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1 Supplemental Methods

1.1 Retinal recordings

The responses of tiger salamander retinal ganglion cells from 3 animals were recorded using a 60
channel multielectrode array. Further experimental details are described in detail elsewhere [1].

We analyzed the reliability of all recorded cells over the course of each experiment by computing this
correlation coefficient between a cell’s average response to the same stimulus on different blocks of
trials and analyzed only those cells with a correlation exceeding 0.3. Thirty-seven cells exceeded the
criterion for reliability. Of these, 70.3% were fast OFF-type cells, 10.8% were medium OFF, and
16.7% were slow OFF. Our original dataset also included ON cells, however none of them passed our
retinal reliability criterion.

We interleaved natural scenes and white noise stimuli to average over any experimental drift. However,
these transitions generated contrast adaptation over tens of seconds [2, 3] that could not be captured
by the short duration of spatiotemporal filters (400 ms) in the CNN. Therefore, we focused our
analysis on steady state responses by excluding one minute of data after each transition. Spiking
responses were binned using 10 ms bins and smoothed using a 10 ms Gaussian filter.

The training dataset was divided randomly according to a 90%/10% train/validation split, and the test
set consisted of averaged repeated trials to 1 minute of novel stimuli.

1.2 Stimulus

The white noise stimulus consisted of binary checkers at 35% contrast, and the natural scene stimulus
was a sequence of jittered natural images sampled from a natural image database [4].

Of particular note is the spatial resolution of this dataset, which is considerably higher than stimuli
used in pre-existing attempts to model retinal responses. Our stimuli consisted of 50 x 50 spatial
checkers, each of which spanned 55 µm x 55 µm on the retina. At this resolution, they can
differentially activate nonlinear subunits [5, 6] within the ∼250 µm salamander ganglion cell receptive
field center. Previous stimuli are 120 µm pixels, covering roughly the entire RF center in primate
peripheral retina [7] or spatially uniform [8, 9]. Since coarser stimuli will not differentially activate
subunits, this higher resolution dataset provides a unique challenge for capturing nonlinear retinal
responses.
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1.3 Comparison with other models

To compare the performance of other models, we fit GLMs using spatiotemporal stimulus filters and
temporal spike history filters, and LN models using spatiotemporal filters and a parameterized soft
rectifying nonlinearity. We found that we needed to regularize the LN model parameters in order to
prevent overfitting and offset the large number of parameters (Figure 4A). We tried (1) using a convo-
lutional filter instead of a fully-connected one, (2) only using stimuli centered around the receptive
field, and (3) using various levels of `1 and/or `2 penalties on the filter coefficients as regularization
techniques. Cutting out the stimulus around the receptive field (using a window size of 11 x 11
checkers, or 605 µm), in combination with `2 regularization, led to the best held-out performance
(Figure 4A). We found the same to be true of GLMs. This cropping regularization procedure resulted
in LN models requiring only 4843 parameters, and GLMs requiring 4861 parameters. Therefore, we
report LN and GLM performance results using this regularization scheme.

The GLM parameters consist of weights, biases, and spike-history filters, however we did not include
cell coupling filters, since [7] reported that adding coupling did not improve predictions of the average
firing rate, although they improved single trial predictions. In this study we report performance as the
comparison between the models’ predictions and averaged responses to repeated stimuli, thus [7]
suggests coupling filters would not improve the performance of GLMs.
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