
A Appendix

A.1 Proof of Lemma 4.1

We consider the difference between y

(l+1) and Ax

(l)

(x

(l)
)

TAx

(l) as noise, denoted by g

(l). To prove the
results, we need to use Lemma A.1:

Lemma A.1. For any unit norm x 2 Rn, c def
= x� Ax

x

TAx

satisfies xTAxkck sin ✓�
1

, where ✓ is
the angle between v

1

and x.

Proof. Write x = cos ✓v
1

+ sin ✓u, where u ? v

1

. Then

kAx� (x

TAx)xk2

= k cos ✓�
1

v

1

+ sin ✓Au� (cos

2 ✓�
1

+ sin

2 ✓uTAu)(cos ✓v
1

+ sin ✓u)k2

= k cos ✓ sin2 ✓(�
1

� u

TAu)v

1

+ sin ✓(cos2 ✓((uTAu)u� �
1

u) + (Au� (u

TAu)u))k2

Notice u, Au� (u

TAu)u and v

1

are orthogonal to each other. Therefore,

kAx� (x

TAx)xk2

= cos

2 ✓ sin2 ✓(�
1

� u

TAu)

2

+ sin

2 ✓kAu� (u

TAu)uk2

 sin

2 ✓(�
1

� u

TAu)

2

+ sin

2 ✓kAuk2

 (�
1

sin ✓)2

The last step makes use of the fact that �
1

A � ATA is positive semidefinite, so that �
1

u

TAu �
u

TATAu = kAuk2 for any u.

Now we have the following corollary.

Corollary A.1.1. For g

(l), x

(l), �(l)
(k) defined for Algorithm 1, (x

(l)
)

TAx

(l)kg(l)k
sin ✓(l)�

1

�(l)
(k).

This result is crucial to the following proof of Lemma 4.1.

Figure 5: The central right triangle has a base-side of length �
1

cos ✓(l) and height of at most
�
2

sin ✓(l). The dashed line that ends in the center of the circle is Ax and the straight lines with an
arrow are possible g’s. Then Eq (11) can be represented by the tangent of the angle between the
base-side and the dotted lines that ends on the circle of radius xTAxkgk. Therefore tan ✓(l+1)
�2 sin ✓l

+x

TAxkgk/ cos ✓(l+1)

�1 cos ✓(l) .

10

Let U 2 Rn⇥(n�1)

= [v

2

|v
3

| · · · |vn] denote the orthonormal space of v
1

. The next iterate satisfies:

tan ✓(l+1)

=

kUT
y

(l+1)k
v

T
1

· y(l+1)

=

kUT Ax

(l)

(x

(l)
)

TAx

(l) + UT
g

(l)k

v

T
1

Ax

(l)

(x

(l)
)

TAx

(l) + v

T
1

g

(l)

 sin ✓(l)�
2

+ (x

(l)
)

TAx

(l)kUT
g

(l)k
cos ✓(l)�

1

+ (x

(l)
)

TAx

(l)
v

T
1

g

(l)
(11)

 sin ✓(l)�
2

+ (x

(l)
)

TAx

(l)kg(l)k/ cos ✓(l+1)

cos ✓(l)�
1

(12)

The logic from Eq (11) to Eq (12) is interpreted in Figure A.1.
Applying Lemma A.1 on Inequality (11), one gets

tan ✓(l+1) sin ✓(l)�
2

+ �(k) sin ✓(l)�
1

cos ✓(l)�
1

� �(k) sin ✓(l)�
1

= tan ✓(l)
�
2

+ �
1

�(k)

�
1

(1� tan ✓(l)�(k))

Therefore with large enough k such that �(k) �1��2

�1(1+tan ✓(l)
)

, we could guarentee that ✓(l+1) < ✓(l),
1

cos ✓(l+1) < 1

cos ✓(l) . So continuing Eq. (12), we have

tan ✓(l+1) sin ✓(l)�
2

+ (x

(l)
)

TAx

(l)kg(l)k/ cos ✓(l)

cos ✓(l)�
1

 sin ✓(l)�
2

+ �(k) sin ✓(l)�
1

/ cos ✓(l)

cos ✓(l)�
1

= tan ✓(l)
✓
�
2

�
1

+

�(k)

cos ✓(l)

◆

A.2 Proof of Theorem 4.2

When �(l)
(k) (�

1

� �
2

)/(2�
1

(1 + tan ✓(l))), we obtain that,

�(l)
(k)

cos ✓(l)
 �

1

� �
2

2�
1

(cos ✓(l) + sin ✓(l))
 (�

1

� �
2

)/(2�
1

)

tan ✓(l) tan ✓(l�1)

(�
2

/�
1

+ (�
1

� �
2

)/(2�
1

)) (13)

 tan ✓(0)
✓
�
1

+ �
2

2�
1

◆l

(14)

 tan ✓(0)e�l(�1��2)/(2�1) (15)

Therefore when l � 2

�1
�1��2

log

tan ✓(0)

" , tan ✓(l) ".

A.3 Proof of Corollary

To compare convergence rate between CPM and PM in comparable operations, one should notice one
iteration of CPM costs around k

n percentage of operations as PM does. Therefore we should compare
our convergence rate �1+�2

2�1
with (

�2
�1
)

k
n . Therefore when

k <
log

⇣
�1+�2
2�1

⌘

log

�2
�1

n,

our convergence rate is better than power method in terms of equivalent passes over data.

11

A.4 Proof of Theorem 4.3

Lemma A.2. In objective (5) f(x) = kA � xx

T k2F , it can be shown that within area x 2
Br(
p
�
1

v

1

) = {y|ky �
p
�
1

v

1

k r}, r = O(

p
�
1

� �2p
�1
), f(x) is strongly convex.

Proof of A.2. Notice for the objective function f , rf(x) = �4(Ax � kxk2x), Hessian matrix
H(x) = �4(A�kxk2I � 2xx

T
), and its stationary points are xi =

p
�ivi. Denote the eigenvalues

�
1

> �
2

� · · ·�r � 0 > · · ·�n, and with the assumption that the dominant eigenvalue is positive,
we have �

1

> |�n|.
At point

p
�
1

v

1

, the Hessian matrix of f is positive definite:

H(

p
�
1

v

1

) = �4(A� �
1

I � 2�
1

v

1

v

T
1

)

= 4�
1

v

1

v

T
1

+ 4�
1

I � 4

nX

i=2

�iviv
T
i

Therefore, H has the same eigenvectors as A: v
1

,v
2

· · ·vn, with respect to eigenvalues 8�
1

, 4(�
1

�
�
2

), 4(�
1

� �
3

), · · · , 4(�
1

� �n), which indicates that H is positive definite with its smallest
eigenvector 4(�

1

� �
2

) > 0.
Now to show f is strongly convex within the neighborhood Br(

p
�
1

v

1

), we denote x =

p
�
1

v

1

+

h, khk r, and introduce

G(h, g)
def
=

g

TH(

p
�
1

v

1

+ h)g

g

T
g

which could represent the range of eigenvalues to H(

p
�
1

v

1

+ h). Notice

r
h

G(h, g) = 8

p
�
1

v

T
1

+ 8h+ 16(

p
�
1

v

T
1

g

kgk + h

T g

kgk)
g

kgk
, and kr

h

G(h, g)k 8

p
�
1

+ 8khk+ 16(

p
�
1

+ khk)
= 24(

p
�
1

+ khk)
 24(

p
�
1

+ r), 8h 2 Br(0)

By mean-value theorem,

|G(h, g)�G(0, g)| (sup

h2Br(0)

kr
h

G(h, g)k)khk

 24(

p
�
1

+ r)r, 8h 2 Br(0), 8g 2 Rn

With some proper relaxation, when r =

1

30

�1��2p
�1

, we have |G(h, g)�G(0, g)| �
1

� �
2

.

Recall G(0, g) = g

TH(

p
�1v1)g

kgk2 � 4(�
1

� �
2

), 8g 2 Rn.

G(h, g) � G(0, g)� |G(h, g)�G(0, g)|
� 3(�

1

� �
2

), 8g 2 Rn, khk < r,

i.e.

H(

p
�
1

v

1

+ h) ⌫ 3(�
1

� �
2

), 8h, khk 1

30

�
1

� �
2p

�
1

Therefore the cost function is 3(�
1

� �
2

)-strongly convex within the area x 2 Br(
p
�
1

v

1

).

Lemma A.3. In area Br(
p
�
1

v

1

), where r=�1��2

30

p
�1

,rif satisfies coordinate-wise Lipschitz continu-
ous with parameter L 14�

1

� 2�
2

+ 4maxi |aii|.

Proof of Lemma A.3: Our goal is to find L that satisfies |rif(x + ↵ei) � rif(x)| L|↵|,
8x,↵ s.t. x,x+ ↵ei 2 Br(

p
�
1

v

1

).

12

Notice that r =

�1��2

30

p
�1

, and kxk
p
�
1

+ r, |↵| 2r.
Now

|rif(x+ ↵ei)�rif(x)|
= 4|kx+ ↵eik2(xi + ↵)� aii↵� kxk2xi|
 4|kx+ ↵eik2↵+ ↵2xi + 2↵x2

i |+ 4|aii↵|
 4|↵|((

p
�
1

+ r)2 + 2r(
p
�
1

+ r) + 2(

p
�
1

+ r)2) + 4|aii↵|
= 4|↵|(3�

1

+ 10

p
�
1

r + 5r2) + 4|aii↵|
 [12�

1

+ 2(�
1

� �
2

) + 4|aii|]|↵|

Remark: L = 14�
1

� 2�
2

+ 4maxi |aii|, for real application like social network, aii = 0 and
L = 14�

1

� 2�
2

.
With the Lipschitz continuous and strongly convex properties, we show convergence by quoting the
result of [13]:
Lemma A.4. When f is strongly convex asr2f ⌫ µI , andrf satisfies coordinate-wise L-Lipschitz
continuous, meaning

|rif(x+ ↵ei)�rif(x)| L|↵|,
8i = 1, 2, · · ·n, 8x 2 convex set S, and 8↵ such that x+ ↵ 2 S. Then with Gauss-Southwell rule
the optimization on f satisfies linear convergence:

f(x(l+1)

)� f(x⇤
) (1� µ

1

L
)[f(x(l)

)� f(x⇤
)]. (16)

Here µ
1

= inf

x,y2S
krf(x)�rf(y)k1

kx�yk1
2 [

µ
n , µ]

Therefore, the convergence rate for updating one coordinate at a time with Gauss-
Southwell rule becomes (1 � µ

L)
n, µ = inf

x,y
krf(x)�rf(y)k1

kx�yk1
2 [

3(�1��2)

n , 3(�
1

� �
2

)],
L = 14�

1

� 2�
2

+ 4maxi |aii|.

A.5 Greedy Coordinate Descent and Coordinate Selection Rules

For an arbitrary matrix A 2 Rn⇥d, we can formulate rank-1 matrix approximation:

argmin

x2Rn,y2Rd

f(x,y) = kA� xy

T k2F (17)

Notice that r
x

f(x,y) = 2(kyk2x� Ay). When fixing y, we obtain the optimal solution of x to
be x =

Ay

kyk2 and vice versa, y =

AT
x

kxk2 . And for symmetric matrices, this alternating minimization
algorithm is exactly power method apart from the normalization constant.
Recall our coordinate-wise power method. At each iteration we only update the coordinates with
the largest changes. Nevertheless here we can formally interpret this rule as the well-studied
Gauss-Southwell rule [12], where the coordinates that maximize the gradient norm is selected. As
rxif(x,y) = 2(kyk2xi � a

T
i y) = 2kyk2(xi � a

T
i y

kyk2), Gauss-Southwell gives the same choice of
coordinates as our coordinate-wise power method.
Meanwhile, specifically for quadratic objectives, Gauss-Southwell rule actually select the coordinates
based on the decrease in the objective function, leading to optimal updates, i.e.,

�fi := f(x0,y)� f(x,y) = �kyk2
2

(xi �
a

T
i y

kyk2
2

)

2

= � (rxif)
2

4kyk2

where x

0
= x+ (x0

i � xi)ei, and x0
i =

a

T
i y

kyk2 is the updated coordinate.

Here we summarize the three coordinate selection rules: (a) largest coordinate value change, |x0
i�xi|,

where x0
i is the next iterate; (b) largest partial gradient (Gauss-Southwell), |rif(x)|; (c) largest

13

function value decrease, |f(x0
) � f(x)|, where x

0
i = x + (x0

i � xi)ei. With the good property
of quadratic function Eq. (4), for each alternating minimization step, the three selection rules are
equivalent. Therefore now with the aid of the objective function, our coordinate selection strategy
in CPM, similar as in (a), is now consistent with the rule (c) with its nature in choosing the most
"important" coordinates.
Given the optimization interpretation, the extension of CPM to computing the top-r eigenvectors
of a symmetric matrix is straightforward. For the objective function f(X,Y) = kA � XY T k2F ,
where X,Y 2 Rn⇥r, the partial gradient of f(X,Y) with respect to matrices X,Y becomes
2(XY TY �AY) and 2(Y XTX �AX). By evaluating the norm in each rows of the gradient, we
could select and update row by row for X and Y by a

T
i Y (Y TY)

�1 and a

T
i X(XTX)

�1. Although
the algorithm is well-defined and can speedup power method for computing top-r eigenvectors, power
method (a.k.a. subspace iteration) is typically not used for computing the dominant r(especially for
large r) eigenvectors [16]. Therefore we don’t expand the discussion of this direction here.

A.6 Choice of k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

k/n(%)
tim

e(
se

c)

CPM — |λ2|/|λ1| = 0.8

SGCD — |λ2|/|λ1| = 0.8

CPM — |λ2|/|λ1| = 0.5

SGCD — |λ2|/|λ1| = 0.5

CPM — |λ2|/|λ1| = 0.2

SGCD — |λ2|/|λ1| = 0.2

Figure 6: Convergence time with differ-
ent k for different �

2

/�
1

The choice of k could be viewed as choosing the block
size for greedy block coordinate descent, which is usually
tuned in practice or determined by objective’s separable
property.
However, it would be better if k could be prescribed and
only depend on n, as we don’t know other properties like
�2
�1

beforehand. In Corollary 4.2.1 it shows the upper
bound of k ranges from 6%n to 50%n when �2

�1
ranges

from 10

�5 to 1 � 10

�5. Meanwhile, experiments also
show that the performance of our algorithms isn’t too
sensitive to the choice of k. See Figure 6 a large range of
k guarantees good performances. Thus we chose k =

n
20

throught out experiments in this paper, which is a theoretically and experimentally favorable choice.

A.7 Out-of-core Algorithm

Here we formally present the algorithm for the out-of-core case.

Algorithm 3 PM,CPM,SGCD for out-of-core matrix A

1: Initialization: Separate and save matrix A 2 Rn⇥n into m files, each containing n/m rows of
A and being able to fit into memory. Initialize random unit vector x(0).

2: for l = 1 to L do
3: for i = 1 to m do
4: Set ⌦ = (

(i�1)n
m + 1) :

in
m .

5: For PM, calculate A
⌦,:x

(l�1)

6: For CPM, do Step 4 in Algorithm 1 for t times.
7: For SGCD, do Step 4 in Algorithm 2 for t times.
8: Update x

(l).
9: Output: Approximate dominant eigenvector x(L)

A.8 Extension of Coordinate-wise Mechanism on the Jacobi method

For coordinate-wise Jacobi method for solving Ax = b, the algorithm is included here:

And for each iteration, it takes O(nnz(R) + n) operations for naive Jacobi, and O(

k
nnnz(R) + n)

for coordinate-wise Jacobi. This coordinate-wise methanism also reminds us of Gauss-Seidel method.
Recall that Gauss-Seidel:

Initialize: A = L+ U, where L is lower triangular matrix and U is upper trianglular matrix
Iterations: x+ L�1

(b� Ux).

14

Algorithm 4 Coordinate-wise Jacobi Method
1: Input: Symmetric diagonal dominant matrix A 2 Rn⇥n, vector b 2 Rn, number of selected coordinates,

k, and number of iterations, L.
2: Initialize x

(0) 2 Rn and set A = D + R, where D is diagonal component of A and R is the remainder
part. z(0) = Rx

(0). Set coordinate selecting criterion c

(0) = b�Ax

(0) = b�Dx

(0) � z

(0).
3: for l = 1 to L do
4: Let ⌦(l) be a set containing k coordinates of c(l�1) with the largest magnitude. Execute the following

updates:

x

(l)
j =

(
(bj � z

(l�1)
j)/Djj , j 2 ⌦(l)

x

(l�1)
j , j /2 ⌦(l)

z

(l) = z

(l�1) +R(x(l)

⌦(l) � x

(l�1)

⌦(l))

c

(l) = b�Dx

(l) � z

(l)

5: Output: x(L)

And taking advantage of triangular form, the procedure could be simplified as the following version,

x(l+1)

i 1

aii
(bi �

i�1X

j=1

aijx
(l+1)

j �
nX

j=i+1

aijx
(l)
j)

which is very similar to Jacobi method, but uses a forward substitution on newly computed xi.
Therefore our method is also like a greedy block version of Gauss-Seidel method. While Gauss-Seidel
is like a cyclic coordinate version of our method.
We use Matlab to do some simple experiments on some synthetic data to measure the convergence
time until the error is less than 1e� 5. Here error is measured by A-quadratic norm between current
iteration x

(l) from ground truth x

⇤, namely, kx(l) � x

⇤kA =

p
(x

(l) � x

⇤
)

TA(x

(l) � x

⇤
).

Table 2: Comparison between Jacobi method and Coordinate-wise Jacobi method. N/A denotes the
algorithm doesn’t converge.

Dataset n �2
�1

(A)
�(D�1

R)
Flops(/n2) Speedup

Jacobi C-Jacobi Gauss-Seidel on Jacobi on G-S
1 1000 0.7803 0.6870 35.035 4.794 7.007 7.308 1.462
2 1000 0.5565 0.9524 254.254 4.284 9.009 59.350 2.103
3 1000 0.5224 0.9942 2115.113 4.488 9.009 471.282 2.007
4 1000 0.5206 0.9986 8505.50 4.08 9.009 2084.68 2.2081
5 1000 0.495 1.11 N/A 4.386 9.009 N/A 2.054
6 5000 0.7792 0.6948 40.01 5.321 8.002 7.519 1.504
7 5000 0.5443 0.9529 290.058 4.317 9.002 67.187 2.085
8 5000 0.5146 0.9949 2703.54 5.622 10.002 480.852 1.779
9 5000 0.5111 0.9992 19760.0 6.256 10.002 3158.76 1.599

10 5000 0.5063 1.02 N/A 6.256 10.002 N/A 1.599

And from Table A.8, we can see that coordinate-wise Jacobi method shows significant speedup over
the naive Jacobi method. And even when the matrix is no longer diagonal dominant, (see table when
�(D�1R) > 1), but still positive definite, coordinate-wise Jacobi method still converges. And this
trait meets the convergence requirement for Gauss-Seidel method.
Although in this comparison coordinate-wise Jacobi doesn’t beat up Gauss-Seidel that much, Gauss-
Seidel has the disadvantage that it can not be done in parallel, while our method could be more
flexible on that. For example, we could greedily update coordinates in each worker, rather than
choosing globally the most greedy coordinates.
However, since for symmetric diagonal dominant matrices, Jacobi or Gauss-Seidel is not the state-of-
the-art method for solving linear system, we will need to compare with other more powerful methods.
And this algorithm lacks theoretical support at this point, so we consider this as an expansion of our
current work on coordinate-wise power method. But still, it’s worth mentioning that the coordinate-
wise mechanism could be powerful applying to Jacobi method and maybe to other iterative methods
in linear algebra too. Therefore in the future, we may continue exploiting the theory behind, and
analyze why and how greediness impacts on Jacobi method or other iterative methods in linear
algebra.

15

