
Supplementary Material of “Gradient-based Sampling:

An Adaptive Importance Sampling for Least-squares”

S.1 The influence of the pilot estimate

In gradient-based sampling, we need to get the pilot estimate β0 by uniformly sampling a

subsample of size r0. Now we investigate the effect of r0 by plotting the relative MSE for

r0 = {0.1r, 0.2r, · · · , 0.9r} with respect to that for r0 = r on GA, MG1 and MG2 datasets in

Figure 1. We observe that when r0 is larger than 0.5r, MSE values of β̃ go flat. Thus, we argue

that choosing the initial size of r0 to get a pilot estimate may not be careful.
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Figure 1: The relative MSE values of β̃ with uniformly sampling r0 = {0.1r, 0.2r, · · · , 0.9r} data

points for the pilot estimate β0 with respect to that with r0 = r. From left to right: GA, MG1 and

MG2 datasets

S.2 The advantage of poisson sampling

Now we empirically compare poisson sampling (PS) with sampling with replacement (SR). We com-

pare risk performance between them for different r/n values: 0.01 and 0.05. We report the results

in Table 1, where we do not report the performance of UNIF and LEV due to the similarity shared

with GRAD. From Table 1, there is little difference between PS and SR for r/n = 0.01, however
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Table 1: Ratios of MSE values by PS and these by SR.

n 20K 50K 100K 200K 500K

s/n = 0.01

GA 1.061 0.945 0.986 0.946 1.019

MG1 0.968 0.945 0.927 0.973 0.997

MG2 1.020 0.980 0.969 0.989 1.004

s/n = 0.05

GA 0.920 0.946 0.937 0.975 0.970

MG1 0.860 0.921 0.909 0.853 0.925

MG2 0.885 0.843 0.895 0.824 0.835

PS becomes better than SR for r/n = 0.05. This observation indicates that PS outperforms SR

when the sampling ratio r/n increases.

S.3 The Robustness to Model Specification

The gradient-based sampling algorithm does not reply on the model assumption. We empirically

investigate the effect of the model specification on various sampling methods. Three kinds of model

specification are considered here, i.e., models generating data are as follows:

(I) heteroscedasticity,

y =
10∑
k=1

x(k)βk + ε∗ with ε∗ = ρ1x
(11) + ε,

where x(11) is ignored in LS computation, and ρ1 denotes the seriousness degree of “model wrong”

and is set as among {0, 0.1, 0.2, 0.5, 1, 2, 5, 10};
(II) model error dependence,

y =
10∑
k=1

x(k)βk + ε, with εi = N
(
ρ2εi−1, (1− ρ2

2)σ2
)
,

where ε0 = 0, and ρ2 denotes the dependence degree among model errors and is set as among

{0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
(III) correlation between error and predictor,

y =
10∑
k=1

x(k)βk + ε with εi =
(

1 + ρ3x
(1)
i

)
N(0, σ2),

2



Table 2: The performance of β̃ for approximating β̂n under three kinds of model specification for

MG1 dataset.

Type I: heteroscedasticity

ρ1 0 0.2 0.5 1 2

UNIF 0.027 0.031 0.054 0.131 0.466

LEV 0.026 0.029 0.038 0.078 0.227

GRAD 0.013 0.016 0.026 0.060 0.199

Type II: model error dependence

ρ2 0 0.2 0.5 0.7 0.9

UNIF 0.027 0.027 0.028 0.028 0.027

LEV 0.026 0.025 0.027 0.025 0.026

GRAD 0.013 0.0143 0.013 0.014 0.013

Type III: correlation between error and predictor

ρ3 0 0.2 0.5 1 2

UNIF 0.027 0.545 3.181 12.74 51.07

LEV 0.026 0.235 1.344 5.271 20.80

GRAD 0.013 0.157 0.908 3.724 14.67

where ρ3 denotes the correlation between model error and the predictor x(1) and is set as among

{0, 0.1, 0.2, 0.3, 0.5, 0.8, 1, 2}.
We report the results on MG1 dataset for n = 50K and r = 200 in Table 2 but do not report

the results on other data sets because of the similarity. From Table 2, Firstly, most importantly,

GRAD still works better than UNIF and LEV. Secondly, Types I and III can bring serious effect,

especially Type III causes the most serious effect, while Type II seems have little effect on efficiency

of sampling methods. Thus, these observations command that GRAD is a nice choice from the

model robustness viewpoint.

S.4 Technical Results

A Lemma for proving Theorem 1

To analyze the risk, our key point is to apply Matrix Bernstein expectation bound (Theorem 6.1

in [1]) into matrix Bernoulli series. The lemma below present the expectation bound for matrix

Bernoulli series.
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Lemma 1. Consider a finite sequence {Ai = xix
T
i } of Hermitian matrices, where xi is d × 1

vector. Let {γi}, with mean pi respectively, be a finite sequence of independent Bernoulli variables.

Let max{‖xi‖2}ni=1 = R and

σ2
Σ =

1

n2

n∑
i=1

π−1
i ‖xi‖4.

Define matrix Bernoulli series ∆ = n−1
∑
i

(γi/pi − 1)Ai. We have,

Eλmax(∆) ≤ r−1/2σΣ

√
log d+

R

3n
log d.

Since the sequence {n−1(γi/pi − 1)Ai}ni=1 is independent random Hermitian matrices with

E[n−1(γi/pi − 1)Ai] = 0, λmax(n−1(γi/pi − 1)Ai) ≤ λmax(n−1Ai) = R/n, and

λmax(E∆2) =
1

n2

n∑
i=1

(p−1
i − 1)λmax(A2

i )

≤ r−1

n2

n∑
i=1

π−1
i ‖xi‖4,

applying the matrix Berstein inequality of Theorem 6.1 in ([1]) to obtain that

Eλmax(∆) ≤ r−1/2σΣ

√
log d+

R

3n
log d.

B Proof of Theorem 1

We have that

‖β̃ − β̂‖ = ‖Σ−1
s bs −Σ−1

s Σsβ̂n‖

≤ λmax(Σ−1
s )‖bs −Σsβ̂n‖. (A.1)

Note that λmax(Σ−1
s )−λmax(Σ−1

n ) ≤ λmax(Σ−1
s −Σ−1

n ) ≤ λmax(Σ−1
s )λmax(Σ−1

n )λmax(Σs−Σn), so

if the event

E1 := {λmax(Σs −Σn) < 2−1λmin(Σn)} (A.2)

holds, then we have that

λmax(Σ−1
s ) ≤ [λmin(Σn)− λmax(Σs −Σn)]−1 ,

and combining (A.1),

‖β̃−β̂‖ ≤ ‖bs −Σsβ̂n‖
λmin(Σn)− λmax(Σs −Σn)

< [λ−1
min(Σn)+2λ−2

min(Σn)λmax(Σs−Σn)]‖bs−Σsβ̂n‖, (A.3)
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where the 2nd inequality is from the fact that 1
1−x < 1 + 2x for any 0 < x < 1/2 and the condition

that the event E1 holds. For any δ > 0, define

E2 := {‖bs −Σsβ̂n‖ ≥
σb
r1/2δ

}.

E3 := {λmax(Σs −Σn) ≥ σΣ
√

log d

r1/2δ
+
R log d

3nδ
}.

Since

E‖bs −Σsβ̂n‖2

=E

[
1

n2

n∑
i=1

(
Ii
pi
− 1

)
xT
i ei

n∑
i=1

(
Ii
pi
− 1

)
xiei

]

=
1

n2

n∑
i=1

(
1

pi
− 1

)
xT
i xie

2
i <

1

r
σ2
b ,

by Markov’s inequality we have that,

Pr(E2) ≤ δ. (A.4)

Lemma 1 shows that

Pr(E3) ≤ (
σΣ
√

log d

r1/2δ
+
R log d

3nδ
)−1[λmax (Σs −Σn)]

= δ. (A.5)

For (A.2), we have that E1 ⊆ E3 if

r >
σ2

Σ log d

δ2(2−1λmin(Σn)− (3nδ)−1R log d)2
, (A.6)

δ >
2R log d

3nλmin(Σn)
(A.7)

holds. Thus, combing (A.3), (A.4), (A.5), (A.6) and (A.7), we get

Pr
{
‖β̃ − β‖ ≥ C1r

−1/2 + C2r
−1
}
≤ Pr

{
E2

⋂
E3

}
≤ δ,

where C1 = λ−1
min(Σn)δ−1σb and C2 = 2λ−2

min(Σn)δ−2σΣσb. From (A.6), C1r
−1/2 + C2r

−1 <

2C1r
−1/2. Thus Theorem 1 is proved.

C Proof of Corollary 1

Let

πei = ‖eixi‖/
n∑

j=1

‖ejxj‖. (A.8)
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σ2
b is minimized at {πei }ni=1 by Cauchy-Schwarz inequality, and the minimum of σ2

b :

σ2
b (πei ) = (

1

n

n∑
i=1

‖eixi‖)2. (A.9)

On the other hand, for the sampling probabilities π0
i of the gradient-based sampling,

σ2
b (π0

i ) = (
1

n

n∑
i=1

‖eixi‖)(
1

n

n∑
i=1

‖xi‖e2
i /|ẽi|), (A.10)

where ẽi = yi − xT
i β0. From (A.9) and (A.10), we have that, if β0 − β̂n = op(1), then

σ2
b (π0

i )− σ2
b (πei ) = op(1). (A.11)

From (A.11) and the notation of C, Corollary 1 is proved.
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