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Abstract

Controlled interventions provide the most direct source of information for learning
causal effects. In particular, a dose-response curve can be learned by varying the
treatment level and observing the corresponding outcomes. However, interventions
can be expensive and time-consuming. Observational data, where the treatment is
not controlled by a known mechanism, is sometimes available. Under some strong
assumptions, observational data allows for the estimation of dose-response curves.
Estimating such curves nonparametrically is hard: sample sizes for controlled
interventions may be small, while in the observational case a large number of
measured confounders may need to be marginalized. In this paper, we introduce
a hierarchical Gaussian process prior that constructs a distribution over the dose-
response curve by learning from observational data, and reshapes the distribution
with a nonparametric affine transform learned from controlled interventions. This
function composition from different sources is shown to speed-up learning, which
we demonstrate with a thorough sensitivity analysis and an application to modeling
the effect of therapy on cognitive skills of premature infants.

1 Contribution

We introduce a new solution to the problem of learning how an outcome variable Y varies under
different levels of a control variable X that is manipulated. This is done by coupling different
Gaussian process priors that combine observational and interventional data. The method outperforms
estimates given by using only observational or only interventional data in a variety of scenarios and
provides an alternative way of interpreting related methods in the design of computer experiments.

Many problems in causal inference [14] consist of having a treatment variable X and and outcome Y ,
and estimating how Y varies as we control X at different levels. If we have data from a randomized
controlled trial, where X and Y are not confounded, many standard modeling approaches can be
used to learn the relationship between X and Y . If X and Y are measured in an observational study,
the corresponding data can be used to estimate the association between X and Y , but this may not be
the same as the causal relationship of these two variables because of possible confounders.

To distinguish between the observational regime (where X is not controlled) and the interventional
regime (where X is controlled), we adopt the causal graphical framework of [16] and [19]. In Figure
1 we illustrate the different regimes using causal graphical models. We will use p(· | ·) to denote
(conditional) density or probability mass functions. In Figure 1(a) we have the observational, or
“natural,” regime where common causes Z generate both treatment variable X and outcome variable
Y . While the conditional distribution p(Y = x |X = x) can be learned from this data, this quantity is
not the same as p(Y = y | do(X = x)): the latter notation, due to Pearl [16], denotes a regime where
X is not random, but a quantity set by an intervention performed by an external agent. The relation
between these regimes comes from fundamental invariance assumptions: when X is intervened upon,
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Figure 1: Graphs representing causal graphical models. Circles represent random variables, squares
represent fixed constants. (a) A system where Z is a set of common causes (confounders), common
parents of X and Y here represented as a single vertex. (b) An intervention overrides the value of X
setting it to some constant. The rest of the system remains invariant. (c) ZO is not a common cause
of X and Y , but blocks the influence of confounder ZH .

“all other things are equal,” and this invariance is reflected by the fact that the model in Figure 1(a)
and Figure 1(b) share the same conditional distribution p(Y = x|X = x,Z = z) and marginal
distribution p(Z = z). If we observe Z, p(Y = y | do(X = x)) can be learned from observational
data, as we explain in the next section.

Our goal is to learn the relationship

f(x) ≡ E[Y | do(X = x)], x ∈ X , (1)

where X ≡ {x1, x2, . . . , xT } is a pre-defined set of treatment levels. We call the vector f(X ) ≡
[f(x1); . . . ; f(xT )]

> the response curve for the “doses” X . Although the term “dose” is typically
associated with the medical domain, we adopt here the term dose-response learning in its more
general setup: estimating the causal effect of a treatment on an outcome across different (quantitative)
levels of treatment. We assume that the causal structure information is known, complementing
approaches for structure learning [19, 9] by tackling the quantitative side of causal prediction.

In Section 2, we provide the basic notation of our setup. Section 3 describes our model family.
Section 4 provides a thorough set of experiments assessing our approach, including sensitivity to
model misspecification. We provide final conclusions in Section 5.

2 Background

The target estimand p(Y = y | do(X = x)) can be derived from the structural assumptions of Figure
1(b) by standard conditioning and marginalization operations:

p(Y = y | do(X = x)) =

∫
p(Y = y | X = x,Z = z)p(Z = z) dz. (2)

Notice the important difference between the above and p(Y = y |X = x), which can be derived from
the assumptions in Figure 1(a) by marginalizing over p(Z = z | X = x) instead. The observational
and interventional distributions can be very different. The above formula is sometimes known as the
back-door adjustment [16] and it does not require measuring all common causes of treatment and
outcome. It suffices that we measure variables Z that block all “back-door paths” between X and Y ,
a role played by ZO in Figure 1(c). A formal description of which variables Z will validate (2) is
given by [20, 16, 19]. We will assume that the selection of which variables Z to adjust for has been
decided prior to our analysis, although in our experiments in Section 4 we will assess the behavior
of our method under model misspecification. Our task is to estimate (1) nonparametrically given
observational and experimental data, assuming that Z satisfies the back-door criteria.

One possibility for estimating (1) from observational data Dobs ≡ {(Y (i), X(i),Z(i))}, 1 ≤ i ≤ N ,
is by first estimating g(x, z) ≡ E[Y | X = x,Z = z]. The resulting estimator,

f̂(x) ≡ 1

N

N∑
i=1

ĝ(x, z(i)), (3)

is consistent under some general assumptions on f(·) and g(·, ·). Estimating g(·, ·) nonparametrically
seems daunting, since Z can in principle be high-dimensional. However, as shown by [5], under
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some conditions the problem of estimating f̂(·) nonparametrically via (3) is no harder than a one-
dimensional nonparametric regression problem. There is however one main catch: while observational
data can be used to choose the level of regularization for ĝ(·), this is not likely to be an optimal choice
for f̂(·) itself. Nevertheless, even if suboptimal smoothing is done, the use of nonparametric methods
for estimating causal effects by back-door adjustment has been successful. For instance, [7] uses
Bayesian classification and regression trees for this task.

Although of practical use, there are shortcomings in this idea even under the assumption that Z
provides a correct back-door adjustment. In particular, Bayesian measures of uncertainty should be
interpreted with care: a fully Bayesian equivalent to (3) would require integrating over a model for
p(Z) instead of the empirical distribution for Z in Dobs; evaluating a dose x might require combining
many g(x, z(i)) where the corresponding training measurements x(i) are far from x, resulting on
possibly unreliable extrapolations with poorly calibrated credible intervals. While there are well
established approaches to deal with this “lack of overlap” problem in binary treatments or linear
responses [18, 8], it is less clear what to do in the continuous case with nonlinear responses.

In this paper, we focus on a setup where it is possible to collect interventional data such that treatments
are controlled, but where sample sizes might be limited due to financial and time costs. This is related
to design of computer experiments, where (cheap, but biased) computer simulations are combined
with field experiments [2, 6]. The key idea of combining two sources of data is very generic, the
value of new methods being on the design of adequate prior families. For instance, if computer
simulations are noisy, it is may not be clear how uncertainty at that level should be modeled. We
leverage knowledge of adjustment techniques for causal inference, so that it provides a partially
automated recipe to transform observational data into informed priors. We leverage knowledge
of the practical shortcomings of nonparametric adjustment (3) so that, unlike the biased but low
variance setup of computer experiments, we try to improve the (theoretically) unbiased but possibly
oversmooth structure of such estimators by introducing a layer of pointwise affine transformations.

Heterogeneous effects and stratification. One might ask why marginalize Z in (2), as it might be
of greater interest to understand effects at the finer subpopulation levels conditioned on Z. In fact, (2)
should be seen as the most general case, where conditioning on a subset of covariates (for instance,
gender) will provide the possibly different average causal effect for each given strata (different levels
of gender) marginalized over the remaining covariates. Randomized fine-grained effects might be
hard to estimate and require stronger smoothing and extrapolation assumptions, but in principle
they could be integrated with the approaches discussed here. In practice, in causal inference we are
generally interested in marginal effects for some subpopulations where many covariates might not be
practically measurable at decision time, and for the scientific purposes of understanding total effects
[5] at different levels of granularity with weaker assumptions.

3 Hierarchical Priors via Inherited Smoothing and Local Affine Changes

The main idea is to first learn from observational data a Gaussian process over dose-response curves,
then compose it with a nonlinear transformation biased toward the identity function. The fundamental
innovation is the construction a nonstationary covariance function from observational data.

3.1 Two-layered Priors for Dose-responses

Given an observational dataset Dobs of size N , we fit a Gaussian process to learn a regression model
of outcome Y on (uncontrolled) treatment X and covariates Z. A Gaussian likelihood for Y given X
and Z is adopted, with conditional mean g(x, z) and variance σ2

g . A Matérn 3/2 covariance function
with automatic relevance determination priors is given to g(·, ·), followed by marginal maximum
likelihood to estimate σ2

g and the covariance hyperparameters [12, 17]. This provides a posterior
distribution over functions g(·, ·) in the input space of X and Z. We then define fobs(X ), x ∈ X , as

fobs(x) ≡
1

N

N∑
i=1

g(x, z(i)), (4)

where set {g(x, z(i))} is unknown. Uncertainty about fobs(·) comes from the joint predictive distri-
bution of {g(x, z(i))} learned from Dobs, itself a Gaussian distribution with a TN × 1 mean vector
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µ?
g and a TN × TN covariance matrix, T ≡ |X |. Since (4) is a linear function of {g(x, z(i))}, this

implies fobs(X ) is also a (nonstationary) Gaussian process with mean µobs(x) =
1
N

∑N
i=1 µ

?
g(x, z

(i))
for each x ∈ X . The motivation for (4) is that µobs is an estimator of the type (3), inheriting its
desirable properties and caveats.

The cost of computing the covariance matrix Kobs of fobs(X ) is O(T 2N2), potentially expensive. In
many practical applications, however, the size of X is not particularly large as it is a set of intervention
points to be decided according to practical real-world constraints. In our simulations in Section 4, we
chose T = |X | = 20. Approximating such covariance matrix, if necessary, is a future research topic.

Assume interventional data Dint ≡ {(Y (i)
int , x

(i)
int)}, 1 ≤ i ≤M , is provided (with assignments x(i)int

chosen by some pre-defined design in X ). We assign a prior to f(·) according to the model

fobs(X ) ∼ N (µobs,Kobs)
a(X ) ∼ N (1,Ka)
b(X ) ∼ N (0,Kb)
f(X ) = a(X )� fobs(X ) + b(X )
Y

(i)
int ∼ N (f(x

(i)
int), σ

2
int), 1 ≤ i ≤M,

(5)

where N (m,V) is the multivariate normal distribution with mean m and covariance matrix V, � is
the elementwise product, a(·) is a vector which we call the distortion function, and b(·) the translation
function. The role of the “elementwise affine” transform a� fobs + b is to bias f toward fobs with
uncertainty that varies depending on our uncertainty about fobs. The multiplicative component
a� fobs also induces a heavy-tail prior on f . In the Supplementary Material, we discuss briefly the
alternative of using the deep Gaussian process of [4] in our observational-interventional setup.

3.2 Hyperpriors

We parameterize Ka as follows. Every entry ka(x, x′) of Ka, (x, x′) ∈ X × X , assumes the shape
of a squared exponential kernel modified according to the smoothness and scale information obtained
from Dobs. First, define ka(x, x′) as

ka(x, x
′) ≡ λa × vx × vx′ × exp

(
−1

2

(x̂− x̂′)2 + (ŷx − ŷx′)2

σa

)
+ δ(x− x′)10−5, (6)

where (λa, σh) are hyperparameters, δ(·) is the delta function, vx is a rescaling of Kobs(x, x)
1/2,

x̂ is a rescaling of X to the [0, 1] interval, ŷx is a rescaling of µobs(x) to the [0, 1] interval. More
precisely,

x̂ ≡ x−min(X )
max(X )−min(X )

, ŷx ≡
µobs(x)−min(µobs(X ))

max(µobs(X ))−min(µobs(X ))
, vx =

√
Kobs(x, x)

maxx′ Kobs(x′, x′)
.

(7)

Equation (6) is designed to borrow information from the (estimated) smoothness of f(X ), by
decreasing the correlation of the distortion factors a(x) and a(x′) as a function of the Euclidean
distance between the 2D points (x, µobs(x)) and (x′, µobs(x

′)), properly scaled. Hyperparameter
σa controls how this distance is weighted. (6) also captures information about the amplitude
of the distortion signal, making it proportional to the ratios of the diagonal entries of Kobs(X ).
Hyperparameter λa controls how this amplitude is globally adjusted. Nugget 10−5 brings stability to
the sampling of a(X ) within Markov chain Monte Carlo (MCMC) inference. Hyper-hyperpriors on
λa and σa are set as

log(λa) ∼ N (0, 0.5), log(σa) ∼ N (0, 0.1). (8)
That is, λa follows a log-Normal distribution with median 1, approximately 90% of the mass below
2.5, and a long tail to the right. The implied distribution for a(x) where sx = 1 will have most
of its mass within a factor of 10 from its median. The prior on σa follows a similar shape, but
with a narrower allocation of mass. Covariance matrix Kb is defined in the same way, with its own
hyperparameters λb and σb. Finally, the usual Jeffrey’s prior for error variances is given to σ2

int.

Figure 2 shows an example of inference obtained from synthetic data, generated according to the
protocol of Section 4. In this example, the observational relationship between X and Y has the
opposite association of the true causal one, but after adjusting for 15 of the 25 confounders that
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Figure 2: An example with synthetic data (|Z| = 25), from priors to posteriors. Figure best seen in
color. Top row: scatterplot of observational data, with true dose-response function in solid green,
adjusted µobs in dashed red, and the unadjusted Gaussian process regression of Y on X in dashed-
and-circle magenta (which is a very badly biased estimate in this example); scatterplot in the middle
shows interventional data, 20 dose levels uniformly spread in the support of the observational data
and 10 outputs per level − notice that the sign of the association is the opposite of the observational
regime; matrixKobs is depicted at the end, where the nonstationarity of the process is evident. Middle
row: priors constructed on fobs(X ) and a(X ) with respective means; plot at the end corresponds to
the implied prior on a� fobs + b. Bottom row: the respective posteriors obtained by Gibbs sampling.

generated the data (10 confounders are randomly ignored to mimic imperfect prior knowledge), a
reasonable initial estimate for f(X ) is obtained. The combination with interventional data results
in a much better fit, but imperfections still exist at the strongest levels of treatment: the green curve
drops at x > 2 stronger than the expected posterior mean. This is due to having both a prior derived
from observational data that got the wrong direction of the dose-response curve at x > 1.5, and being
unlucky at drawing several higher than expected values in the interventional regime for x = 3. The
model then shows its strength on capturing much of the structure of the true dose-response curve
even under misspecified adjustments, but the example provides a warning that only so much can be
done given unlucky draws from a small interventional dataset.

3.3 Inference, Stratified Learning and Active Learning

In our experiments, we infer posterior distributions by Gibbs sampling, alternating the sampling of
latent variables f(X ), a(X ), b(X ) and hyperparameters λa, σa, λb, σb, σ2

int, using slice sampling
[15] for the hyperparameters. The meaning of the individual posterior distribution over fobs(X )
might also be of interest. This quantity is potentially identifiable by considering a joint model
for (Dobs,Dint): in this case, fobs(X ) learns the observational adjustment

∫
g(x, z)p(z) dz. This

suggests that the posterior distribution for fobs(X ) will change little according to model (5), which
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is indeed observed in practice and illustrated by Figure 2. Learning the hyperparameters for Kobs

could be done jointly with the remaining hyperparameters, but the cost per iteration would be high
due to the update of Kobs. The MCMC procedure for (5) is relatively inexpensive assuming that |X |
is small. Learning the hyperparameters of Kobs separately is a type of “modularization” of Bayesian
inference [10].

As we mentioned in Section 2, it is sometimes desirable to learn dose-response curves conditioned
on a few covariates S ⊂ Z of interest. In particular, in this paper we will consider the case of
straightforward stratification: given a set S of discrete covariates assuming instantiations s, we have
functions f s(X ) to be learned. Different estimation techniques can be used to borrow statistical
strength across levels of S, both for f s(X ) and f sobs(X ). However, in our implementation, where we
assume |S| is very small (a realistic case for many experimental designs), we construct independent
priors for the different f sobs(X ) with independent affine transformations.

Finally, in the Supplementary Material we also consider simple active learning schemes [11], as
suggested by the fact that prior information already provides different estimates of uncertainty across
X (Figure 2), which is sometimes dramatically nonstationary.

4 Experiments

Assessing causal inference algorithms requires fitting and predicting data generated by expensive
randomized trials. Since this is typically unavailable, we will use simulated data where the truth is
known. We divide our experiments in two types: first, one where we generate random dose-response
functions, which allows us to control the difficulty of the problem in different directions; second, one
where we start from a real world dataset and generate “realistic” dose-response curves from which
simulated data can be given as input to the method.

4.1 Synthetic Data Studies

We generate studies where the observational sample has N = 1000 data points and |Z| = 25
confounders. Interventional data is generated at three different levels of sample size, M = 40,
100 and 200 where the intervention space X is evenly distributed within the range shown by the
observational data, with |X | = 20. Covariates Z are generated from a zero-mean, unit variance
Gaussian with correlation of 0.5 for all pairs. Treatment X is generated by first sampling a function
fi(zi) for every covariate from a Gaussian process, summing over 1 ≤ i ≤ 25 and adding Gaussian
noise. Outcome Y is generated by first sampling linear coefficients and one intercept to weight the
contribution of confounders Z, and then passing the linear combination through a quadratic function.
The dose-response function of X on Y is generated as a polynomial, which is added to the contribution
of Z and a Gaussian error. In this way, it is easy to obtain the dose-response function analytically.

Besides varying M , we vary the setup in three other aspects: first, the dose-response is either a
quadratic or cubic polynomial; second, the contribution of X is scaled to have its minimum and
maximum value spam either 50% or 80% of the range of all other causes of Y , including the Gaussian
noise (a spam of 50% already generates functions of modest impact to the total variability of Y );
third, the actual data given to the algorithm contains only 15 of the 25 confounders. We either
discard 10 confounders uniformly at random (the RANDOM setup), or remove the “top 10 strongest”
confounders, as measured by how little confounding remains after adjusting for that single covariate
alone (the ADVERSARIAL setup). In the interest of space, we provide a fully detailed description of
the experimental setup in the Supplementary Material. Code is also provided to regenerate our data
and re-run all of these experiments.

Evaluation is done in two ways. First, by the normalized absolute difference between an estimate
f̂(x) and the true f(x), averaged over X . The normalization is done by dividing the difference by the
gap between the maximum and minimum true values of f(X ) within each simulated problem1. The
second measure is the log density of each true f(x), averaged over x ∈ X , according to the inferred
posterior distribution approximated as a Gaussian distribution, with mean and variance estimated by
MCMC. We compare our method against: I. a variation of it where a and b are fixed at 1 and 0, so the
only randomness is in fobs; II. instead of an affine transformation, we set f(X ) = fobs(X ) + r(X ),

1Data is also normalized to a zero mean, unit variance according to the empirical mean and variance of the
observational data, in order to reduce variability across studies.
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Table 1: For each experiment, we have either quadratic (Q) or cubic (C) ground truth, with a signal
range of 50% or 80%, and an interventional sample size of M = 40, 100 and 200. Ei denotes the
difference between competitor i and our method regarding mean error, see text for a description of
competitors. The mean absolute error for our method is approximately 0.20 for M = 40 and 0.10 for
M = 200 across scenarios. Li denotes the difference between our method and competitor i regarding
log-likelihood (differences > 10 are ignored, see text). That is, positive values indicate our method
is better according to the corresponding criterion. All results are averages over 50 independent
simulations, italics indicate statistically significant differences by a two-tailed t-test at level α = 0.05.

Q50% RANDOM Q50% ADV Q80% RANDOM Q80% ADV
40 100 200 40 100 200 40 100 200 40 100 200

EI 0.00 0.02 0.01 0.07 0.07 0.05 0.00 0.00 0.01 0.05 0.04 0.03
EII 0.05 0.02 0.01 0.04 0.00 0.00 0.04 0.03 0.02 0.04 0.02 0.00
EIII 0.11 0.07 0.03 0.05 0.01 0.01 0.11 0.06 0.03 0.08 0.03 0.01
LI 2.33 2.31 2.18 7.16 6.68 6.23 0.62 0.53 0.45 2.16 1.79 1.50
LII 0.78 0.28 0.17 0.44 -0.17 -0.16 0.53 0.42 0.20 0.25 0.07 -0.09
LIII > 10 > 10 0.43 > 10 > 10 -0.06 0.74 0.44 0.36 0.33 -0.01 -0.10

C50% RANDOM C50% ADV C80% RANDOM C80% ADV
40 100 200 40 100 200 40 100 200 40 100 200

EI 0.01 0.02 0.03 0.08 0.08 0.07 0.03 0.05 0.05 0.09 0.09 0.08
EII 0.05 0.03 0.02 0.05 0.02 0.01 0.05 0.03 0.02 0.07 0.03 0.02
EIII 0.08 0.04 0.04 0.03 0.04 0.02 0.11 0.06 0.03 0.09 0.05 0.02
LI > 10 > 10 > 10 9.62 9.05 8.68 > 10 > 10 > 10 > 10 > 10 > 10
LII 3.49 0.83 0.41 4.45 0.43 -0.10 1.07 0.64 -0.04 0.96 0.30 0.14
LIII > 10 > 10 > 10 > 10 > 10 > 10 > 10 0.79 0.03 0.45 0.18 -0.03

where r is given a generic squared exponential Gaussian process prior, which is fit by marginal
maximum likelihood; III. Gaussian process regression with squared exponential kernel applied to
the interventional data only and hyperparameters fitted by marginal likelihood. The idea is that
competitors I and II provide sensitivity analysis of whether our more specialized prior is adding
value. In particular, competitor II would be closer to the traditional priors used in computer-aided
experimental design [2] (but for our specialized Kobs). Results are shown in Table 1, according to
the two assessment criteria, using E for average absolute error, and L for average log-likelihood.

Our method demonstrated robustness to varying degrees of unmeasured confounding. Compared to
Competitor I, the mean obtained without any further affine transformation already provides a compet-
itive estimator of f(X ), but this suffers when unmeasured confounding is stronger (ADVERSARIAL
setup). Moreover, uncertainty estimates given by Competitor I tend to be overconfident. Competitor
II does not make use of our special covariance function for the correction, and tends to be particularly
weak against our method in lower interventional sample sizes. In the same line, our advantage over
Competitor III starts stronger at M = 40 and diminishes as expected when M increases. Competitor
III is particularly bad at lower signal-to-noise ratio problems, where sometimes it is overly confident
that f(X ) is zero everywhere (hence, we ignore large likelihood discrepancies in our evaluation).
This suggests that in order to learn specialized curves for particular subpopulations, where M will
invariably be small, an end-to-end model for observational and interventional data might be essential.

4.2 Case Study

We consider an adaptation of the study analyzed by [7]. Targeted at premature infants with low
birth weight, the Infant Health and Development Program (IHDP) was a study of the efficacy of
“educational and family support services and pediatric follow-up offered during the first 3 years of
life” [3]. The study originally randomized infants into those that received treatment and those that
did not. The outcome variable was an IQ test applied when infants reached 3 years. Within those
which received treatment, there was a range of number of days of treatment. That dose level was not
randomized, and again we do not have ground truth for the dose-response curve. For our assessment,
we fit a dose-response curve using Gaussian processes with Gaussian likelihood function and the
back-door adjustment (3) on available covariates. We then use the model to generate independent
synthetic “interventional data.” Measured covariates include birth weight, sex, whether the mother
smoked during pregnancy, among other factors detailed by [7, 3]. The Supplementary Material
goes in detail about the preprocessing, including R/MATLAB scripts to generate the data. The
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Figure 3: An illustration of a problem generated from a model fitted to real data. That is, we generated
data from “interventions” simulated from a model that was fitted to an actual study on premature
infant development [3], where the dose is the number of days that an infant is assigned to follow a
development program and the outcome is an IQ test at age 3. (a) Posterior distribution for the stratum
of infants whose mothers had up to some high school education, but no college. The red curve is the
posterior mean of our method, and the blue curve the result of Gaussian process fit with interventional
data only. (b) Posterior distributions for the infants whose mothers had (some) college education. (c)
The combined strata.

observational sample contained 347 individuals (corresponding only to those which were eligible for
treatment and had no missing outcome variable) and 21 covariates. This sample included 243 infants
whose mother attended (some) high school but not college, and 104 with at least some college.

We generated 100 synthetic interventional datasets stratified by mother’s education, (some) high-
school vs. (some) college. 19 treatment levels were pre-selected (0 to 450 days, increments of 25
days). All variables were standardized to zero mean and unit standard deviation according to the
observational distribution per stratum. Two representative simulated studies are shown in Figure 3,
depicting dose-response curves which have modest evidence of non-linearity, and differ in range
per stratum2. On average, our method improved over the fitting of a Gaussian process with squared
exponential covariance function that was given interventional data only. According to the average
normalized absolute differences, the improvement was 0.06, 0.07 and 0.08 for the high school,
college and combined data, respectively (where error was reduced in 82%, 89% and 91% of the runs,
respectively), each in which 10 interventional samples were simulated per treatment level per stratum.

5 Conclusion

We introduced a simple, principled way of combining observational and interventional measurements
and assessed its accuracy and robustness. In particular, we emphasized robustness to model misspeci-
fication and we performed sensitivity analysis to assess the importance of each individual component
of our prior, contrasted to off-the-shelf solutions that can be found in related domains [2].

We are aware that many practical problems remain. For instance, we have not discussed at all the
important issue of sample selection bias, where volunteers for an interventional study might not come
from the same p(Z) distribution as in the observational study. Worse, neither the observational nor
the interventional data might come from the population in which we want to enforce a policy learned
from the combined data. While these essential issues were ignored, our method can in principle
be combined with ways of assessing and correcting for sample selection bias [1]. Moreover, if
unmeasured confounding is too strong, one cannot expect to do well. Methods for sensitivity analysis
of confounding assumptions [13] can be integrated with our framework. A more thorough analysis of
active learning using our approach, particularly in the light of possible model misspecification, is
needed as our results in the Supplementary Material only superficially covers this aspect.
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