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Theoretical Proofs

Proof of Theorem 1
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Proof of Corollary 2
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Asymptotically, the average regret of our algorithm w.r.t the best predictor w∗ in hindsight goes to 0.
Since our algorithm depends on C and α, our algorithm needs to know the value of T . We can get rid
of the dependence of our regret bound on T using the doubling trick.

Relationship to Domain Adaptation and Life-long Learning

Multi-task learning has been studied in part under a related research topic, Domain Adaptation (DA)
[1] under different assumptions. There are several key differences between those methods and ours:
i) While DA tries to find a single hypothesis that works well for both the source and the target data,
this paper finds a hypothesis for each task by adaptively leveraging related tasks. ii) It is a typical
assumption in DA that the source domains are label-rich and the target domains are label-scarce.
However, we are more interested in the scenario where there is a large number of tasks with very few
examples available for each task. iii) DA uses predefined uniform weights or weights induced from
VC-convergence theory during training, while our method allows cross-task weights to dynamically
evolve in an adaptive manner.

The proposed online method is significantly different from lifelong learning (ELLA [2]). Unlike our
online learning setting where the data from each task arrives in an online fashion, in lifelong learning,
task arrives sequentially. At any time-step, the online learner either receives a subset of data for
previously solved task or a completely new task.
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