
The Limits of Learning with Missing Data
(Supplement)

Brian Bullins Elad Hazan
Princeton University

Princeton, NJ
{bbullins,ehazan}@cs.princeton.edu

Tomer Koren
Google Brain

Mountain View, CA
tkoren@google.com

A Proofs

A.1 Proof of Theorem 3 (Remaining)

Lemma 9. For any integers 0  k < d it holds that
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Proof. By induction. Clearly the k = 0 case holds. Now, suppose for some 0  k < d � 1,
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as desired. ⇤

Proof of Lemma 7

Proof. The D2 case uses a line of reasoning similar to that we used for D1. Note that
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Now, letting w⇤2 =
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d+2 · 1d , we have that
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Similar to before, we have
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and so choosing r1 = 0 and r2 = 1d and following the same reasoning as in Lemma 6, we have that
both of the vectors
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belong to the subdifferential set @LD2 (w⇤2), and thus so does the zero vector 0, that lies on the segment
connecting h+ and h�. Again, using
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Letting h⇤ = �
p

2⇡
e4
p
d
· 1d , we again have that ±h⇤ 2 @LD2 (w⇤2). From this point, it should be clear

that the analysis for the D2 case is identical to that of the D1 case, and so the lemma holds for D2 as
well. ⇤

A.2 Proof of Theorem 5

Similar to the proof of Theorem 3, the main idea is to construct two distributions that are indis-
tinguishable to a learner who can observe no more than d � 1 attributes of any sample, but whose
respective sets of "-optimal classifiers are disjoint.
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To prove the lower bound, we again consider two distributions D1 and D2. Let X1 = {x =
(x1, . . . , xd ) | x 2 {0, 1}d, kxk1 ⌘ 0 (mod 2)} and X2 = {x = (x1, . . . , xd ) | x 2 {0, 1}d, kxk1 ⌘
1 (mod 2)}. We also let X01 = 1p

d
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d
X2. Furthermore, let Y1 = Y2 = {� 1p

d
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}. Let
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distribution D2 in a similar manner.

Again, we observe that for any choice of k attributes, k  d � 1, the marginal distributions are
identical in both D1 and D2. Let `(yt · w>x) = max{0, 1 � y · w>x}, and let
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The goal is to show that the sets of "-optimal classifiers for each of these minimization problems are
disjoint for small enough ". We begin by characterizing supersets of these "-optimal sets which are
easier to compare. Once established, we then show that these sets are disjoint.
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d 1d . Note that x⇤ 2 X1. Taken together, we see that
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Since 0d can be written as a convex combination of h� and h+, we know that w⇤1 is a minimizer of
LD1 (w). By the subgradient inequality, we know that for all y 2 domLD1 ,
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Since 0d can be written as a convex combination of h� and h+, we know that w⇤2 is a minimizer of
LD2 (w). Since d � 4, we also know that, for all y 2 domLD2 ,
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We can now prove Theorem 5.
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and so we see that no w can exist in both S1 and S2, which means we may conclude that the sets are
disjoint. ⇤

A.3 Proof of Corollary 2

Proof. Suppose 0 < " < 1
64 . Let X1,X2 be the same as in the previous proof, let X01 = 1p
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A.4 Proof of Corollary 4

Proof. Let X1 and X2 be the same as described in the proof of Theorem 3, and let X01 = 1p
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B Analysis of Algorithm 1

To prove Theorem 8, we first need a few intermediate lemmas.
Lemma 12. For all t 2 [m] it holds that Et [kĝt k22]  H2.

Proof. We have Et [kĝt k22] = Et [k`0(w>t x̃t � yt ) · x̃t k22]  H2Et [kx̃t k22]  H2 . ⇤
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Having proven the lemmas, we proceed to prove Theorem 8.

Proof. For the regression case, let ˜̀
t (w) = Ex̃t [`(w>x̃t � yt )], where the expectation is over the

random choice of indices in the construction of x̃t . For the classification case, let ˜̀
t (w) = Ex̃t [`(yt ·

w>x̃t )]. Note that in either case, r ˜̀
t (wt ) = Ex̃t [�̂t · x̃t ] = Ex̃t [ĝt ]. From the standard OGD analysis
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ĝ>t (wt � w⇤)  2B2

⌘
+
⌘

2

mX

t=1
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maxt Et [kĝt k22]. After taking the expectation of Eq. (1) with respect to the randomness in the
algorithm, we have

E
 mX

t=1

r ˜̀
t (wt )>(wt � w⇤)

�
 2B2

⌘
+
⌘

2
G2m.

Since ˜̀
t (w) is convex, we have ˜̀

t (wt ) � ˜̀
t (w⇤)  r ˜̀

t (w)>(wt � w⇤). After choosing ⌘ = 2B
G
p
m

and rearranging, we have

E
 mX

t=1

˜̀
t (wt )

�


mX

t=1

˜̀
t (w⇤) + 2BG

p
m.

Note that by Lemma 12, G  H . After dividing through by m we have

E
 1

m

mX

t=1

˜̀
t (wt )

�
 1

m

mX

t=1

˜̀
t (w⇤) +

2HBp
m
.

Let B̃ = max{B, 1}. By Lemmas 13 and 14, this implies that
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Taking the expectation with respect to the random choice of the data set, we have
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After applying Jensen’s inequality, we have
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