
A Estimator and Algorithm369

A.1 Proof of Proposition 1370

Statement of the Proposition: The optimization in (2) is jointly convex in (X, z). Further, ∀γ > 0,371

(λ, γ�) and (γ−1λ, �) lead to equivalent estimators, specifically �X (λ, γ�) = γ−1 �X (γ−1λ, �).372

Proof: Let fλ,�(X) = min
z∈R|Ω|

λ�X�∗ + 1
2�z − PΩ(X)�22

s.t. ∀j, zΩj ∈ Rnj

↓� (y
(j)),

.373

We have,374

fλ,γ�(X) = min
z

λ�X�∗ +
1

2
�z − PΩ(X)�22 s.t. zΩj

∈ Rnj

↓γ�(y
(j)),

(a)
= min

z̄
λ�X�∗ +

1

2
�γz̄ − PΩ(X)�22 s.t. z̄Ωj

∈ Rnj

↓� (y
(j)),

= γ2min
z̄

λ

γ
�X/γ�∗ +

1

2
�z̄ − PΩ(X/γ)�22 s.t. z̄Ωj

∈ Rnj

↓� (y
(j)),

= γ2fγ−1λ,�(X/γ),

(9)

where (a) follows from reparameterizing the optimization using z̄ = z/γ as the geometry of375

Rnj

↓γ�(y
(j)) which is set of linear constraints of the form zi − zk ≤ γ�. From above set of equations,376

if X ∈ Argmin
X

fλ,γ�(X), then γ−1X ∈ Argmin
X

fγ−1λ,�(X).377

A.2 Proof of Lemma 2378

Statement of the Lemma: Consider the following steps,379

Step 1. π∗(x) s.t. ∀k ∈ [K], π∗(x)Pk
= sort(xPk

)

Step 2. �z = PAV (π∗(x)− �dbl) + �dbl.
(10)

Estimate �z is the unique minimizer for

argmin
z

�z − x�22 s.t. ∃π ∈ ΠP : Dnπ(z) ≤ �Dnd
bl.

Proof: A version of the lemma for linear orders was proved in [2]. In general,380

min
z

�z − x�22 s.t. ∃π ∈ ΠP : Dnπ(z) ≤ �Dnd
bl

= min
z,π∈ΠP

�z − x�22 s.t. Dnπ(z) ≤ �Dnd
bl

(a)
= min

w
min
π∈ΠP

�π−1(w + �dbl)− x�22 s.t. Dnw

≤ 0
(b)
= min

w:Dnw≤0
min
π∈ΠP

�w + �dbl − π(x)�22
(c)
= min

w:Dnw≤0
�w + �dbl − π∗(x)�22, (11)

where π∗(x) is the update from Step 1 stated above, (a) follows reparametrizing w := π(z)− �dbl,381

(b) follows as for all permutations π using �x�22 = �π(x)�22, and (c) follows form Proposition 5382

as Dnw ≤ 0 from constraints and �Dnd
bl ≤ 0 by construction. The final minimization is solved383

using Step 2. �384

Proposition 5 For any sorted z ∈ Rn such Dnz ≤ 0, π∗ = argmin
π∈ΠP

�z − π(x)�22, where π∗ is the385

permutation from Step 1.386

ΠP allows for all possible permutations within each partition Pk. Proposition follows from optimal-387

ity of sorting within each block. �388
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B Generalization Error389

B.1 Background390

Definition 5 (Rademacher Complexity) Let X1, X2, . . . , Xn ∈ X be drawn iid from a distribu-
tion PX . For a function class F : X → A, the empirical Rademacher complexity is defined as,

�Rn(F) = Eσ sup
f∈F

� 1

n

n�

i=1

σif(Xi)
�
,

where σ1,σ2, . . . ,σn are iid Rademacher variables, i.e., ±1 with probability 1/2.391

The Rademacher complexity with respect tp PX is then defined as Rn(F) = EPX
�Rn(F).392

Theorem 6 (Generalization Error Bound (Corollary 15 in [3])) Consider a loss function � : Y×
Rm → [0, 1] and a bounded function class F : X → Rm such that F is a direct sum of
F1,F2, . . . ,Fm. Further, if � is L–Lipschitz continuous with respect to Euclidean distance on Rm

and is uniformly bounded. Let {(Xi, Yi), i = 1, 2, . . . , n} be sampled form a distribution PX,Y .
Then there exists a constant c such that, for any integer n and any δ ∈ (0, 1), with probability
atleast 1− δ, over all sample of length n, the following holds for every f ∈ F:

EX,Y �(Y, f(X)) ≤ 1

n

n�

i=1

�(Yi, f(Xi)) + cL

m�

i=1

�Rn(Fm) +

�
8 log(2/δ)

n

B.2 Proof of Theorem 4393

Lemma 7 φ(., y) is convex and 2–Lipschitz continuous with respect to �2 norm.394

Proof: Convexity follows form Φ being a marginal of a convex function. For a any convex set C395

and its projection operator PC , we have the following for all x, x�:396

|�x− PC(x)�2 − �x� − PC(x
�)�2| ≤ �x− PC(x)− x� + PC(x

�)�2
≤ �x− x��2 + �PC(x)− PC(x

�)�2 ≤ 2�x− x��2

Consider a vector class of functions in RR, FR = {Ω(s) → XΩ(s) ∈ RR : �X�∗ ≤ M}, where397

Ω(s) are sampled as in the main paper. Also, consider another function classes Fij = {(i, j) →398

Xij : �X�∗ ≤ M}. It can be seen that FR is an R way direct sum of Fij . In order to use Theorem 6,399

we need to estimate the Rademacher complexity of Fij .400

Lemma 8 Let Ω = ∪jΩj obtained from combining samples form Assumption 1. The distribution of401

Ω is equivalent to uniformly sampling with replacement |Ω| = c0d2R log d2 entries from [d1]× [d2].402

Proof : For k = 1, 2 . . . |Ω|, ∀(i, j) ∈ [d1]× [d2],403

P((i, j) = Ωk) =
1

d1d2
.404

Thus, given (i, j) ∈ [d1]× [d2], P((i, j) ∈ Ω) = |Ω|
d1d2

. �405

Lemma 9 (Theorem 29 in [31]) For a universal constant K, the Rademacher complexity of matri-406

ces in Rd1×d2 of trace norm M , over uniform sampling of index pairs Ω is bounded by the following407

whenever |Ω| > d log d408

R({�X�∗ ≤ M}) ≤ K
M log1/4 d√

d1d2

�
d log d

|Ω| (12)

From Lemma 8, it can be seen that Lemma 9 applies to samples drawn according to Assumption 1.409

For the function class FR = {Ω(s) → XΩ(s) : �X�∗ ≤ M}, for some M . The theorem now410

follows by using the Rademacher complexity bound in Lemma 9 and Lipschitz continuity of Φ(., y)411

from 7 in Theorem 6.412
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