On Regularizing Rademacher Observation Losses
— Supplementary Material —

Abstract

This is the Supplementary Material to paper ”On Regularizing Rademacher Observation Losses”,

by R. Nock, appearing in NIPS 2016.
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2 Supplementary Material on Proofs

2.1 Proof of Theorem 2

We split the proof in two parts, the first concerning the case where both generators are differentiable
since some of the derivations shall be used hereafter, and then the case where they are not. Remark
that because of Lemma 4, we do not have to cover the case where just one of the two generators would
be differentiable.

Case 1: ¢, ¢, are strictly convex and differentiable. We show in this case that being proportionate is
equivalent to having:

P (2) = Gmq'(2) . (D

Solving egs. (3) and (4) bring respectively:
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where A is picked so that g*(z) € H?", that is,
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where eq. (7) follows from properties of ¢*. We also have
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since g*(z) € H*".
Now suppose ¢, and ¢, proportionate. It comes that there exists (L, Lt,) such that the gradients of
eq. (7) yield VL, (z) = VL,(z), and from egs. (8) and (9) we obtain p*(z) = G,,q"(2).
Reciprocally, having p*(z) = G,,q*(z) for some ¢,, ¢, and L, i, > 0 implies as well VL (z) =
VL, (z) from egs. (8) and (9), and therefore eq. (7) holds as well. This ends the proof of Case 1 for
Theorem 2.

Case 2: ., p, are not differentiable. To simplify the statement and proofs, we assume that p, = p, =
1. We define the following problems

Lo(z) = inf 2'p+ep), (10)
peR™

L(z) = inf 2'Gnq+elq), (11)
qeH2™

where @, : R™ — R and ¢, : R?" — R are convex. Recall that £, and 0L, are their subdifferentials,
and p(z) and q(z) the arguments of the infima, assuming without loss of generality that they are finite.
We now show that being proportionate is equivalent to having, for any z,

p(z) € 0L(2), (12)
Gng(z) € 0Lq(2) . 13)



This property is an immediate consequence of the following property, which we shall in fact show:

p(z) € 0L.(2), (14)
Gmq(z) € 9L(2) . (15)

Granted all (12—15) hold, Eq. (1) of Theorem 2 follows whenever subgradients are singletons. To
see why the statement of the Theorem follows from (12-13), if the functions are proportionate, then
their subdifferentials match from Definition 1 (main file) and we immediately get (12) and (13) from
(14) and (15). If, on the other hand, we have both (12) and (13), then we get from (14) and (15) that
0L.(z) NOL,(2) # ,Vz and so 0 € O(L,(z) — L£,(2)), yieding the fact that the epigraphs of £,(z)
and £,(z) match by a translation of some b that does not depend on z, and by extension, the fact that
v, and ¢, meet Definition 1 (main file) and are proportionate.

To show (14), we first remark that —z’ € Jp.(p(z’)) for any 2z’ because of the definition of p in
(10). So, from the definition of subdifferentials, for any z,

po(p(2)) + (=2') (p(2) = p(2)) < ¢.u(p(2)) .
Reorganising and substracting z " p(2) to both sides, we get

—o(p(2')) — 2'Tp(2)

> —¢.(p(2)) — 2'p(2) + (-p(2)) ' (#' — 2) ,
which shows that —p(2) € 9 — (p.(p(z)) + 2" p(z)), and so p(z) € IL,(2).
We then tackle (15). We show that there exists A € R such that A - 1om — G z € dp,(q(2)) at

the optimal g(z). Suppose it is not the case. Then because of the definition of subgradients, for any
A € R, there exists g € H?", q # q(z) such that

2(q(2) + (N Lonw —6,2) (g —q(2)) > @lq) -

Reorganising and using the fact that q, q. € H*", we get »,(q(2)) + 2'6,q(2) > ».(q) + 2" Gnq,
contradicting the optimality of q(z). Consider any z’ and its corresponding optimal g(z’). Since
N - 1ym — G,z € Op,(q(2)) for some N € R, we get from the definition of subgradients that

v (q(2))
> @(q(z')+ N - 1am —6,,2")  (q(z) — q(2')) .

Reorganising and using the fact that q(2), q(z') € H*", we get

—(e(q(2") + 2T Gng(2"))
> —(eq(2) + 2z Gmq(2))
+(—6mq(2)) " (2' — 2) (16)

showing that —G,,q(2) € 0 — (p.(q(2)) + 27G,,q(2)), and 50 G,,q(z) € 0L, (2).



2.2 Proof of Lemma 4

Take m = 1, and replace z by real z;. We have L.(p, 21) = pz1 + @e(21) and L,(q, 2) = qqy21 +
©.(gr1y) + ©:(qp). Remark that we can drop the constraint g € H? since then gy = 1 — ¢¢13. So we get

Lr(q) - I(?El]llg 4z + l’lrsor(Q) + IJ»,QOr(l - Q)

= mingz + s (q)
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whereas

and since ¢, and (, are proportionate, then

1 ; 1 b
©r <—— : 21) - & ©i0) <—— : z1> - — . (17)
He He e He

We then make the variable change z = —z; /1, and get
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which yields, since ., ¢, and by extension ¢y, are all convex and lower-semicontinuous,
L, b
Pelz = — Psn(z)+ —, (19)
(2) L pn(2) F o

as claimed.

2.3 Proof of Theorem 6

We detail all proofs for all entries in Table 1 (see main file). Hereafter, we just write o instead of ¢ ).

Lemma 1 ¢,(z) = zlog z — z is proportionate to v, = p, = zlog z+ (1 — z) log(1 — z) — 1, whenever
He = W

Proof We use the fact that whenever ¢ is differentiable, *(2) = 2 - ¢’ ' (2) — ('~ '(2)). We have
@' (2) =log z, ¢! ' (2) = exp z = *(z). Therefore, the Lagrange multiplier A in (4) is

A = —u -log Zexp (—iZz,) , (20)
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On the other hand, we also have ¢/(z) = log(z/(1 — 2)), ¢, '(2) = exp(z)/(1 + exp(z)) and
©r(z) = 1+ log(1 + exp(z)), which yields from (2):

pi(z) = —_— (‘_52) Vi€ [m] . @1

We then check that for any i € [m], we indeed have
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with ¢ = >, 1 ) €xp (—i D ies zj>. We check that eq. (22) equals eq. (21) whenever p, = p,.
Hence eq. (1) holds. We conclude that ¢, and ¢, = ¢, are proportionate whenever i, = W, (End of the
proof of Lemma 1). L

Corollary 2 The following example and rado losses are equivalent for any pL > 0:

lo(z.n) = ) log (1+exp (—ﬁz)) , (23)

i€[m]
1
l(z,n) = Z exp (—— . zz> . (24)
ICm] =
Proof Consider ¢,(z) = zlog z — z and ¢, = ¢,. We obtain from eq. (5):
—Lo(2)
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with f(z) = W, - 2 + Hem. We have also ¢ (z) = exp(z), and so using A in eq. (20) and eq. (6), we
obtain

—L.(2)
1
= p-log | ) exp (—— ZZ>
IC[m] TS
1
e (—— zzz)
" 9Cim) T ied
1
= W -log ZeXp (—— zl>
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with f,(z) = W, - logz + p,. We get from Lemma 1 that the following example and rado risks are
equivalent whenever 1, = p,:

Ee(za ue) = Z IOg (1 +exp (_Mi : ZZ)) ) (25)
Lz = 3 exp <—i ~ Za) , (26)

from which we get the statement of the Corollary by fixing i = p, = W, (end of the proof of Corollary
2). |

Lemma 3 o,(z) = (1/2) - 22 is proportionate to ¢, = ¢, = (1/2) - (1 — 22(1 — 2)) whenever
He = ur/2m_1-

Proof We proceed as in the proof of Lemma 1. We have ¢/(z) = z, ¢/~ '(2) = z and ¢*(2) = ¢,(2).
Therefore, the Lagrange multiplier A in (4) is

A = Qim+2imzzz 27)
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since any 7 belongs exactly to half of the subsets of [m|. We obtain:

. 1 1 1
4(z) = Q_m—E‘ZZi—FQ—HF'ZZi VI C [m] .
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On the other hand, we also have ¢/ (2) = 2z — 1, ¢/ ' (2) = (1 + 2)/2 and *(2) = —(1/4) + (1/4) -
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(1 + 2)?, which yields from (2):
1 1
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We then check that for any ¢ € [m], we have
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We check that eq. (30) equals eq. (29) whenever p, = 1,/2™!. Hence eq. (1) holds. We conclude

that ¢, is proportionate to ©, = ¢, whenever 1, = 1,/2™! (end of the proof of Lemma 3).

Corollary 4 The following example and rado losses are equivalent, for any i > 0:
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where Eq[X (J)] and V4[X (J)] denote the expectation and variance of X wrt uniform weights on J C
[m].

Proof Consider ,(z) = (1/2) - 2? and ¢, = ¢,. We obtain from eq. (5):

—L.(2)



with f,(z) =

(27), we obtain
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with f,(2) = (1,/2™7 1) - 2 — (1, /2™T1). Therefore, it comes from Lemma 3 that the following example
and rado risks are equivalent whenever p, = /2™ L

Lz = 3 (1—i-zi)2 |

mel
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There remains to fix p = p, = 1, /2! to obtain the statement of the Corollary (end of the proof of
Corollary 4). |

We now investigate cases of non differentiable proportionate generators, the first of which is self-
proportionate (p, = ,). We let x4(z) be the indicator function: x4(z) = 0if 2 € A (and 400
otherwise), convex since A = [0, 1] is convex.

Lemma 5 o,(2) = x0,1)(2) is self-proportionate,V ., L.

Proof Define A\, as the d-dimensional probability simplex. Then it comes with that choice of ,(g):

min L.(q, z)
qeH2™

otherwise ’

_ 0 if Y0z >0,¥I#0D ”
{z (34)

1:2,<0 Zi

since whenever no z; is negative, the minimum is achieved by putting all the mass (1) on gy, and
when some are negative, the minimum is achieved by putting all the mass on the smallest over all J of
> iy %i» which is the one which collects all the indexes of the negative coordinates in z.

On the other hand, remark that fixing o, = ¢, still yields ¢.(2) = X[o,11(2) = @.(2), yet this time
we have the following on L (p, z):

] Lr ) = 1 147
L@z = ni ) v
1
= —U- Zmax{()’__.zi} , (35)
i€[m)] He

since the optimal choice for p; is to put 1 only when z; is negative. We obtain p*(z) = G,,q*(z) for
any choice of ., 1, and so ,(z) is self-proportionate for any L, 1. This ends the proof of Lemma 5.
|
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Corollary 6 The following example and rado losses are equivalent, for any |, WL,

Ee('zv ue) = Z max {07 _i ’ Zi} ) (36)

i€[m] ©
0z 1) 0 -y (37)
Az, 1) = max ,maxq —— - Z; .
H IC[m] (208

Proof We obtain from Lemma 5 that —£,(z) = f,(4,(z, 1)) with f,(z) = i, - z and:
((z, 1) a{() a{IZ}} (38)
(z,1) = maxq0,max{——- Z; .
H IC[m] My -
i€J
)

On the other hand, it comes from eq. (35) that —£,(z) = f.((.(2, He)

lo(z, 1) = Zmax{o,—ui-zi} . (39)

1€[m] ©

with f,(z) = Y, - 2z and:

This concludes the proof of Corollary 6. |

Lemma 7 ¢, (z) = X[,

L1
23

](z) is proportionate to p, = s = X{%}(z), for any W, W,
Proof The choice of

wlz) = X

11
2m 12

under the constraint that ¢ € H*", enforces ¢; = 1/2™,VJ C [m]. Furthermore, fixing o, = ¢, indeed
yields

Yo = X[A 1](2) +X[L71](1 —z)

2m 12 2mH 3
= X{%}(Z) ) (41)
which enforces p; = 1/2, Vi. Since each i belongs to exactly 2"~! subsets of [m], we obtain
p*(z) = G,,q*(z), for any p,, W, and so ¢, is proportionate to ¢, = ¢, for any p,, it,. This con-
cludes the proof of Lemma 7. |

Corollary 8 The following example and rado losses are equivalent, for any |, \L,:

1
ge(zvue) = 2 (42)
; He
1
lzn) = Ey ——~Zzi] . (43)
H i€J
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Proof We obtain from Lemma 7 that —£,(z) = f,({(z, 1)) with f,(z) = z and:

_i.Zzi]

i€

ér(zaur) = EJ

On the other hand, it comes from eq. (35) that —£.(z) = f,({.(2, 1)) With f.(z) = (1/2) - z and:

(2, Le) Z—— Zi .

This concludes the proof of Corollary 8. |

2.4 Proof of Theorem 7

The key to the poof is the constraint ¢ € H™ in eq. (4). Since f.(z) = a. - z + b,, we have L,(z) =
e (lo(2) + W)+b,—a.-w forany w € R. It follows from eq. (7) (see main file) that a.- (¢,(z) + w)+
be — ao- W =L(2) +b =35 @ Dies Zi + M D gcpm Pe(g7) + b, and so

ae - (lo(2) + w) + b,

= - ;gﬁ% Z qs Z Zi + W Z @r(qj) — Qe

ICim]  i€d JC[m]
+b
= —min Z 7 (Zzz—ae ) +1 ) @le)
1 ic IC[m]
+b

since ¢ € H™ and a,, w, a are not a function of g. We thus get a,-(4,(2) + w)+b, = a,- f, <gr(z)) +b,,

where lZ(z) equals /,(z) in which each } . _; z; is replaced by ) — a,w. For z; = 0" (y; - ;) and

i€g #
w = (), we obtain that whenever 8 # 0, VI C [m],
Q
Zzﬁ—aew = 0T(7ra—“e—(§>-0) : (44)
16113

1€

for o; = y; iff i € J (and —y; otherwise), and the statement of the Theorem follows.

Remark — one important question, not addressed in the main file to save space, is the way the
minimisation of the regularized rado loss impacts the minimisation of the regularized examples loss
when one subsamples the rados, and learns 0 from some 8, C 8* with eventually |S,| < [8*]. We
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give an answer for the log-loss [Nock et al., 2015] (row I in Table 1), and for this objective define the
Q)-regularized exp-rado-loss computed over §,, with |8,| = n and w > 0 user-fixed:

(7% (8,.,0,Q)

L Z exp (—OT (711]- —w- 9(92 : 0)) : (45)
n 2 gk

whenever 8 # 0 (otherwise, we discard the factor depending on w in the formula). We assume
that 2 is a norm, and let /*P(S,., @) denote the unregularized loss (w = 0 in eq. (45)), and we
let (5 (8,,0,Q) = (1/m) >, log (1+exp (—0" (y; - ;))) + Q(6) denote the Q-regularized log-
loss. Notice that we normalize losses. We define the open ball Bo(0,7) = {x € R? : Q(z) < r}
and 7 = (1/m) - maxg: Q*(7,), where Q* is the dual norm of €. The following Theorem is a
direct application of Theorem 3 in [Nock et al., 2015], and shows mild conditions on §, C &* for the
minimization of /P (8,., 8, ) to indeed yield that of %% (§,, 0, Q).

Theorem 9 Assume © C Byj1,(0, 1), withrg > 0. Let 9(0) = (Supg co Maxy, es: exp(—0' 7)) /(&P (87, 9).
Then if m is sufficiently large, Y& > 0, there is probability > 1 — & over the sampling of S, that any
0 € O satisfies:

0% (8,,0,9) < log2+ (1/m) -log £7*(8,,6,9)

0(0) \/7’97“; d n
+O(m5 n +nm10gd5 ’

as long as w > um for some constant u > 0.

2.5 Proof of Theorem 9

The proof of the Theorem contains two parts, the first of which follows ADABOOST’s exponential
convergence rate proof, and the second departs from this proof to cover {2-R.ADABOOST.
We use the fact that a7t = @) - 1LT(t)7cj = (01 — O7_1) "m; to unravel the weights as:

wTj

= % exp( QT +5T)

T

W(T-1); (9T—9T 1) )

= ——-ex

Zp 0P ( +a - (|07]13 = 187-1]3)
_ WE-yj 9; 71?] w - Or)

Z eXP( T 1 (7 — w - Or_4)
. Wo 0; 7T —-w - OT)
= Hthl Z exp( 107 (7, — w - 6y) (46)
= 2 exp (-7 (- w-6y)) (47)

Hle Z

since the sums telescope in eq. (46) when we unravel the weight update and 68, = 0. We therefore get

T
280,013 = [[% (48)

14



as in the classical ADABOOST analysis [Schapire and Singer, 1999]. This time however, we have,
letting 7t;,(¢) = Tty /Ty € [—1, 1] and dy) = T, - o for short,

Zi1
= > wyy-exp (o + )
Jj€ln]
= exp(dy) - Z wej - exp (— ) ()
Jj€ln]
= exp(d) - Z Wyj - €XpP (_db(t)ﬁjb(t))
J€[n]
- exp(dy)
- 2
(1+ HJL ( Q, t) )
' Z Wi - ( A @
+(1— 7, a
P (1-7, <t>) xp ( <t>)
=exp(d;) - /1 —r? (50)
1 1
~ e (w- (103~ 101D - J1n )
t

This is where our proof follows a different path from ADABOOST’s: in eq. (50), we do not upperbound
the \/1 — r? term, so it can absorb more easily the new exp(d;) factor which appears because of
regularization.

Ineq. (49) holds because of the convexity of exp, and eq. (50) is an equality when r, < y. If
ry > 7y is clamped to r; <— y by the weak learner in (18), then we have instead the derivation

S, < (1 +7tﬂ( ) exp (—@L(w; )
J€[n] ’ +(1 - Thiu(t )) " €Xp (O‘L(t)

1—vy 1+vy
= (I4r) \——+A—=r) /77—
()Tt =)y T

< 2V1-v%, (D

since function in (51) is decreasing on r; > 0. If r, < —vy is clamped to r; <— —y, we get the same
conclusion as in ineq (51) because this time ¢,y = (1/2)-In((1—7y)/(1+7)). Summarising, whether
r¢ has been clamped or not by the weak learner in (18), we get

i
1 1
< exp (- (1003~ 10112~ 3= ) 652

with the additional fact that |r;| < y. For any feature index k € [d], let F;, C [T'] the iteration indexes

15



for which «(t) = k. Letting Ar (> 0) the largest eigenvalue of I', we obtain:
T
112
t=1
< exp (w ACAREDS L log — )
— 2 1—1r?
< exp (wxr N6z =3 S 1og — )
—2 71—}

1

— exp —i-ZAk : (53)

ke[d]

With
A, = 1 L
k. = 108
Ht:L(t)E’fk(l - 7'?)
— 1 ) 54
om2, % 11 (1—rt) (>4)
t:u(t)eFy

Since (3,1, @)? <wu) ., af and miny, max; |7;;| < |74, Ay satisfies:

1

t:u(t)eFy
= 1 55
I VER A (>3)

with T}, = |F;| and M = miny max; |7;|. For any a > 0, let

1 1 s 1+2
falz) = E-(logl_ﬁ—a-log 1—z>_1'
It satisfies
1 1 8

(2) o (==5)+ (-2 2

1 92 B 4
— 7). . 56
+<3a 45> 2"+ o0(27) (56)

Since f,(z) is continuous for any a # 0, V0 < a < 1/5, 3z,(a) > 0 such that f,(z) > 0,Vz € [0, z.].
So, for any such a < 1/5 and any w satisfying w < (2aM?)/(T}Ar), as long as each 7y < z,(a), we
shall obtain

A = a Y rf. (57)
t:u(t)eFy

There remains to tune y < z,(a), and remark that if we fix @ = 1/7, then numerical calculations reveal
that z,(a) > 0.98, and if @ = 1/10 then numerical calculations give z.(a) > 0.999, completing the
statement of Theorem 9.
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2.6 Proof of Theorem 10

We consider the case €2(.) = ||.||oc, from which we shall derive the case ©(.) = ||.||;. We proceed as
in the proof of Theorem 9, with the main change that we have now §; = w - (||6]|c0 — ||0¢-1]| ) SO in
place of Ay in ineq . (53) we have to use, letting k, any feature that gives the /., norm,

Em(t)e&"k log ﬁ

. if k=k,
A = — ‘th(t)e"fk log {1 . (58)
th(t)e&"k log ﬁ otherwise
It also comes
Ay,
1 w 1+ |ry }
> log — 1
m(;e?k { L—rf . T 1—]n]
1 w1y
> D {10% 5 — 77 log : (59)
t:u(t) €Ty, 1- Tt M 1 - |Tt|

with M = minj max; |7t;;|. Let us analyze Aj, and define for any b > 0

. 1+ 2
g(2) = logr——7 —b-log—
223
—(—2bz+22—Tz) . (60)

Inspecting g;, shows that ¢,(0) = 0, g;(0) = 0 and g,(z) is convex over [0, 1) for any b < 3, which
shows that g,(z) > 0, Vz € [0,1), ¥b < 3, and so, after dividing by bz? and reorganising, yields in

these cases:
1 1 1+2
— (1 —b-1 —1
bz? ( R %87 )

—Z

2 (1 22
> (—;+<5—1)—§> . (61)

Hence, both functions being continuous on (0, 1), the function in the left-hand side zeroes before the
one in the right-hand side (when this one does on (0, 1)). The zeroes of the polynomial

2
(z) = —2%+ (%—1)2’—2 (62)

exist iff b < v/3/(4 + v/3), in which case any z € [0, 1) must satisfy

3 (1 1 2 16
> 221/ (2=21) = =
=1\ \/(b ) 3 ©3)
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to guarantee that p,(z) > 0. Whenever this happens, we shall have from (61):

1+ =2

> b2, (64)
1—2

log —b-log

1—22
Since €2-WL is a vy -weak learner, if we can guarantee that the right-hand side of ineq. (63) is no
more than vy, , then there is nothing more to require from the weak learner to have ineq. (64) — and
therefore to have Ay, > by2, - |F%.|. This yields equivalently the following constraint on b:

3Ywr

b < | : (65)

16v3. BywL 16
9 + 3 + 3

Since vy, < 1, ineq (65) ensured as long as

SywL
-3 3YwL
b < 1 2 6 ) (66)
o tzty 1l
which also guarantees b < /3 /(4 + \/§) So, letting 7, = |Fy, | and recollecting
ho= — (67)
miny max; |7y|
from eq. (59), we obtain from ineqs (59) and (64):
T.v?2
A, WLYw (68)

ming max; |7ty

We need to ensure w < 3 miny max; |7tz |yw./11 from ineq . (66), which holds if we pick it according
to eq. (23). In this case, we finally obtain

Ap, > (a'YWLT*)"Y\ZVL~ (69)

Now, since log(1/(1 — x?)) > 2, we also have for k # k. in eq. (58),

1
A, = 1
g Z Bz r?
t(t)eFy
> >
t(t)eFy
> |Fulva, \Vk # k. . (70)
So, we finally obtain from eq. (51) and ineq. (53),
T2
G0(80,0, 1) = exp | =% | (71)
with T = (T — T,) + ayw. - T., as claimed when Q(.) = ||.|s. The case Q = ||.||; follows form the

fact that all A, match the bound of Ay, .
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2.7 Proof of Theorem 11

We use the proof of Theorem 10, since when €2(.) = ||.||s, eq. (58) becomes

Ay = Z log

L (t) €Ty,

Tk

fk 1+T
— It

t:(t)eFy

L & L+ |r|
> 1 — 1
- Z { . r? max; |7y R |74

t:u(t)eFy

(72)

(73)

assuming without loss of generality that the classifier at iteration T, O, satisfies |07x| > |71 | for

k=1,2,...,d — 1. We recall that £, =

®~1(1 — kq/(2d)) where ®~1(.) is the quantile of the standard

normal distribution and ¢ € (0, 1) is the user-fixed g-value. The constraint b < 3y, /11 from ineq.

(66) now has to hold with
b=1b, = & ,
max; ‘T[]k’
Now, fix
1 o
4 = min S‘YWL7 P . (1 Q/(Qd)) '
11 7 miny, max; |7t
Remark that
kq
= o112
6 ( ' d)
> 3! (1 . i)
- 2d
> aminmax |7y .
K
Suppose ¢ is chosen such that
3YwL
& < "0 max|ml ke [d)
J

This ensures by, < 3yw./11 (Vk € [d]) in ineq. (66), while ineq. (76) ensures

A >

Vv

>
t:L(t)G?k
L
ming, HlaX] |7t or
k
a|?k’YWL :

19

(74)

(75)

(76)

(77)

(78)

(79)

(80)



Ineq. (78) holds because of ineqs (73) and (64). Ineq. (80) holds because of the weak learning
assumption and ineq. (77). So, we obtain, under the weak learning assumption,

T 2
(2(8,.0, ||.lls) < exp (—%) . (81)

Ensuring ineq. (77) is done if, after replacing &, by its expression and reorganising, we can ensure

gN.k

¢ 2 2-max-"" (82)
E gDk
with
. 3
(0,1) > gnp = 1—@( ﬁ“m;mxlmk\) , (83)
.k
(0,1]9(]1),;6 = E . (84)

(85)

3 Supplementary Material on Experiments

3.1 Test errors, complete results

To save space, Table 1 below reports only the lowest error of all of ADABOOST variants.

3.2 Supports for rados (complement to Table 1)

Table 2 in this Supplementary Information provides the supports used to summarize Table 1.
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