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A Proofs

A.1 Proof of Theorem 3 (Remaining)

Lemma 9. For any integers 0 < k < d it holds that
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Proof. By induction. Clearly the k = 0 case holds. Now, suppose for some 0 < k < d — 1,
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Then, we have
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as desired. m]
Proof of Lemma 7

Proof. The D, case uses a line of reasoning similar to that we used for D;. Note that

1 T 1 . .
OLp, (W) = a1 Z oft(w'x—1)= a1 Z sign(w x—1)-x

xeXp xeX,
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Now, letting w; = ﬁ 1,4, we have that
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Similar to before, we have

AL, (W) = {Zdl :(xr- (‘; _i) Aa) Ire (=117

and so choosing r; = 0 and r; = 1, and following the same reasoning as in Lemma 6, we have that

both of the vectors
1 (d-2 1 (d-2
h+=—(d )'ld s h:__(d )'ld
2d—1 5_1 2d—1 5_2

belong to the subdifferential set dL p, (w3), and thus so does the zero vector 0, that lies on the segment
connecting h* and h™. Again, using V27n(2)" < n! < ey/n(%)", we can show that

1(d—2)> | (Var@=2 (42)" Vir Vi
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and
d-2
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zd—l s -2 62\/7\/7 % = 64\/3.
Letting h* = “{;E 1,4, we again have that +h* € dL g, (Wz) From this point, it should be clear
that the analysis for the 9, case is identical to that of the 9 case, and so the lemma holds for D, as
well. ]

A.2 Proof of Theorem 5

Similar to the proof of Theorem 3, the main idea is to construct two distributions that are indis-
tinguishable to a learner who can observe no more than d — 1 attributes of any sample, but whose
respective sets of g-optimal classifiers are disjoint.



To prove the lower bound, we again consider two distributions D and D,. Let X; = {x =
(x1,...,xq) | X € {0,1}‘17IIXII11E 0 (mod 2)} alnd Xo = {x = (x1,...,xq) | x € {0, 1} 1||X||1 =
1 (mod 2)}. We also let X{ = x/_Exl and X; =. ﬁ/\’z. Furthermore, let Y| = W, = {- ﬁ ‘/E} Let
(X, y) ~ D be such that x and y are sampled independently, and such that x is sampled uniformly
from X{ while y = «/LE w.p. % +dand y = —ﬁ W.p. % — 0, where 6 = zd% We construct the

distribution 9, in a similar manner.

Again, we observe that for any choice of k attributes, k < d - 1 the marginal distributions are

identical in both D; and Z)z Let £(y; - w'x) = max{0,1 -y - } and let
1
Ly (W) = ( )max {0,1 —w'x} + (— - 6) max{0, 1 + w'x}
R 2
and

1
2d- 1\/— Z ( )maXO l—wa}+(§—6)max{0,1+WTx}.

xeXy

The goal is to show that the sets of e-optimal classifiers for each of these minimization problems are
disjoint for small enough £. We begin by characterizing supersets of these g-optimal sets which are
easier to compare. Once established, we then show that these sets are disjoint.

Lemma 10. Let wi = ﬁ -14, and let S| = {w

g-optimal classifiers for L, is contained in S|.

1 T * .
S 1,(w- wl)| < s}. Then the entire set of

Proof. Notice that since max{x, y} = %(x +y+ |y — x|), we can rewrite Ly, as

Lz)l(w)z Z ( +5) (1-w'x+]|1- WTX|)+(%—5) I+wx+]1+w'x|)

XEX]

Note that
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XEX[
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Let x* = 1,4, and let w’{ = éld. Note that x* € X). Taken together, we see that
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Since § = #, and choosing 1 € sign(0), we have that

1 .
aheyv 14 € OLp, (W)).

On the other hand, choosing —1 € sign(0), we have

L1 1 .
h* = @ (ﬁ + 47) -1, € aLZ)I(Wl).



Since 04 can be written as a convex combination of h™ and h*, we know that WT is a minimizer of
L p, (w). By the subgradient inequality, we know that for ally € domL p,,

* ] *
Ly, (y) — Lp, (W) = m 1,y —w))
and

Lo, (y) — Lp, (W) > — 1y —wp)

1
2d+1\/3

which taken together implies that

Lp,(y)—Lp, (w)) >

1 T
2eya YT

Now, letting S| = {w 5 d+1 Sag < e} we may observe that the entire set of g-optimal

classifiers for Lp, is contained in 51 O

Lemma 11. Let w = 77 - 14, and let 5 = {w

of g-optimal classifiers for Lp, is contained in S5.

2(1+1( < 8} Then the entire set

Proof. The proof is nearly identical to that of Lemma 10. We can again rewrite L p, as

Lop, (W) = 2d\/_er:X2( +6)(1—w x+]1-w X|)+(%—6)(1+WTX+|1+WTX|)
Note that
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Let X* ={x:||x|li =d - 1,x € X,}, and let W) = ﬁld. Taken together, we see that
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Since § = 2(,%, and letting sign(0) = 1, we have that
_ 1
= 2d+1\/_ 14 € OLp,(W3).

Furthermore, when sign(0) = —1, we have
ht = 1 (Zd -1 d

ﬁ 2d+1 4d) ld € 6L@2(w2)



Since 04 can be written as a convex combination of h™ and h*, we know that w; is a minimizer of
Lg,(w). Since d > 4, we also know that, for all y € domL p,,

* l *
Lp,(y) — Lp, (W) = m 1,0y —w3)
and
. 1 .
Ly, (y) — Lp,(w3) > A 1;(y —w3)
which taken together implies that
LDz(y) - LDz(WQ) > 2d+1\/_; . IZ(y - WZ) .
Again, letting S = {w : m . lg(w -wW))| < s}, we see that the entire set of -optimal classi-
fiers for L g, is contained in S5. O

We can now prove Theorem 5.

Proof of Theorem 5. Having proved that S; and S, contain the e-optimal classifiers for Lp, and Lop,,
respectively, we now aim to show that for & < ZdTldz/z’ these sets are disjoint. Observe that for any
weES,

1
T * T * T
m‘ld(w—wl) SZdTW = W'ld(w—wl)ﬁm = ldWS1+ﬁ.
On the other hand, for any w € S5,
1 T * T *
2d+iNg 1y (w-wy)) < 2d+243/2 = T od+l g(w-wy) < 2d+2g
d 1 d+1 1
w> - =t s
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and so we see that no w can exist in both S; and S,, which means we may conclude that the sets are
disjoint. O

A.3 Proof of Corollary 2

Proof. Suppose 0 < ¢ < L. Let X;, X, be the same as in the previous proof, let X’ = L X, and
pp 64 p p 1~ 2

Xj = \/%Xz, and let D| and D] be uniform distributions over X| X {\%2} and X x {%}, respectively.

Again, any learner observing k < 2 attributes cannot distinguish between the distributions. Note that
Ly (W) = 3Lp, and Ly (W) = 5Lop,.

The set of e-optimal regressors for Lo, is S; = {w: |w'l, — 1| < 2V2¢}, and for Ly, the set

is S» = {w : ||w—11|]» £ 2V2¢}. Thus, for & < 6i4, S1 and $; are disjoint sets by the reasoning
in the proof of Theorem 1, and so a learner can distinguish between the two sets, which is a

contradiction. m]

A.4 Proof of Corollary 4

Proof. Let X| and X, be the same as described in the proof of Theorem 3, and let X 1’ = ‘/LJXl and

Xy = \/LEXZ. Let Dy and D] be uniform distributions over X X {\/LH} and X X {\/Lg}, respectively.

Note that L 1> (w) = \/LEL p,(w)and L D, (w) = \/LEL ,(w). Scaling the function does not change the

minimizer, so most of the proof of Theorem 3 still holds. The main difference is that the subgradient

set is scaled by \/Lg, which leads to an additional \/LZ factor in the precision bound. O



B Analysis of Algorithm 1

To prove Theorem 8, we first need a few intermediate lemmas.
Lemma 12. For allt € [m] it holds that B, [||&; |I§] < H?

Proof. We have Et[”gt”%] =E[ll¢"(w; X, = yr) it”%] < H?E,[|1%1I3] < H?. O

II3

Lemma 13. Ler £,(w) := {(W'X, — y;), where { : R = R is a convex, H-Lipschitz function defined
over the entire real line, and let €,(W) = Ex, [((W' %, — y;)]. Then, for all w,

|, (w) — &, (W)| < HB+[1 - S.

Proof. Note that |£,(w) — £;(w)| = |Eg, [((W'x, — y) — £(W'X,; — y;)]|. By Jensen’s inequality we
have

Eg, [C(W'x; — Y1) — E(WT%, — y,)]’ < Eg, [|£(wat —y) —O(W'&, — y,)|].

Observe that, since ||x;||2 < 1 and for any coordinate i € [d], Eg, [X;[i]] = sxt [1],

b %
(xt [i] - X[i]) D = (Z; x[i]? - %xt [i]® + B, [i[i]z])
<<Z 1 xfm)

i=1

ok

Along with the fact that £ is H-Lipschitz, this gives us

By, 16X = y0) = €OV, = 3l < H B, [IwT (% = %01

Ei, [lIx; = X,l2] < (

QU =

< H - wlhEs, [nx, - i,nz]

< HB l—k O
< 7

Lemma 14. Let £;(w) := {(y; - W'X;), where { : R = R is a convex, H-Lipschitz function defined
over the entire real line, and let £{;(w) = Eg, [€(y; - W' X;)]. Then, for all w,

|6, (w) = &, (w)| < HB%,[1 - S.

Proof. Note that |¢,(w) — £,(W)| = |[Ex, [£(y; - W'X;) — £(y; - WT%,)]|. By Jensen’s inequality we
have

Ex, [£(ye - Ww'x;) =€y - wTiz)]| < EBg, [If(yz WX =y - WK
Using the fact that Ex, [||x; — X/[2] < /1 - § from the proof of Lemma 13, with the fact that £ is
H-Lipschitz, we have

Bx, 160 - WTx0) = €W | < H By, [y wT %= %01
< HB - [wikEs, I - %11

k
< HB*\[1-=. o
= d



Having proven the lemmas, we proceed to prove Theorem 8.

Proof. For the regression case, let £, (w) = Eg, [€(WTX, — y;)], where the expectation is over the
random choice of indices in the construction of X,. For the classification case, let £; (w) = Ex, [€(y: -
wT%,)]. Note that in either case, V&; (W;) = Eg, [(;3, -X,] = Eg, [&;]. From the standard OGD analysis
[13] applied to gy, . . ., &, we see that

S AT * 2B2
Zg,(w,—w)g—+
=1 n

SIS

m
D& ()
t=1

Let E,[-] be the conditional expectation with respect to the randomness up to time ¢, and let G2 :=
max; E,[Hg,”%]. After taking the expectation of Eq. (1) with respect to the randomness in the
algorithm, we have

O o7 28
]E|: Z Vft (W[)T(W[ - W*):| S — + szm.
t=1 d 2

Since 7, (w) is convex, we have &;(w;) — £;(w*) < V&, (W)™ (w, — w*). After choosing n = %
and rearranging, we have
m m
]E[ » {’,(wt)] < Y Zw") + 2BGVm.
t=1 t=1
Note that by Lemma 12, G < H. After dividing through by m we have
1< 1< 2HB
EI:- ZZ(W;)] < — f,(w*) + —.
Let B = max{B, 1}. By Lemmas 13 and 14, this implies that
1< 1 < 2HB o[k
E[— €,(w,)] < — ) L(W)+ — +2HB*\[1- -,
m ; m tz:; Vm d
Taking the expectation with respect to the random choice of the data set, we have
1 < 2HB < k
E[— L w]sL W)+ —— + 2HB*\[1 - =.
— Z‘ W) £ Lo(w)+ V1-7
After applying Jensen’s inequality, we have
2HB - k
E[Lp(W)] < Lp(W*) + — +2HB*{[1 - = . o
[Lp(W)] < Lp(Ww") N p



