as random variables, avoids the need to pick a time window to aggregate events, and
allows temporal events to be modeled in a fine grained fashion. Moreover, it has a remarkably rich
theoretical support [6].

An important way to characterize temporal point processes is via the conditional intensity function
— a stochastic model for the time of the next event given all the times of previous events. Formally,
the conditional intensity function λi(t) (intensity, for short) of user i is the conditional probability
of observing an event in a small window [t, t+ dt) given the history H(t) =

{
H1(t), . . . ,Hn(t)

}
:

λi(t)dt := P {user i performs event in [t, t+ dt) |H(t)} = E[dN i(t) |H(t)], (1)
where one typically assumes that only one event can happen in a small window of size dt. The
functional form of the intensity λi(t) is often designed to capture the phenomena of interests.

The Hawkes process [7] is a class of self and mutually exciting point process models,

λi(t) = µi(t) +
∑

k:tk<t

φidk(t, tk) = µi(t) +
n∑

j=1

∫ t

0
φij(t, s)dN j(s), (2)

where the intensity is history dependent. φij(t, s) is the impact function capturing the temporal
influence of an event by user j at time s to the future events of user j at time t ! s. Here, the first term
µi(t) is the exogenous event intensity modeling drive outside the network and indecent of the history,
and the second term

∑
k:tk<t φ

idk(t, tk) is the endogenous event intensity modeling interactions
within the network [8]. Defining Φ(t, s) = [φij(t, s)]i,j=1...n, and λ(t) = (λ1(t), . . . ,λn(t))⊤, and
µ(t) = (µ1(t), . . . , µn(t))⊤ we can compactly rewrite Eq 2 in matrix form:

λ(t) = µ(t) +

∫ t

0
Φ(t, s)dN (s). (3)

In practice it is standard to employ shift-invariant impact function, i.e., Φ(t, s) = Φ(t − s). Then,
by using notation of convolution f(t) ∗ g(t) =

∫ t
0 f(t− s)g(s)ds we have

λ(t) = µ(t) + Φ(t) ∗ dN (t). (4)
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3 From Intensity to Average Activity
In this section we will develop a closed form relation between the expected total intensity E[λ(t)]
and the intensity µ(t) of exogenous events. This relation establish the basis of our campaigning
framework. First, define the mean function as M(t) := E[N (t)] = EH(t)[E(N (t)|H(t))]. Note that
M(t) is history independent, and it gives the average number of events up to time t for each of the
dimension. Similarly, the rate function η(t) is given by η(t)dt := dM(t). On the other hand,

dM(t) = dE[N (t)] = EH(t)[E(dN (t)|H(t))] = EH(t)[λ(t)|H(t)]dt = E[λ(t)]dt. (5)

Therefore η(t) = E[λ(t)] which serves as a measure of activity in the network. In what follows we
will find an analytical form for the average activity. Proofs are presented in Appendix C.
Lemma 1. Suppose Ψ : [0, T ] → Rn×n is a non-increasing matrix function, then for every fixed
constant intensity µ(t) = c ∈ Rn

+, ηc(t) := Ψ(t)c solves the semi-infinite integral equation

η(t) = c+

∫ t

0
Φ(t− s)η(s)ds, ∀t ∈ [0, T ], (6)

if and only if Ψ(t) satisfies

Ψ(t) = I +

∫ t

0
Φ(t− s)Ψ(s)ds, ∀t ∈ [0, T ]. (7)

In particular, if Φ(t) = Ae−ωt1≥0(t) = [aije−ωt1≥0(t)]ij where 0 ≤ ω /∈ Spectrum(A), then

Ψ(t) = e(A−ωI)t + ω(A− ωI)−1(e(A−ωI)t − I) (8)

for t ∈ [0, T ], where, 1≥0(t) is an indicator function for t ≥ 0.

Let µ : [0, T ]→ Rn
+ be a right-continuous piecewise constant function

µ(t) =
M∑

m=1

cm1[τm−1,τm)(t), (9)

where 0 = τ0 < τ1 < · · · < τM = T is a finite partition of time interval [0, T ] and function
1[τm−1,τm)(t) indicates τm−1 ≤ t < τm. The next theorem shows that if Ψ(t) satisfies (7), then one
can calculate η(t) for piecewise constant intensity µ : [0, T ] of form (9).
Theorem 2. Let Ψ(t) satisfy (7) and µ(t) be a right-continuous piecewise constant intensity function
of form (9), then the rate function η(t) is given by

η(t) =
m∑

k=0

Ψ(t− τk)(ck − ck−1), (10)

for all t ∈ (τm−1, τm] and m = 1, . . . ,M , where c−1 := 0 by convention.

Using the above lemma, for the first time, we derive the average intensity for a general exogenous
intensity. Appendix E includes a few experiments to investigate these results empirically.
Theorem 3. If Ψ ∈ C1([0, T ]) and satisfies (7), and exogenous intensity µ is bounded and piece-
wise absolutely continuous on [0, T ] where µ(t+) = µ(t) at all discontinuous points t, then µ is
differentiable almost everywhere, and the semi-indefinite integral

η(t) = µ(t) +

∫ t

0
Φ(t− s)η(s)ds, ∀t ∈ [0, T ], (11)

yields a rate function η : [0, T ]→ Rn
+ given by

η(t) =

∫ t

0
Ψ(t− s)dµ(s). (12)

Corollary 4. Suppose Ψ and µ satisfy the same conditions as in Thm. 3, and define ψ = Ψ′, then
the rate function is η(t) = (ψ ∗ µ)(t). In particular, if Φ(t) = Ae−ωt1≥0(t) = [aije−ωt1≥0(t)]ij
then the rate function η(t) = µ(t) +A

∫ t
0 e(A−wI)(t−s)µ(s)ds.
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4 Multi-stage Closed-loop Control Problem
Given the analytical relation between exogenous intensity and expected overall intensity (rate func-
tion), one can solve a single one-stage campaigning problem to find the optimal constant intervention
intensity [8]. Alternatively, the time window can be partitioned into multiple stages and one can im-
pose different levels of interventions in these stages. This yields an open-loop optimization of the
cost function where one selects all the intervention actions at initial time 0. More effectively, we
tackle the campaigning problem in a dynamic and adaptive manner where we can postpone deciding
the intervention by observing the process until the next stage begins. This is called the closed-loop
optimization of the objective function.

In this section, we establish the foundation to formulate the problem as a multi-stage closed-loop op-
timal control problem. We assume that n users are generating events according to multi-dimensional
Hawkes process with exogenous intensity µ(t) ∈ Rn and impact function Φ(t, s) ∈ Rn×n.
Event exposure. Event exposure is the quantity of major interests in campaigning. The exposure
process is mathematically represented as a counting process, E(t) = (E1(t), . . . , En(t))⊤: Here,
E i(t) records the number of times user i is exposed (she or one of her neighbors performs an activity)
to the campaign by time t. Let B be the adjacency matrix of the user network, i.e., bij = 1 if user
i follows user j or equivalently user j influences user i. We assume bii = 1 for all i. Then the
exposure process is given by E(t) = BN (t).
Stages and interventions. Let [0, T ] be the time horizon and 0 = τ0 < τ1 < . . . < τM−1 <
τM = T be a partition into the M stages. In order to steer the activities of network towards a
desired level (criteria given below) at these stages, we impose a constant intervention um ∈ Rn to
the existing exogenous intensity µ during time [τm, τm+1) for each stage m = 0, 1, . . . ,M −1. The
activity intensity at the m-th stage is λm(t) = µ + um +

∫ t
0 Φ(t, s) dN (s) for τm ≤ t < τm+1

where N (t) tracks the counting process of activities since t = 0. Note that the intervention itself
exhibits a stochastic nature: adding ui

m to µi is equivalent to incentivizing user i to increase her
activity rate but it is still uncertain when she will perform an activity, which appropriately mimics
the randomness in real-world campaigning.
States and state evolution. Note that the Hawkes process is non-Markov and one needs complete
knowledge of the history to characterize the entire process. However, the conditional intensity λ(t)
only depends on the state of process at time t when the standard exponential kernel Φ(t, s) =
Ae−ω(t−s)1≥0(t− s) is employed. In this case, the activity rate at stage m is

λm(t) = µ+ um +

∫ τm

0
Ae−ω(t−s) dN (s)

︸ ︷︷ ︸
from previous stages

+

∫ t

τm

Ae−ω(t−s) dN (s)

︸ ︷︷ ︸
current stage

(13)

Define xm := λm−1(τm)− um−1 − µ (and x0 = 0 by convention) then the intensity due to events
of all previous m stages can be written as

∫ τm
0 Ae−ω(t−s) dN (s) = xme−ω(t−τm). In other words,

xm is sufficient to encode the information of activity in the past m stages that is relevant to future.
This is in sharp contrast to the general case where the state space grows with the number of events.
Objective function. For a sequence of controls u(t) =

∑M−1
m=0 um1[τm,τm+1)(t), the activity count-

ing process N (t) is generated by intensity λ(t) = µ+ u(t) +
∫ t
0 Ae−ω(t−s) dN (s). For each stage

m from 0 to M − 1, xm encodes the effects from previous m stages as above and um is the current
control imposed at this stage. Let E i

m(t;xm, um) := B
∫ t
τm

dN i(s) be the number of times user i is
exposed to the campaign by time t ∈ [τm, τm+1) in stage m, then the goal is to steer the expected
total number of exposure Ē i

m(xm, um) := E[E i
m(τm+1;xm, um)] to a desired level. In what follows,

we introduce several instances of the objective function g(xm, um) in terms of {Ē i
m(xm, um)}ni=1

in each stage m that characterize different exposure shaping tasks. Then the overall control problem
is to find u(t) that optimizes the total objective

∑M−1
m=0 gm(xm, um).

• Capped Exposure Maximization (CEM): In real networks, there is a cap on the exposure each user
can tolerate due to the limited attention of a user. Suppose we know the upper bound βi

m , on user
i’s exposure tolerance over which the extra exposure is not counted towards the objective. Then,
we can form the following capped exposure maximization

gm(xm, um) =
1

n

n∑

i=1

min
{
Ē i
m(xm, um),βi

m

}
(14)
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Algorithm 1: Closed-loop Multi-stage Dynamic Programming
Input: Intervention constraints: c0 . . . cM−1, C0 . . . CM−1, α0 . . .αM−1,
Input: Objective-specific constraints: β0 . . .βM−1 for CEM and γ0 . . . γM−1 for LES
Input: Time: T , Hawkes parameters: A, ω
Output: Optimal intervention u0 . . . uM−1, Optimal cost: Cost
Set x0 ← 0 and Cost← 0
for l← 0 : M − 1 do

(vl . . . vM−1) = open loop(xl) (Problems (24), (25), (26) for CEM, MEM, LES respectively)
Set ul ← vl and drop vl+1 . . . vM−1

Update next state xl+1 ← fl(xl, ul) and Cost = Cost+ gl(xl, ul)

• Minimum Exposure Maximization (MEM): Suppose our goal is instead to maintain the exposure
of campaign on each user above a certain minimum level, at each stage or, alternatively to make
the user with the minimum exposure as exposed as possible, we can consider the following cost
function:

gm(xm, um) = min
i

Ē i
m(xm, um) (15)

• Least-squares Exposure Shaping (LES): Sometimes we want to achieve a pre-specified target ex-
posure levels, γm ∈ Rn, for the users. For example, we may like to divide users into groups and
desire a different level of exposure in each group. To this end, we can perform least-squares cam-
paigning task with the following cost function where D encodes potentially additional constraints
(e.g., group partitions):

gm(xm, um) = − 1

n
∥DĒm(xm, um)− γm∥2 (16)

Policy and actions. By observing the counting process in previous stages (summarized in a se-
quence of xm) and taking the future uncertainty into account, the control problem is to design a
policy π = {πm : Rn → Rn : m = 0, . . . ,M − 1} such that the controls um = πm(xm) can maxi-
mize the total objective

∑M−1
m=0 gm(xm, um). In addition, we may have constraints on the amount of

control. For example, a budget constraint on the sum of all interventions to users at each stage, or, a
cap over the amount of intensity a user can handle. A feasible set or an action space over which we
find the best intervention is represented as Um :=

{
um ∈ Rn|c⊤mum ≤ Cm, 0 " um " αm

}
. Here,

cm ∈ Rn
+ contains the price of each person per unit increase of exogenous intensity and Cm ∈ R+

is the total budget at stage m. Also, αm ∈ Rn
+ is the cap on the amount of activities of the users.

To summarize, the following problem is formulated to find the optimal control policy π:

maximize
π

M−1∑

m=0

gm(xm,πm(xm)), subject to πm(xm) ∈ Um, for m = 0, . . . ,M − 1. (17)

5 Closed-loop Dynamic Programming Solution
We have formulated the control problem as an optimization in (17). However, when control
policy πm is to be implemented, only xm is observed and there are still uncertainties in future
{xm+1, . . . , xM−1}. For instance, when πm is implemented according to xm starting from time
τm, the intensity xm+1 := f(xm,πm(xm)) at time τm+1 depends on xm and the control πm(xm),
but is also random due to the stochasticity of the process during time [τm, τm+1). Therefore, the
design of π needs to take future uncertainties into considerations.

Suppose we have arrived at stage M at time τM−1 with observation xM−1, then the optimal policy
πM−1 satisfies gM−1(xM−1,πM−1(xM−1)) = maxu∈UM−1 gM−1(xM−1, u) =: JM−1(xM−1).
We then repeat this procedure for m from M − 1 to 0 backward to find the sequence of controls via
dynamic programming such that the control πm(xm) ∈ Um yields optimal objective value

Jm(xm) = max
um∈Um

E[gm(xm, um) + Jm+1(f(xm, um))] (18)

Approximate Dynamic Programming. Solving (18) for finding Jm(xm) analytically is intractable.
Therefore, we will adopt an approximate dynamic programming scheme. In fact approximate con-
trol is as essential part of dynamic programming as the optimization is usually intractable due to
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curse of dimensionality except a few especial cases [3]. Here we adopt a suboptimal control scheme,
certainty equivalent control (CEC), which applies at each stage the control that would be optimal
if the uncertain quantities were fixed at some typical values like the average behavior. It results in
an optimal control sequence, the first component of which is used at the current stage, while the re-
maining components are discarded. The procedure is repeated for the remaining stages. Algorithm 1
summarizes the dynamic programing steps. This algorithm has two parts: (i) certainty equivalence
which the random behavior is replaced by its average; and (ii) the open-loop optimization. Let’s
assume we are at the beginning of stage l of the Alg. 1 with state vector xl at τl.

Certainty equivalence. We use the machinery developed in Sec. 3 to compute the average of
exposure at any stage m = l, l + 1, . . . ,M − 1.

Ēm(xm, um) = BE[N (τm+1)−N (τm)] = BE
[∫ τm+1

τm

dN (s)

]
= B

∫ τm+1

τm

ηm(s) ds (19)

where ηm(t) = E[λm(t)] and λm(t) = µ + um + xle−ω(t−τl) +
∫ t
τl
Ae−ω(t−s)dN (s) for t ∈

[τm, τm+1). Now, we use the superposition property of point processes [4] to decompose the process
as N (t) = N c(t) + N v(t) corresponding to λm(t) = λcm(t) + λvm(t) where the first λcm(t) =

µ+um+
∫ t
τl
Ae−ω(t−s)dN c(s) consists of events caused by exogenous intensity at current stage m

and the second λvm(t) = xle−ω(t−τl) +
∫ t
τl
Ae−ω(t−s)dN v(s) is due to activities in previous stages.

According to Thm. 2 we have

ηcm(t) := E[λcm(t)] = Ψ(t− τl)µ+Ψ(t− τl)ul +
m−1∑

k=l+1

Ψ(t− τk)(uk − uk−1), (20)

and according to Thm. 3 we have

ηvm(t) := E[λvm(t)] =

∫ t

τl

Ψ(t− s) d(xle
−ω(s−τl)1[τl,∞)(s)). (21)

From now on, for simplicity, we assume stages are based on equal partition of [0, T ] to M segments
where each has length ∆M . Combining Eq. (19) and ηm(t) = ηcm(t) + ηvm(t) yields:

Ēm(xm, um) =Γ((m− l + 1)∆M )ul + Γ((m− l)∆M )(ul+1 − ul) + . . .

+ Γ(∆M )(um − um−1) + Γ((m− l + 1)∆M )µ+Υ((m− l + 1)∆M )xl
(22)

where Γ(t) and Υ(t) are matrices independent of um’s and are defined in Appendix D. Note the
linear relation between average exposure Ēm(xm, um) and intervention values ul, . . . , um−1.

Open-loop optimization. Having found the average exposure at stages m = l, . . . ,M−1 we formu-
late an open-loop optimization to find optimal ul, ul+1, . . . , uM−1. Defining ûl = (ul; . . . ;uM−1)
and Êl = (Ēl(xl, ul); . . . ; ĒM−1(xM−1, uM−1)) we can write

Xlûl + Ylµ+Wlxl = Êl where Zlûl ≤ zl (23)

and Xl, Yl, Wl, Zl, and zl are independent of ûl, µ, and xl as defined in Appendix D.

Defining the expanded form of constraint variables as ĉl = (cl; . . . ; cM−1), Ĉl = (Cl; . . . ;CM−1),
and α̂l = (αl; . . . ;αM−1) we provide the optimization from of the above exposure shaping tasks.

For CEM consider β̂l = (βl; . . . ,βM−1). Then the problem

maximizeĥ,ûl

1
n1

⊤ĥ subject to Xlûl + Ylµ+Wlxl ≥ ĥ, β̂l ≥ ĥ, Zlûl ≤ zl, (24)

solves CEM where h is an auxiliary vector of size n(M − l).

For MEM consider the auxiliary h as a vector of size M − l and ĥ a vector of size n(M − 1).
ĥ = (h(1); . . . ;h(1);h(2); . . . , h(2); . . . , h(M − l); . . . ;h(M − l)) where each h(k) is repeated n
times. Then MEM is equivalent to

maximizeĥ,ûl
1⊤ĥ subject to Xlûl + Ylµ+Wlxl ≥ ĥ, β̂l ≥ ĥ, Zlûl ≤ zl (25)
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Figure 1: The objective on simulated events and synthetic network; n = 300, M = 6, T = 40

For LES let γ̂l = (γl; . . . ; γM−1) and D̂l = diag(D, . . . ,D), then

minimizeûl
1
n∥D̂l(Xlûl + Ylµ+Wlxl)− γ̂l∥2 subject to Zlûl ≤ zl (26)

All the three tasks involve convex (and linear) objective function with linear constraints which im-
pose a convex feasible set. Therefore, one can use the rich and well-developed literature on convex
optimization and linear programming to find the optimum intervention.

6 Experiments
We evaluate our campaigning framework using both simulated and real world data and show that
our approach significantly outperforms several baselines1.
Campaigning results on synthetic networks. In this section, we experiment with a synthetic net-
work of 300 nodes. Details of the experimental setup and parameter setting are found in appendix
F. We focus on three tasks: capped exposure maximization, minimax exposure shaping, and least
square exposure shaping. To compare the methods we simulate the network with the prescribed
intervention intensity and compute the objective function based on the events happened during the
simulation. The mean and standard deviation of the objective function out of 10 runs are reported.

Fig. 1 summarizes the performance of the proposed algorithm (CLL) and 4 other baselines on dif-
ferent campaigning tasks. For CEM, our approach consistently outperforms the others by at least
10. This means it exposes each user to the campaign at least 10 times more than the rest consuming
the same budget and within the same constraints. The extra 20 units of exposures of over OPL or
value of information shows how much we gain by incorporating a dynamic closed-loop solution
as opposed to open-loop one-time optimization over all stages. For MEM, the proposed method
outperforms the others by a smaller margin, however, the 0.1 exposure difference with the second
best method is not trifling. This is expected as lifting the minimum exposure is a difficult task [8].
For LES, results demonstrate the superiority of CLL by a large margin. The 103 difference with the
second best algorithm aggregated over 6 stages roughly is translated to

√
103/6 ∼ 13 difference in

the number of exposures per user. Given the heterogeneity of the network activity and target shape,
this is a significant improvement over the baselines. Appendix F includes further results on varying
number of nodes, number of stages, and duration of each stage.
Campaigning results on real world networks. We also evaluate the proposed framework on real
world data. To this end, we utilize the MemeTracker dataset [9] which contains the information flows
captured by hyperlinks between different sites with timestamps during 9 months. This data has been
previously used to validate Hawkes process models of social activity [5, 10]. For the real data, we
utilize two evaluation procedures. First, similar to the synthetic case, we simulate the network, but
now on a network based on the learned parameters from real data. However, the more interesting
evaluation scheme would entail carrying out real intervention in a social media platform. Since this
is very challenging to do, instead, in this evaluation scheme we used held-out data to mimic such
procedure. Second, we form 10 pairs of clusters/cascades by selecting any 2 combinations of 5
largest clusters in the Memetracker data. Each is a cascade of events around a common subject. For
any of these 10 pairs, the methods are faced to the question of predicting which cascade will reach
the objective function better. They should be able to answer this by measuring how similar their
prescription is to the real exogenous intensity. The key point here is that the real events happened
are used to evaluate the objective function of the methods. Then the results are reported on average
prediction accuracy on all stages over 10 runs of random constraint and parameter initialization on
10 pairs of cascades. The details of the experimental setup is further explained in Appendix F.

Fig. 2, left column illustrates the performance with respect to increasing the number of users in the
network. The performance drops slightly with the network size. This means that prediction becomes

1codes are available at http://www.cc.gatech.edu/~mfarajta/
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Figure 2: real world dataset results; n = 300, M = 6, T = 40

more difficult as more random variables are involved. The middle panel shows the performance with
respect to increasing the number of intervention points. Here, a slight increase in the performance
is apparent. As the number of intervention points increases the algorithm has more control over the
outcome and can reach the objective function better.

Fig. 2 top row summarizes the results of CEM. The left panel demonstrates the predictive perfor-
mance of the algorithms. CLL consistently outperforms the rest. With 65-70 % of accuracy in
predicting the optimal cascade. The right panel shows the objective function simulated 10 times
with the learned parameters for network of n = 300 users on 6 intervention points. The extra 2.5
extra exposure per user compared to the second best method with the same budget and constraint
would be a significant advertising achievement. Among the competitors OPL and RND seem to
perform good. If there where no cap over the resultant exposure, all methods would perform com-
parably because of the linearity of sum of exposure. However, the successful method is the one who
manage to maximize exposure considering the cap. Failure of PRK and WEI indicates that structural
properties are not enough to capture the influence. Compared to these two, RND performs better in
average, however exhibits a larger variance as expected.

Fig. 2 middle row summarizes the results for MEM and shows CLL outperforms others consistently.
CLL still is the best algorithm and OPL and RND are the significant baselines. Failure of WFL and
PRP shows the network structure plays a significant role in the activity and exposure processes.

The bottom row in Fig. 2 demonstrates the results of LES. CLL is still the best method. OPL is still
strong but RND is not performing well. The objective function is summation of the square of the
gap between target and current exposure. This explains why GRD is showing a comparable success,
since, it starts with the highest gap in the exposure and greedily allocates the budget.

Conclusion. In this paper, we introduced the optimal multistage campaigning problem, which is a
generalization of the activity shaping and influence maximization problems, and it allows for more
elaborate goal functions. Our model of social activity is based on multivariate Hawkes process,
and for the first time, we manage to derive a linear connection between a time-varying exogenous
intensity and the overall network exposure of the campaign.
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