
On Regularizing Rademacher Observation Losses
— Supplementary Material —

Abstract

This is the Supplementary Material to paper ”On Regularizing Rademacher Observation Losses”,
by R. Nock, appearing in NIPS 2016.

1 Table of contents
Supplementary material on proofs Pg 2
Proof of Theorem 2 Pg 2
Proof of Lemma 4 Pg 5
Proof of Theorem 6 Pg 5
Proof of Theorem 7 Pg 13
Proof of Theorem 9 Pg 14
Proof of Theorem 10 Pg 17
Proof of Theorem 11 Pg 19

Supplementary material on experiments Pg 20
Test errors, complete results Pg 20
Supports for rados (complement to Table 1) Pg 20

1



2 Supplementary Material on Proofs

2.1 Proof of Theorem 2
We split the proof in two parts, the first concerning the case where both generators are differentiable
since some of the derivations shall be used hereafter, and then the case where they are not. Remark
that because of Lemma 4, we do not have to cover the case where just one of the two generators would
be differentiable.
Case 1: ϕe, ϕr are strictly convex and differentiable. We show in this case that being proportionate is
equivalent to having:

p∗(z) = Gmq
∗(z) . (1)

Solving eqs. (3) and (4) bring respectively:

p∗i (z) = ϕ′e
−1

(
− 1

µe

· zi
)

, (2)

q∗I (z) = ϕ′r
−1

(
− 1

µr

·
∑
i∈I

zi +
λ

µr

)
, (3)

where λ is picked so that q∗(z) ∈ H2m , that is,

∑
I⊆[m]

ϕ′r
−1

(
− 1

µr

·
∑
i∈I

zi +
λ

µr

)
= 1 . (4)

We obtain

Le(z) = −µe

∑
i∈[m]

ϕ?e

(
− 1

µe

· zi
)

, (5)

Lr(z) = λ− µr

∑
I⊆[m]

ϕr
?

(
− 1

µr

·
∑
i∈I

zi +
λ

µr

)
, (6)

where ϕ?(z)
.

= supz′{zz′ − ϕ(z′)} denotes the convex conjugate of ϕ. It follows from eq. (5) that:

∂

∂zi
Le(z) = ϕ?e

′
(
− 1

µe

· zi
)

= ϕ′e
−1

(
− 1

µe

· zi
)

(7)

= p∗i (z) , (8)
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where eq. (7) follows from properties of ϕ?. We also have

∂

∂zi
Lr(z)

=

1−
∑
I⊆[m]

ϕ′r
−1

(
− 1

µr

·
∑
j∈I

zj +
λ

µr

) · ∂λ
∂zi

+
∑

I⊆[m]:i∈I

ϕ′r
−1

(
− 1

µr

·
∑
j∈I

zj +
λ

µr

)

=
∂λ

∂zi

+
∑
I⊆[m]

(
1i∈I −

∂λ

∂zi

)
ϕ′r
−1

(
− 1

µr

·
∑
j∈I

zj +
λ

µr

)

=
∂λ

∂zi
+
∑
I⊆[m]

(
1i∈I −

∂λ

∂zi

)
· q∗I (z)

=
∂λ

∂zi
·

1−
∑
I⊆[m]

q∗I (z)

+
∑
I⊆[m]

1i∈I · q∗I (z)

=
∑
I⊆[m]

1i∈I · q∗I (z) , (9)

since q∗(z) ∈ H2m .
Now suppose ϕe and ϕr proportionate. It comes that there exists (µe,µr) such that the gradients of

eq. (7) yield∇Le(z) = ∇Lr(z), and from eqs. (8) and (9) we obtain p∗(z) = Gmq
∗(z).

Reciprocally, having p∗(z) = Gmq
∗(z) for some ϕe, ϕr and µe,µr > 0 implies as well ∇Le(z) =

∇Lr(z) from eqs. (8) and (9), and therefore eq. (7) holds as well. This ends the proof of Case 1 for
Theorem 2.

Case 2: ϕe, ϕr are not differentiable. To simplify the statement and proofs, we assume that µe = µr =
1. We define the following problems

Le(z)
.

= inf
p∈Rm

z>p+ ϕe(p) , (10)

Lr(z)
.

= inf
q∈H2m

z>Gmq + ϕr(q) , (11)

where ϕe : Rm → R and ϕr : R2m → R are convex. Recall that ∂Le and ∂Lr are their subdifferentials,
and p(z) and q(z) the arguments of the infima, assuming without loss of generality that they are finite.
We now show that being proportionate is equivalent to having, for any z,

p(z) ∈ ∂Lr(z) , (12)
Gmq(z) ∈ ∂Le(z) . (13)
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This property is an immediate consequence of the following property, which we shall in fact show:

p(z) ∈ ∂Le(z) , (14)
Gmq(z) ∈ ∂Lr(z) . (15)

Granted all (12—15) hold, Eq. (1) of Theorem 2 follows whenever subgradients are singletons. To
see why the statement of the Theorem follows from (12–13), if the functions are proportionate, then
their subdifferentials match from Definition 1 (main file) and we immediately get (12) and (13) from
(14) and (15). If, on the other hand, we have both (12) and (13), then we get from (14) and (15) that
∂Le(z) ∩ ∂Lr(z) 6= ∅, ∀z and so 0 ∈ ∂(Le(z) − Lr(z)), yieding the fact that the epigraphs of Le(z)
and Lr(z) match by a translation of some b that does not depend on z, and by extension, the fact that
ϕe and ϕr meet Definition 1 (main file) and are proportionate.

To show (14), we first remark that −z′ ∈ ∂ϕe(p(z′)) for any z′ because of the definition of p in
(10). So, from the definition of subdifferentials, for any z,

ϕe(p(z′)) + (−z′)>(p(z)− p(z′)) ≤ ϕe(p(z)) .

Reorganising and substracting z>p(z) to both sides, we get

−ϕe(p(z′))− z′>p(z′)

≥ −ϕe(p(z))− z>p(z) + (−p(z))>(z′ − z) ,

which shows that −p(z) ∈ ∂ − (ϕe(p(z)) + z>p(z)), and so p(z) ∈ ∂Le(z).
We then tackle (15). We show that there exists λ ∈ R such that λ · 12m − G>mz ∈ ∂ϕr(q(z)) at

the optimal q(z). Suppose it is not the case. Then because of the definition of subgradients, for any
λ ∈ R, there exists q ∈ H2m , q 6= q(z) such that

ϕr(q(z)) + (λ · 12m − G>mz)>(q − q(z)) > ϕr(q) .

Reorganising and using the fact that q, q∗ ∈ H2m , we get ϕr(q(z)) + z>Gmq(z) > ϕr(q) + z>Gmq,
contradicting the optimality of q(z). Consider any z′ and its corresponding optimal q(z′). Since
λ′ · 12m − G>mz ∈ ∂ϕr(q(z)) for some λ′ ∈ R, we get from the definition of subgradients that

ϕr(q(z))

≥ ϕr(q(z′)) + (λ′ · 12m − G>mz
′)>(q(z)− q(z′)) .

Reorganising and using the fact that q(z), q(z′) ∈ H2m , we get

−(ϕr(q(z′)) + z′>Gmq(z′))

≥ −(ϕr(q(z)) + z>Gmq(z))

+(−Gmq(z))>(z′ − z) , (16)

showing that −Gmq(z) ∈ ∂ − (ϕr(q(z)) + z>Gmq(z)), and so Gmq(z) ∈ ∂Lr(z).
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2.2 Proof of Lemma 4
Take m = 1, and replace z by real z1. We have Le(p, z1) = pz1 + ϕe(z1) and Lr(q, z) = q{1}z1 +
ϕr(q{1}) + ϕr(q∅). Remark that we can drop the constraint q ∈ H2 since then q∅ = 1− q{1}. So we get

Lr(q) = min
q∈R

qz1 + µrϕr(q) + µrϕr(1− q)

= min
q∈R

qz1 + µrϕs(r)(q)

= −µrϕ
?
s(r)

(
− 1

µr

· z1

)
,

whereas

Le(p) = −µeϕ
?
r

(
− 1

µe

· z1

)
,

and since ϕe and ϕr are proportionate, then

ϕ?r

(
− 1

µe

· z1

)
=

µr

µe

· ϕ?s(r)

(
− 1

µr

· z1

)
− b

µe

. (17)

We then make the variable change z .
= −z1/µe and get

ϕ?e (z) =
µr

µe

· ϕ?s(r)

(
µe

µr

· z
)
− b

µe

, (18)

which yields, since ϕe, ϕr, and by extension ϕs(r), are all convex and lower-semicontinuous,

ϕe(z) =
µr

µe

· ϕs(r)(z) +
b

µe

, (19)

as claimed.

2.3 Proof of Theorem 6
We detail all proofs for all entries in Table 1 (see main file). Hereafter, we just write ϕs instead of ϕs(r).

Lemma 1 ϕr(z)
.

= z log z−z is proportionate to ϕe
.

= ϕs = z log z+(1−z) log(1−z)−1, whenever
µe = µr.

Proof We use the fact that whenever ϕ is differentiable, ϕ?(z)
.

= z · ϕ′−1(z)− ϕ(ϕ′−1(z)). We have
ϕ′r(z) = log z, ϕ′r

−1(z) = exp z = ϕ?r (z). Therefore, the Lagrange multiplier λ in (4) is

λ = −µr · log

∑
I⊆[m]

exp

(
− 1

µr

·
∑
i∈I

zi

) , (20)

which yields from (3):

q∗I (z) =
exp

(
− 1
µr
·
∑

i∈I zi

)
∑

J⊆[m] exp
(
− 1
µr
·
∑

j∈J zj

) ,∀I ⊆ [m] .
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On the other hand, we also have ϕ′s(z) = log(z/(1 − z)), ϕ′s
−1(z) = exp(z)/(1 + exp(z)) and

ϕ?s (z) = 1 + log(1 + exp(z)), which yields from (2):

p∗i (z) =
exp

(
− 1
µe
· zi
)

1 + exp
(
− 1
µe
· zi
) , ∀i ∈ [m] . (21)

We then check that for any i ∈ [m], we indeed have∑
I⊆[m]

1i∈I · q∗I (z)

=
∑
I⊆[m]

1i∈I ·
exp

(
− 1
µr
·
∑

i′∈I zi′
)

∑
J⊆[m] exp

(
− 1
µr
·
∑

j∈J zj

)
= exp

(
− 1

µe

· zi
)
·

∑
J⊆[m]\{i} exp

(
− 1
µr
·
∑

j∈I zj

)
∑

J⊆[m] exp
(
− 1
µr
·
∑

j∈J zj

)
= exp

(
− 1

µe

· zi
)
· c(

1 + exp
(
− 1
µe
· zi
))
· c

=
exp

(
− 1
µr
· zi
)

1 + exp
(
− 1
µr
· zi
) , (22)

with c .
=
∑

J⊆[m]\{i} exp
(
− 1
µr
·
∑

j∈I zj

)
. We check that eq. (22) equals eq. (21) whenever µe = µr.

Hence eq. (1) holds. We conclude that ϕr and ϕe = ϕs are proportionate whenever µe = µr (End of the
proof of Lemma 1).

Corollary 2 The following example and rado losses are equivalent for any µ > 0:

`e(z,µ) =
∑
i∈[m]

log

(
1 + exp

(
− 1

µ
· zi
))

, (23)

`r(z,µ) =
∑
I⊆[m]

exp

(
− 1

µ
·
∑
i∈I

zi

)
. (24)

Proof Consider ϕr(z)
.

= z log z − z and ϕe = ϕs. We obtain from eq. (5):

−Le(z)

= fe

∑
i∈[m]

log

(
1 + exp

(
− 1

µe

· zi
)) ,
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with fe(z) = µe · z + µem. We have also ϕ?r (z) = exp(z), and so using λ in eq. (20) and eq. (6), we
obtain

−Lr(z)

= µr · log

∑
I⊆[m]

exp

(
− 1

µr

·
∑
i∈I

zi

)
+µr · exp

(
λ

µr

)
·
∑
I⊆[m]

exp

(
− 1

µr

·
∑
i∈I

zi

)

= µr · log

∑
I⊆[m]

exp

(
− 1

µr

·
∑
i∈I

zi

)
+µr ·

∑
I⊆[m] exp

(
− 1
µr
·
∑

i∈I zi

)
∑

I⊆[m] exp
(
− 1
µr
·
∑

i∈I zi

)
︸ ︷︷ ︸

=1

= fr

∑
I⊆[m]

exp

(
− 1

µr

·
∑
i∈I

zi

) ,

with fr(z) = µr · log z + µr. We get from Lemma 1 that the following example and rado risks are
equivalent whenever µe = µr:

`e(z,µe) =
∑
i∈[m]

log

(
1 + exp

(
− 1

µe

· zi
))

, (25)

`r(z,µr) =
∑
I⊆[m]

exp

(
− 1

µr

·
∑
i∈I

zi

)
, (26)

from which we get the statement of the Corollary by fixing µ = µe = µr (end of the proof of Corollary
2).

Lemma 3 ϕr(z)
.

= (1/2) · z2 is proportionate to ϕe
.

= ϕs = (1/2) · (1 − 2z(1 − z)) whenever
µe = µr/2

m−1.

Proof We proceed as in the proof of Lemma 1. We have ϕ′r(z) = z, ϕ′r
−1(z) = z and ϕ?r (z) = ϕr(z).

Therefore, the Lagrange multiplier λ in (4) is

λ =
µr

2m
+

1

2m
·
∑
I⊆[m]

∑
i∈I

zi (27)

=
µr

2m
+

1

2
·
∑
i∈[m]

zi , (28)
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since any i belongs exactly to half of the subsets of [m]. We obtain:

q∗I (z) =
1

2m
− 1

µr

·
∑
i∈I

zi +
1

2µr

·
∑
i∈[m]

zi ,∀I ⊆ [m] .

On the other hand, we also have ϕ′s(z) = 2z − 1, ϕ′s
−1(z) = (1 + z)/2 and ϕ?s (z) = −(1/4) + (1/4) ·

(1 + z)2, which yields from (2):

p∗i (z) =
1

2
·
(

1− 1

µe

· zi
)

,∀i ∈ [m] . (29)

We then check that for any i ∈ [m], we have∑
I⊆[m]

1i∈I · q∗I (z)

=
∑
I⊆[m]

1i∈I ·

 1

2m
− 1

µr

·
∑
i∈I

zi +
1

2µr

·
∑
i∈[m]

zi


=

1

2
− 1

µr

·
∑
I⊆[m]

1i∈I ·
∑
i∈I

zi +
2m−2

µr

·
∑
i∈[m]

zi

=
1

2
− 2m−1

µr

· zi −
1

µr

·
∑

I⊆[m]\{i}

∑
i∈I

zi

+
2m−2

µr

·
∑
i∈[m]

zi

=
1

2
− 2m−1

µr

· zi −
2m−2

µr

·
∑

i∈[m]\{i}

zi

+
2m−2

µr

·
∑
i∈[m]

zi

=
1

2
− 2m−1

µr

· zi +
2m−2

µr

· zi

=
1

2

(
1− 2m−1

µr

· zi
)

. (30)

We check that eq. (30) equals eq. (29) whenever µe = µr/2
m−1. Hence eq. (1) holds. We conclude

that ϕr is proportionate to ϕe = ϕs whenever µe = µr/2
m−1 (end of the proof of Lemma 3).

Corollary 4 The following example and rado losses are equivalent, for any µ > 0:

`e(z,µ) =
∑
i∈[m]

(
1− 1

µ
· zi
)2

, (31)

`r(z,µ) = −

(
EI

[
1

µ
·
∑
i∈I

zi

]
− µ · VI

[
1

µ
·
∑
i∈I

zi

])
, (32)
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where EI[X(I)] and VI[X(I)] denote the expectation and variance of X wrt uniform weights on I ⊆
[m].

Proof Consider ϕr(z)
.

= (1/2) · z2 and ϕe = ϕs. We obtain from eq. (5):

−Le(z)

= fe

∑
i∈[m]

(
1− 1

µe

· zi
)2
 ,

9



with fe(z) = (µe/4) · z + (µem/4). We have also ϕ?r (z) = (1/2) · z2, and so using eq. (6) and λ in eq.
(27), we obtain

−Lr(z)

= − µr

2m
− 1

2m
·
∑
I⊆[m]

∑
i∈I

zi

+
1

2µr

∑
I⊆[m]

∑
i∈I

zi −
µr

2m
− 1

2m
·
∑
I⊆[m]

∑
i∈I

zi

2

= − µr

2m
− 1

2m
·
∑
I⊆[m]

∑
i∈I

zi +
µr

2m+1

− 1

2m
·
∑
I⊆[m]

∑
i∈I

zi −
1

2m
·
∑
I⊆[m]

∑
i∈I

zi


︸ ︷︷ ︸

=0

+
1

2µr

∑
I⊆[m]

∑
i∈I

zi −
1

2m
·
∑
I⊆[m]

∑
i∈I

zi

2

= − µr

2m+1
− 1

2m
·
∑
I⊆[m]

∑
i∈I

zi

+
2m−1

µr

· 1

2m
·
∑
I⊆[m]

∑
i∈I

zi −
1

2m
·
∑
I⊆[m]

∑
i∈I

zi

2

= − µr

2m+1

−EI∼[m]

[∑
i∈I

zi

]
+

2m−1

µr

· VI∼[m]

[∑
i∈I

zi

]
= − µr

2m+1

+
µr

2m−1
·

−
 EI∼[m]

[
2m−1

µr
·
∑

i∈I zi

]
− µr

2m−1 · VI∼[m]

[
2m−1

µr

∑
i∈I zi

] 
= fr

−
 EI∼[m]

[
2m−1

µr
·
∑

i∈I zi

]
− µr

2m−1 · VI∼[m]

[
2m−1

µr

∑
i∈I zi

]  , (33)
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with fr(z) = (µr/2
m−1)·z−(µr/2

m+1). Therefore, it comes from Lemma 3 that the following example
and rado risks are equivalent whenever µe = µr/2

m−1:

`e(z,µe) =
∑
i∈[m]

(
1− 1

µe

· zi
)2

,

`r(z,µr) = −

(
EI

[
2m−1

µr

·
∑
i∈I

zi

]

− µr

2m−1
· VI

[
2m−1

µr

·
∑
i∈I

zi

])
.

There remains to fix µ .
= µe = µr/2

m−1 to obtain the statement of the Corollary (end of the proof of
Corollary 4).

We now investigate cases of non differentiable proportionate generators, the first of which is self-
proportionate (ϕe = ϕr). We let χA(z) be the indicator function: χA(z)

.
= 0 if z ∈ A (and +∞

otherwise), convex since A = [0, 1] is convex.

Lemma 5 ϕr(z)
.

= χ[0,1](z) is self-proportionate,∀µe,µr.

Proof Define4d as the d-dimensional probability simplex. Then it comes with that choice of ϕr(qI):

min
q∈H2m

Lr(q, z)

= min
q∈42m

∑
I⊆[m]

qI
∑
i∈I

zi

=

{
0 if

∑
i∈I zi > 0,∀I 6= ∅ ,∑

i:zi<0 zi otherwise , (34)

since whenever no zi is negative, the minimum is achieved by putting all the mass (1) on q∅, and
when some are negative, the minimum is achieved by putting all the mass on the smallest over all I of∑

i∈I zi, which is the one which collects all the indexes of the negative coordinates in z.
On the other hand, remark that fixing ϕe

.
= ϕs still yields ϕe(z) = χ[0,1](z) = ϕr(z), yet this time

we have the following on Le(p, z):

min
p∈Rm

Lr(q, z) = min
p∈[0,1]m

∑
i∈[m]

pizi

= −µe ·
∑
i∈[m]

max

{
0,− 1

µe

· zi
}

, (35)

since the optimal choice for p∗i is to put 1 only when zi is negative. We obtain p∗(z) = Gmq
∗(z) for

any choice of µe,µr, and so ϕr(z) is self-proportionate for any µe,µr. This ends the proof of Lemma 5.
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Corollary 6 The following example and rado losses are equivalent, for any µe,µr:

`e(z,µe) =
∑
i∈[m]

max

{
0,− 1

µe

· zi
}

, (36)

`r(z,µr) = max

{
0,max

I⊆[m]

{
− 1

µr

·
∑
i∈I

zi

}}
. (37)

Proof We obtain from Lemma 5 that −Lr(z) = fr(`r(z,µr)) with fr(z) = µr · z and:

`r(z,µr) = max

{
0,max

I⊆[m]

{
− 1

µr

·
∑
i∈I

zi

}}
. (38)

On the other hand, it comes from eq. (35) that −Le(z) = fr(`e(z,µe)) with fe(z) = µe · z and:

`e(z,µe) =
∑
i∈[m]

max

{
0,− 1

µe

· zi
}

. (39)

This concludes the proof of Corollary 6.

Lemma 7 ϕr(z)
.

= χ[ 1
2m

, 1
2 ](z) is proportionate to ϕe

.
= ϕs = χ{ 1

2}(z), for any µe,µr.

Proof The choice of

ϕr(z) = χ[ 1
2m

, 1
2 ](z) , (40)

under the constraint that q ∈ H2m , enforces q∗I = 1/2m, ∀I ⊆ [m]. Furthermore, fixing ϕe
.

= ϕs indeed
yields

ϕe = χ[ 1
2m

, 1
2 ](z) + χ[ 1

2m
, 1
2 ](1− z)

= χ{ 1
2}(z) , (41)

which enforces p∗i = 1/2, ∀i. Since each i belongs to exactly 2m−1 subsets of [m], we obtain
p∗(z) = Gmq

∗(z), for any µe,µr, and so ϕr is proportionate to ϕe = ϕs for any µe,µr. This con-
cludes the proof of Lemma 7.

Corollary 8 The following example and rado losses are equivalent, for any µe,µr:

`e(z,µe) =
∑
i

− 1

µe

· zi , (42)

`r(z,µr) = EI

[
− 1

µr

·
∑
i∈I

zi

]
. (43)
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Proof We obtain from Lemma 7 that −Lr(z) = fr(`r(z,µr)) with fr(z) = z and:

`r(z,µr) = EI

[
− 1

µr

·
∑
i∈I

zi

]
.

On the other hand, it comes from eq. (35) that −Le(z) = fr(`e(z,µe)) with fe(z) = (1/2) · z and:

`e(z,µe) =
∑
i

− 1

µe

· zi .

This concludes the proof of Corollary 8.

2.4 Proof of Theorem 7
The key to the poof is the constraint q ∈ Hm in eq. (4). Since fe(z) = ae · z + be, we have Le(z) =
ae ·(`e(z) +ω)+be−ae ·ω for anyω ∈ R. It follows from eq. (7) (see main file) that ae ·(`e(z) +ω)+
be − ae ·ω = Lr(z) + b =

∑
I⊆[m] q

∗
I

∑
i∈I zi + µr

∑
I⊆[m] ϕr(q

∗
I ) + b, and so

ae · (`e(z) +ω) + be

= −

min
q∈Hm

∑
I⊆[m]

qI
∑
i∈I

zi + µr

∑
I⊆[m]

ϕr(qI)

− aeω


+b

= − min
q∈Hm

∑
I⊆[m]

qI

(∑
i∈I

zi − aeω

)
+ µr

∑
I⊆[m]

ϕr(qI)


+b ,

since q ∈ Hm and ae,ω, a are not a function of q. We thus get ae ·(`e(z) +ω)+be = ar ·fr

(
˜̀

r(z)
)

+br,

where ˜̀
r(z) equals `r(z) in which each

∑
i∈I zi is replaced by

∑
i∈I zi− aeω. For zi = θ>(yi ·xi) and

ω = Ω(θ), we obtain that whenever θ 6= 0, ∀I ⊆ [m],∑
i∈I

zi + aeω = θ>
(
πσ −

aeΩ(θ)

‖θ‖2
2

· θ
)

, (44)

for σi = yi iff i ∈ I (and −yi otherwise), and the statement of the Theorem follows.

Remark — one important question, not addressed in the main file to save space, is the way the
minimisation of the regularized rado loss impacts the minimisation of the regularized examples loss
when one subsamples the rados, and learns θ from some Sr ⊆ S∗r with eventually |Sr| � |S∗r |. We

13



give an answer for the log-loss [Nock et al., 2015] (row I in Table 1), and for this objective define the
Ω-regularized exp-rado-loss computed over Sr, with |Sr| = n andω > 0 user-fixed:

`exp
r (Sr,θ,Ω)

.
=

1

n
·
∑
j∈[n]

exp

(
−θ>

(
πj −ω ·

Ω(θ)

‖θ‖2
2

· θ
))

, (45)

whenever θ 6= 0 (otherwise, we discard the factor depending on ω in the formula). We assume
that Ω is a norm, and let `exp

r (Sr,θ) denote the unregularized loss (ω = 0 in eq. (45)), and we
let `log

e (Se,θ,Ω)
.

= (1/m)
∑

i log
(
1 + exp

(
−θ>(yi · xi)

))
+ Ω(θ) denote the Ω-regularized log-

loss. Notice that we normalize losses. We define the open ball BΩ(0, r)
.

= {x ∈ Rd : Ω(x) < r}
and r?π

.
= (1/m) · maxS∗r Ω?(πσ), where Ω? is the dual norm of Ω. The following Theorem is a

direct application of Theorem 3 in [Nock et al., 2015], and shows mild conditions on Sr ⊆ S∗r for the
minimization of `exp

r (Sr,θ,Ω) to indeed yield that of `log
e (Se,θ,Ω).

Theorem 9 Assume Θ ⊆ B‖.‖2(0, rθ), with rθ > 0. Let %(θ)
.

= (supθ′∈Θ maxπσ∈S∗r exp(−θ′>πσ))/`exp
r (S∗r,θ).

Then if m is sufficiently large, ∀δ > 0, there is probability ≥ 1 − δ over the sampling of Sr that any
θ ∈ Θ satisfies:

`log
e (Se,θ,Ω) ≤ log 2 + (1/m) · log `exp

r (Sr,θ,Ω)

+O

(
%(θ)

mβ
·
√
rθr?π
n

+
d

nm
log

n

dδ

)
,

as long asω ≥ um for some constant u > 0.

2.5 Proof of Theorem 9
The proof of the Theorem contains two parts, the first of which follows ADABOOST’s exponential
convergence rate proof, and the second departs from this proof to cover Ω-R.ADABOOST.

We use the fact that αι(t)πjι(t) = αι(t) · 1>ι(t)πj = (θT − θT−1)>πj to unravel the weights as:

wTj

=
w(T−1)j

ZT
· exp

(
−αι(T )πjι(T ) + δT

)
=

w(T−1)j

ZT
· exp

(
−(θT − θT−1)>πj
+ω · (‖θT‖2

2 − ‖θT−1‖2
2)

)
=

w(T−1)j

ZT
· exp

(
−θ>T (πj −ω · θT )
+θ>T−1 (πj −ω · θT−1)

)
=

w0∏T
t=1 Zt

· exp

(
−θ>T (πj −ω · θT )
+θ>0 (πj −ω · θ0)

)
(46)

=
w0∏T
t=1 Zt

· exp
(
−θ>T (πj −ω · θT )

)
, (47)

since the sums telescope in eq. (46) when we unravel the weight update and θ0 = 0. We therefore get

`exp
r (Sr,θ, ‖.‖2

2) =
T∏
t=1

Zt , (48)
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as in the classical ADABOOST analysis [Schapire and Singer, 1999]. This time however, we have,
letting π̃jι(t)

.
= πjι(t)/π∗ι(t) ∈ [−1, 1] and α̃ι(t)

.
= π∗ι(t) · αt for short,

Zt+1

=
∑
j∈[n]

wtj · exp
(
−αι(t)πjι(t) + δt

)
= exp(δt) ·

∑
j∈[n]

wtj · exp
(
−αι(t)πjι(t)

)
= exp(δt) ·

∑
j∈[n]

wtj · exp
(
−α̃ι(t)π̃jι(t)

)
≤ exp(δt)

2

·
∑
j∈[n]

wtj ·
(

(1 + π̃jι(t)) · exp
(
−α̃ι(t)

)
+(1− π̃jι(t)) · exp

(
α̃ι(t)

) ) (49)

= exp(δt) ·
√

1− r2
t (50)

= exp

(
ω · (‖θt‖2

2 − ‖θt−1‖2
2)− 1

2
ln

1

1− r2
t

)
.

This is where our proof follows a different path from ADABOOST’s: in eq. (50), we do not upperbound
the

√
1− r2

t term, so it can absorb more easily the new exp(δt) factor which appears because of
regularization.

Ineq. (49) holds because of the convexity of exp, and eq. (50) is an equality when rt < γ. If
rt > γ is clamped to rt ← γ by the weak learner in (18), then we have instead the derivation∑

j∈[n]

wtj ·
(

(1 + π̃jι(t)) · exp
(
−α̃ι(t)

)
+(1− π̃jι(t)) · exp

(
α̃ι(t)

) )

= (1 + rt) ·
√

1− γ
1 + γ

+ (1− rt) ·
√

1 + γ

1− γ
≤ 2

√
1− γ2 , (51)

since function in (51) is decreasing on rt > 0. If rt < −γ is clamped to rt ← −γ, we get the same
conclusion as in ineq (51) because this time α̃ι(t) = (1/2) · ln((1−γ)/(1+γ)). Summarising, whether
rt has been clamped or not by the weak learner in (18), we get

Zt+1

≤ exp

(
ω · (‖θt‖2

2 − ‖θt−1‖2
2)− 1

2
ln

1

1− r2
t

)
, (52)

with the additional fact that |rt| ≤ γ. For any feature index k ∈ [d], let Fk ⊆ [T ] the iteration indexes
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for which ι(t) = k. Letting λΓ (> 0) the largest eigenvalue of Γ , we obtain:
T∏
t=1

Zt

≤ exp

(
ω · ‖θT‖2

Γ −
∑
t

1

2
log

1

1− r2
t

)

≤ exp

(
ωλΓ · ‖θT‖2

2 −
∑
t

1

2
log

1

1− r2
t

)

= exp

−1

2
·
∑
k∈[d]

Λk

 , (53)

With

Λk
.

= log
1∏

t:ι(t)∈Fk
(1− r2

t )

−ωλΓ

2π2
∗k

log2
∏

t:ι(t)∈Fk

(
1 + rt
1− rt

)
. (54)

Since (
∑u

l=1 al)
2 ≤ u

∑u
l=1 a

2
l and mink maxj |πjk| ≤ |π∗k|, Λk satisfies:

Λk ≥
∑

t:ι(t)∈Fk

{
log

1

1− r2
t

−TkωλΓ

2M2
log2 1 + rt

1− rt

}
, (55)

with Tk
.

= |Fk| and M .
= mink maxj |πjk|. For any a > 0, let

fa(z)
.

=
1

az2
·
(

log
1

1− z2
− a · log2 1 + z

1− z

)
− 1 .

It satisfies

fa(z) ≈0

(
1

a
− 5

)
+

(
1

2a
− 8

3

)
· z2

+

(
1

3a
− 92

45

)
· z4 + o(z4) . (56)

Since fa(z) is continuous for any a 6= 0, ∀0 < a < 1/5, ∃z∗(a) > 0 such that fa(z) ≥ 0,∀z ∈ [0, z∗].
So, for any such a < 1/5 and any ω satisfying ω < (2aM2)/(TkλΓ), as long as each rt ≤ z∗(a), we
shall obtain

Λk ≥ a
∑

t:ι(t)∈Fk

r2
t . (57)

There remains to tune γ ≤ z∗(a), and remark that if we fix a = 1/7, then numerical calculations reveal
that z∗(a) > 0.98, and if a = 1/10 then numerical calculations give z∗(a) > 0.999, completing the
statement of Theorem 9.
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2.6 Proof of Theorem 10
We consider the case Ω(.) = ‖.‖∞, from which we shall derive the case Ω(.) = ‖.‖1. We proceed as
in the proof of Theorem 9, with the main change that we have now δt = ω · (‖θt‖∞−‖θt−1‖∞), so in
place of Λk in ineq . (53) we have to use, letting k∗ any feature that gives the `∞ norm,

Λk
.

=


∑

t:ι(t)∈Fk
log 1

1−r2
t

− ω
π∗k

∣∣∣∑t:ι(t)∈Fk
log 1+rt

1−rt

∣∣∣ if k = k∗∑
t:ι(t)∈Fk

log 1
1−r2

t
otherwise

. (58)

It also comes

Λk∗

≥
∑

t:ι(t)∈Fk∗

{
log

1

1− r2
t

− ω

π∗k∗
log

1 + |rt|
1− |rt|

}

≥
∑

t:ι(t)∈Fk∗

{
log

1

1− r2
t

− ω

M
log

1 + |rt|
1− |rt|

}
, (59)

with M .
= mink maxj |πjk|. Let us analyze Λk∗ and define for any b > 0

gb(z)
.

= log
1

1− z2
− b · log

1 + z

1− z

−
(
−2bz + z2 − 2bz3

3

)
. (60)

Inspecting gb shows that gb(0) = 0, g′b(0) = 0 and gb(z) is convex over [0, 1) for any b ≤ 3, which
shows that gb(z) ≥ 0, ∀z ∈ [0, 1), ∀b ≤ 3, and so, after dividing by bz2 and reorganising, yields in
these cases:

1

bz2
·
(

log
1

1− z2
− b · log

1 + z

1− z

)
− 1

≥
(
−2

z
+

(
1

b
− 1

)
− 2z

3

)
. (61)

Hence, both functions being continuous on (0, 1), the function in the left-hand side zeroes before the
one in the right-hand side (when this one does on (0, 1)). The zeroes of the polynomial

pb(z)
.

= −2z2

3
+

(
1

b
− 1

)
z − 2 (62)

exist iff b ≤
√

3/(4 +
√

3), in which case any z ∈ [0, 1) must satisfy

z ≥ 3

4
·

1

b
− 1−

√(
1

b
− 1

)2

− 16

3

 (63)
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to guarantee that pb(z) ≥ 0. Whenever this happens, we shall have from (61):

log
1

1− z2
− b · log

1 + z

1− z
≥ bz2 . (64)

Since Ω-WL is a γWL-weak learner, if we can guarantee that the right-hand side of ineq. (63) is no
more than γWL, then there is nothing more to require from the weak learner to have ineq. (64) — and
therefore to have Λk∗ ≥ bγ2

WL · |Fk∗ |. This yields equivalently the following constraint on b:

b ≤
8γWL

3
16γ2

WL

9
+ 8γWL

3
+ 16

3

. (65)

Since γWL ≤ 1, ineq (65) ensured as long as

b ≤
8γWL

3
16
9

+ 8
3

+ 16
3

=
3γWL

11
, (66)

which also guarantees b ≤
√

3/(4 +
√

3). So, letting T∗
.

= |Fk∗| and recollecting

b
.

=
ω

mink maxj |πjk|
(67)

from eq. (59), we obtain from ineqs (59) and (64):

Λk∗ ≥
ωT∗γ

2
WL

mink maxj |πjk|
. (68)

We need to ensureω ≤ 3 mink maxj |πjk|γWL/11 from ineq . (66), which holds if we pick it according
to eq. (23). In this case, we finally obtain

Λk∗ ≥ (aγWLT∗) · γ2
WL . (69)

Now, since log(1/(1− x2)) ≥ x2, we also have for k 6= k∗ in eq. (58),

Λk =
∑

t:ι(t)∈Fk

log
1

1− r2
t

≥
∑

t:ι(t)∈Fk

r2
t

≥ |Fk|γ2
WL ,∀k 6= k∗ . (70)

So, we finally obtain from eq. (51) and ineq. (53),

`exp
r (Sr,θ, ‖.‖2

2) ≤ exp

(
− T̃γ

2
WL

2

)
, (71)

with T̃ .
= (T − T∗) + aγWL · T∗, as claimed when Ω(.) = ‖.‖∞. The case Ω = ‖.‖1 follows form the

fact that all Λk match the bound of Λk∗ .

18



2.7 Proof of Theorem 11
We use the proof of Theorem 10, since when Ω(.) = ‖.‖Φ, eq. (58) becomes

Λk
.

=
∑

t:ι(t)∈Fk

log
1

1− r2
t

(72)

− ξk
π∗k

∣∣∣∣∣∣
∑

t:ι(t)∈Fk

log
1 + rt
1− rt

∣∣∣∣∣∣
≥

∑
t:ι(t)∈Fk

{
log

1

1− r2
t

− ξk
maxj |πjk|

log
1 + |rt|
1− |rt|

}
, (73)

assuming without loss of generality that the classifier at iteration T , θT , satisfies |θTk| ≥ |θT (k+1)| for
k = 1, 2, ..., d− 1. We recall that ξk

.
= Φ−1(1− kq/(2d)) where Φ−1(.) is the quantile of the standard

normal distribution and q ∈ (0, 1) is the user-fixed q-value. The constraint b ≤ 3γWL/11 from ineq.
(66) now has to hold with

b = bk
.

=
ξk

maxj |πjk|
. (74)

Now, fix

a
.

= min

{
3γWL

11
,
Φ−1(1− q/(2d))

mink maxj |πjk|

}
. (75)

Remark that

ξk
.

= Φ−1

(
1− kq

2d

)
≥ Φ−1

(
1− q

2d

)
≥ amin

k′
max
j
|πjk′ | . (76)

Suppose q is chosen such that

ξk ≤
3γWL

11
·max

j
|πjk| ,∀k ∈ [d] . (77)

This ensures bk ≤ 3γWL/11 (∀k ∈ [d]) in ineq. (66), while ineq. (76) ensures

Λk ≥ bk
∑

t:ι(t)∈Fk

r2
t (78)

≥ ξk
mink′ maxj |πjk′ |

·
∑

t:ι(t)∈Fk

r2
t (79)

≥ a|Fk|γ2
WL . (80)
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Ineq. (78) holds because of ineqs (73) and (64). Ineq. (80) holds because of the weak learning
assumption and ineq. (77). So, we obtain, under the weak learning assumption,

`exp
r (Sr,θ, ‖.‖Φ) ≤ exp

(
−aTγ

2
WL

2

)
. (81)

Ensuring ineq. (77) is done if, after replacing ξk by its expression and reorganising, we can ensure

q ≥ 2 ·max
k

qN,k
qD,k

, (82)

with

(0, 1) 3 qN,k
.

= 1− Φ

(
3γWL

11
·max

j
|πjk|

)
, (83)

(0, 1] 3 qD,k
.

=
k

d
. (84)

(85)

3 Supplementary Material on Experiments

3.1 Test errors, complete results
To save space, Table 1 below reports only the lowest error of all of ADABOOST variants.

3.2 Supports for rados (complement to Table 1)
Table 2 in this Supplementary Information provides the supports used to summarize Table 1.
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