
Appendix - Variance Reduction in Stochastic Gradient
Langevin Dynamics

Appendix

In this appendix, we provide details of the theoretical results given in the main paper. We first start
with the proof of Theorem 3 and then look at the proof of Theorem 2.

We also include some additional experimental results for the regression experiments.

A Proof of Theorem 3

We introduce a notation for simplifying our theoretical exposition. For any t ∈ {sm, (s+ 1)m} for

some integer s ∈ {0, �T/m�}, let θ̃t = θsm. Then the SVRG-LD update can be rewritten as

θt+1 = θt +
ht
2

(
∇ log p(θt) +

N

n

∑
i∈It

(∇ log p(xi|θt)−∇ log p(xi|θ̃t)) +
N∑
i=1

∇ log p(xi|θ̃t)
)

+ ηt.

To prove Theorem 3, we start from a bound proved in [3] for general stochastic gradient MCMC.

First, recall that φ̂ = 1
T

∑
t φ(θt) is the empirical average of some smooth test function φ, and that

MSE of the average φ̄ of φ is E(φ̂− φ̄)2. Then [3] show that, for SGLD,

E(φ− φ̄)2 ≤ C

(1
T

∑
t E(ΔVtψ(θt))

2

T
+

1

Th
+ h2

)
. (11)

for some constant C > 0.

[3] then use an upper bound on the term 1
T

∑
t E(ΔVtψ(θt))

2 to tighten this bound, under the
conditions in Assumption [A1], to obtain the result in Theorem 1.

We use a different upper bound for the term 1
T

∑
t E(ΔVtψ(θt))

2. For some constant C ′, we have:

1

C ′T

∑
t

E(ΔVtψ(θt))
2 ≤ 1

T

∑
t

E[‖∇Ut(θt)−∇U(θt)‖2]

=
1

T

∑
t

E

∥∥∥∥∥Nn
∑
i∈It

(∇ log p(xi|θt)−∇ log p(xi|θ̃t)) +
N∑
i=1

∇ log p(xi|θ̃t)−
N∑
i=1

∇ log p(xi|θt)
∥∥∥∥∥
2

=
1

Tn2

∑
t

E

∥∥∥∥∥
∑
i∈It

(
N
[
∇ log p(xi|θt)−∇ log p(xi|θ̃t)

]
−
[

N∑
i=1

∇ log p(xi|θt)−
N∑
i=1

∇ log p(xi|θ̃t)
])∥∥∥∥∥

2

=
1

Tn2

∑
t

E

∑
i∈It

∥∥∥∥∥
(
N
[
∇ log p(xi|θt)−∇ log p(xi|θ̃t)

]
−
[

N∑
i=1

∇ log p(xi|θt)−
N∑
i=1

∇ log p(xi|θ̃t)
])∥∥∥∥∥

2

≤ 1

Tn2

∑
t

E

∑
i∈It

∥∥∥N [∇ log p(xi|θt)−∇ log p(xi|θ̃t)
]∥∥∥2 ≤ L2N2

Tn

∑
t

E

∥∥∥θt − θ̃t∥∥∥2 . (12)

The first inequality follows from our assumption [A3] in Section 4. The third equality follows from
Lemma 1. The second inequality is due to the fact that E[‖ζ − E[ζ]‖2] ≤ E[‖ζ‖2] for any random

variable ζ ∈ R
d. The last inequality is follows from the Lipschitz continuity of ∇ log p(xi|θ). Note

that alternatively, we can also bound in the following fashion:

1

C ′T

∑
t

E(ΔVtψ(θt))
2 ≤ 1

Tn2

∑
t

E

∑
i∈It

∥∥∥N [∇ log p(xi|θt)−∇ log p(xi|θ̃t)
]∥∥∥2 ≤ 2N2σ2

n

(13)

10

Consider t ∈ {sm+ 1, (s+ 1)m} for some integer s ∈ {0, �T/m�}. We bound E‖θt − θ̃‖2 in the
following manner:

E

∥∥∥θt − θ̃t∥∥∥2 = E

∥∥∥∥∥∥
t−1∑

j=sm

(θj+1 − θj)
∥∥∥∥∥∥
2

≤ (t− sm)

t−1∑
j=sm

E[‖θj+1 − θj‖2] ≤ m

t−1∑
j=sm

E[‖θj+1 − θj‖2]. (14)

The first inequality is due to Lemma 2. The second inequality is due to the fact that t ∈ {sm +
1, (s+ 1)m}. We bound the term E[‖θj+1 − θj‖2] in the following manner:

E[‖θj+1 − θj‖2]

= E

∥∥∥∥∥h2
(
∇ log p(θj) +

N

n

∑
i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N∑
i=1

∇ log p(xi|θ̃j)
)

+ ηj

∥∥∥∥∥
2

≤ 3h2

4
E‖∇ log p(θj)‖2 + 3E[‖ηj‖2]

+
3h2

4

∥∥∥∥∥Nn
∑
i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N∑
i=1

∇ log p(xi|θ̃j)
∥∥∥∥∥
2

≤ 3h2σ2

4
+ 3hd+

3h2

4

∥∥∥∥∥Nn
∑
i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N∑
i=1

∇ log p(xi|θ̃j)

−
N∑
i=1

∇ log p(xi|θj) +
N∑
i=1

∇ log p(xi|θj)
∥∥∥∥∥
2

≤ 3h2σ2

4
+ 3hd+

3h2

2

∥∥∥∥∥
N∑
i=1

∇ log p(xi|θj)
∥∥∥∥∥
2

+
3h2

2

∥∥∥∥∥Nn
∑
i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N∑
i=1

∇ log p(xi|θ̃j)−
N∑
i=1

∇ log p(xi|θj)
∥∥∥∥∥
2

≤ 3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n
.

The first inequality follows from Lemma 2 (with r = 3). The second inequality follows from the

fact that ‖∇p(θ)‖2 ≤ σ2 for all θ ∈ R
d and the fact that ηj ∼ N(0,

√
h). The third inequality again

follows from Lemma 2 with r = 2. The last inequality follows from: (a) Lemma 2 with r = N and
(b) the bound in Equation 12. Substituting the bound in Equation 14, we get the following:

E

∥∥∥θt − θ̃t∥∥∥2 ≤ m2

[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

]
. (15)

Substituting Equation (15) in Equation 12 and substituting the minimum of the resultant bound and
bound in Equation (13) into Equation 11 gives the desired result.

B Proof of Theorem 2

The proof of Theorem 2 is along the lines of Theorem 3. The key difficulty, in comparison to the
analysis of SVRG-LD, comes from the fact that the full gradient is not computed after every few
epochs. Again, we start with the following inequality proved by [3]:

E(φ− φ̄)2 ≤ C

(1
T

∑
t E(ΔVtψ(θt))

2

T
+

1

Th
+ h2

)
. (16)

11

for some constant C > 0. For SAGA-LD, we have the following inequality:

1

C ′T

∑
t

E(ΔVtψ(θt))
2 ≤ 1

T

∑
t

E[‖∇Ut(θt)−∇U(θt)‖2]

=
1

T

∑
t

E

∥∥∥∥∥Nn
∑
i∈It

(∇ log p(xi|θt)−∇ log p(xi|αi
t)) +

N∑
i=1

∇ log p(xi|αi
t)−

N∑
i=1

∇ log p(xi|θt)
∥∥∥∥∥
2

=
1

Tn2

∑
t

E

∥∥∥∥∥
∑
i∈It

(
N
[∇ log p(xi|θt)−∇ log p(xi|αi

t)
]−

[
N∑
i=1

∇ log p(xi|θt)−
N∑
i=1

∇ log p(xi|αi
t)

])∥∥∥∥∥
2

=
1

Tn2

∑
t

E

∑
i∈It

∥∥∥∥∥
(
N
[∇ log p(xi|θt)−∇ log p(xi|αi

t)
]−

[
N∑
i=1

∇ log p(xi|θt)−
N∑
i=1

∇ log p(xi|αi
t)

])∥∥∥∥∥
2

≤ 1

Tn2

∑
t

E

∑
i∈It

∥∥N [∇ log p(xi|θt)−∇ log p(xi|αi
t)
]∥∥2 ≤ L2N

Tn

∑
t

∑
i

E
∥∥θt − αi

t

∥∥2 . (17)

for someC ′ > 0. The first inequality is due to our assumption [A3] in Section 4. The third equality is
obtained by using Lemma 1. The second inequality is due to the fact that E[‖ζ −E[ζ]‖2] ≤ E[‖ζ‖2]
for any random variable ζ ∈ R

d. The last inequality is follows from the Lipschitz continuity of
∇ log p(xi|θ) and uniform randomness of the set It.

Let γ = 1−(1−1/N)n. γ represents the probability that an index is chosen at a particular iteration.

Our goal is to bound the term
∑

t

∑
i E
∥∥θt − αi

t

∥∥2. To this end, we observe the following:

E
∥∥θt − αi

t

∥∥2 =

t−1∑
j=0

E

[
E

[∥∥θt − αi
t

∥∥2 | αi
t = θj

]]

≤
t−1∑
j=0

(t− j)2
[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

]
P (αi

t = θj)

=

[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

] t−1∑
j=0

(t− j)2 (1− γ)t−j−1
γ

=

[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

]
γ

t∑
j=1

j2 (1− γ)j−1

≤
[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

]
γ

∞∑
j=1

j2 (1− γ)j−1

≤ 2

γ2

[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

]

≤ 8N2

n2

[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

]
. (18)

The first equality is due to the law of total expectation. The first inequality can be obtained by
using similar argument as the one in Equation (15). The second inequality follows from simple
calculation of P (αi

t = xj). This in turn uses the fact that the set It is selected uniformly randomly

at each iteration. The last equality is due to the standard formula:
∑∞

j=1 j
2(1−γ)j−1 = (2−γ)/γ3.

The last inequality is due to the following bound on γ:

γ = 1−
(
1− 1

N

)n

≥ 1− 1

1 + n
N

=
n/N

1 + n/N
≥ n

2N
. (19)

The first inequality in Equation (19) is due to the fact that (1− x)n ≤ 1/(1 + nx) for x ∈ [0, 1] and
n ∈ N , and the second last inequality is due to the fact that n/N ≤ 1. Substituting the bound in

12

Equation (18) into Equation (17), we have

1

C ′T

∑
t

E(ΔVtψ(θt))
2 ≤ L2N3

n2

[
3h2σ2

4
+ 3hd+

3N2h2σ2

2
+

3N2h2σ2

n

]
. (20)

Note that similar to Equation (13), the following bound holds for SAGA-LD:

1

C ′T

∑
t

E(ΔVtψ(θt))
2 ≤ 1

Tn2

∑
t

E

∑
i∈It

∥∥N [∇ log p(xi|θt)−∇ log p(xi|αi
t)
]∥∥2 ≤ 2N2σ2

n

(21)

Using the minimum of the bounds in Equation (21) and (20) in Equation (16) gives us the desired
result.

C Other Lemmatta

We state few useful and well-known lemmas in this section.

Lemma 1. If random variables z1, . . . , zr are independent and have mean 0, then

E
[‖z1 + ...+ zr‖2

]
= E

[‖z1‖2 + ...+ ‖zr‖2
]
.

Proof. We have the following:

E
[‖z1 + ...+ zr‖2

]
=

r∑
i,j=1

E [zizj] = E
[‖z1‖2 + ...+ ‖zr‖2

]
.

The second equality follows from the fact that zi’s are independent and have mean 0.

Lemma 2. For random variables z1, . . . , zr, we have

E
[‖z1 + ...+ zr‖2

] ≤ rE
[‖z1‖2 + ...+ ‖zr‖2

]
.

D SVRG-LD

The memory complexity for SAGA-LD is high because the approximate gradient gα is updated at
each step. This can be avoided by fully updating the gradient every m iterations in one expensive
evaluation, and using that gradient g̃ as an approximation to the true gradient for the next m steps.
Concretely, everym passes through the data, we evaluate the gradient on the entire data set, to obtain

an estimate g̃ =
∑N

i=1 g̃i, where g̃i = ∇ log p(xi|θ̃) is the local gradient evaluated at the current
time.

As we iterate through the data, if a data point is not selected in the current minibatch, we approximate
its gradient with g̃i. If It = {i1t, . . . int} is the minibatch selected at iteration t, then we approximate∑N

i=1∇ log p(xi|θt) so that

N∑
i=1

∇ log p(xi|θt) ≈ N

n

∑
i∈It

(∇ log p(xi|θt)− g̃i) + g̃, (22)

This yields an update of the form

δθt =
ht
2

(
∇ log p(θt) +

N

n

∑
i∈It

(∇ log p(xi|θt)− g̃i) + g̃

)
+ ηt (23)

where ηt ∼ N(0, ht). Pseudocode for this procedure is given in Algorithm 2 (and repeated in this
supplement as Algorithm 3).

As with SAGA-LD, we note that the update in Equation 7 (and Equation 23) gives an unbiased
estimate of the true gradient, since It is chosen uniformly at random (with replacement) from [N] =

13

Algorithm 3: SVRG-LD

1: Input: θ̃ = θ0 ∈ R
d, epoch length m, step sizes {ht > 0}T−1

i=0
2: for t = 0 to T − 1 do
3: if (t mod m = 0) then
4: θ̃ = θt
5: g̃ =

∑N
i=1∇ log p(xi|θ̃)

6: end if
7: Uniformly randomly (with replacement) pick a set It from {1, . . . , N} such that |It| = n
8: Randomly draw ηt ∼ N(0, ht)

9: θt+1 = θt +
ht

2

(
∇ log p(θt) +

N
n

∑
i∈It(∇ log p(xi|θt)−∇ log p(xi|θ̃)) + g̃

)
+ ηt

10: end for
11: Output: Iterates {θt}T−1

t=0

{1, . . . , N}, since we have E[Nn
∑

i∈It g̃i − g̃] = 0. Therefore, the term N
n

∑
i∈It g̃i − g̃ does not

add any bias to the stochastic gradient.

By calculating the full gradient after every m iterations, we ensure that the accuracy of the approx-
imation is not allowed to decrease too significantly, and ensure that the variance of the updates is
controlled. We provide concrete bounds in Section 4. We note that, if m ≥ �N/n�, the computa-
tional complexity of SVRG-LD is similar to SGLD.

One desirable property of SVRG-LD is that it has low memory requirements: SVRG requires just
O(d) extra memory (in order to store the approximate gradient g̃), in comparison with SGLD. How-
ever, there is a potentially large computational burden due to the need to periodically calculate the
full gradient. In practice, we found that computation was a greater bottleneck in the examples con-
sidered.

E Other Experiment Results

Number of pass through data
0 1 2 3

Te
st

 M
S

E

10-1

102

104 concrete

SGLD
SAGA-LD

Number of pass through data
0 1 3 5

Te
st

 M
S

E

10-1

102

104 noise

SGLD
SAGA-LD

Number of pass through data
0 1 5 10

Te
st

 M
S

E

10-1

102

105 parkinsons

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

Te
st

 M
S

E

10-1

102

105 bike

SGLD
SAGA-LD

Number of pass through data
0 1 5 10

Te
st

 M
S

E

10-1

101

103 toms

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

Te
st

 M
S

E

10-1

102

105 protein

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

Te
st

 M
S

E

10-1

102

105 protein

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

Te
st

 M
S

E

10-3

10-1

102

105 kegg

SGLD
SAGA-LD

Number of pass through data
0 0.5 1

Te
st

 M
S

E

1

1.5

2
3dRoad

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

Te
st

 M
S

E

10-1

102 music

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

Te
st

 M
S

E

10-1

100

101

102 twitter

SGLD
SAGA-LD

Figure 4: Performance comparison of SGLD and SAGA-LD on the regression task. The x-axis and y-
axis represent the number of pass through the entire data and average test MSE respectively. Please
refer to the section 5.1 for details

14

