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A Estimator and Algorithm

A.1 Proof of Proposition 1

Statement of the Proposition: The optimization in (2) is ]omtly convex in (X, z) Further, Vv > 0,
(X, ve) and (v~1A, €) lead to equivalent estimators, specifically X' (X, ye) = v~ 1X (v~ 1A, ).

Proof: Let fy (X)= min \||X|.+ §Hz—779( NE .
zERILI

st Vi, 20, € RV (YD),
We have,

. 1
ProeX) = min A|X |, + 51z = Pa(X)I} st 20, € R, (47),
a) . 1,
@ min A|X . + 5197 = Pa(X) I3 st 20, € R (), o
A 1, i .
= 7Pmin” | X/7ll + 5112 = Pa(X/)IB st 20, € RY D)

= '72f'y*1/\,e(X/’7)a

where (a) follows from reparameterizing the optimization using Z = z/v as the geometry of
Rfée(y(j )) which is set of linear constraints of the form z; — z;, < ~ve. From above set of equations,
if X € Argminf .(X), then v~ ' X € Argminf, -1, (X).

X X

A.2 Proof of Lemma 2

Statement of the Lemma: Consider the following steps,

Step 1. 7*(x) s.t. Vk € [K], 7" (x) p, = sort(xp, )

10
Step 2. 2 = PAV (1*(z) — ed”) + ed®. (10

Estimate Z is the unique minimizer for

argmin||z — z||3 s.t. 37 € p : Dyp7(2) < €Dy, d™.

Proof: A version of the lemma for linear orders was proved in [2]. In general,
min ||z — z||% s.t. 31 € Mp : Dpr(2) < eDypd”

= min ||z —z|3s.t Dpn(z) < eD,d”
z,m€ellp

@ min min |7~ (w + ed™) — z||2 s.t. Dpw
w wellp

<0 ® min  min ||w+ ed” — (x)Hg
w:Dpw<0 wellp

© min_[Jw + ed” — 7" (2)|]3, (11)

w:Dpw<

where 7* () is the update from Step 1 stated above, (a) follows reparametrizing w := 7(z) — ed®,

(b) follows as for all permutations 7 using ||x||3 = || (z)||3, and (c) follows form Proposition 5
as D,w < 0 from constraints and eD,,d” < 0 by construction. The final minimization is solved
using Step 2. ([

Proposition 5 For any sorted z € R™ such Dypz < 0, 7* = argmin||z — 7(x)
wellp

2, where 7* is the

permutation from Step 1.

IIp allows for all possible permutations within each partition Py. Proposition follows from optimal-
ity of sorting within each block. |

10
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B Generalization Error

B.1 Background

Definition 5 (Rademacher Complexity) Let X1, X, ..., X,, € X be drawn iid from a distribu-
tion Px. For a function class F : X — A, the empirical Rademacher complexity is defined as,

9?“n(]:) = E, sup (% iaif(Xi))v
i=1

feF

where 01,09, ..., 0y are iid Rademacher variables, i.e., -1 with probability 1/2.

~

The Rademacher complexity with respect tp Px is then defined as R,,(F) = Ep, R, (F).

Theorem 6 (Generalization Error Bound (Corollary 15 in [3])) Consider a loss function £ : Y X
R™ — [0,1] and a bounded function class F : X — R™ such that F is a direct sum of
F1,Fo, ..., Fm. Further, if { is L-Lipschitz continuous with respect to Euclidean distance on R™
and is uniformly bounded. Let {(X;,Y;),i = 1,2,...,n} be sampled form a distribution Px y.
Then there exists a constant ¢ such that, for any integer n and any 6 € (0,1), with probability
atleast 1 — 6, over all sample of length n, the following holds for every f € F:

n

Exl(Y, f(X)) < 1 3 (Vi F(X0) + L 3 Ra(F) +

=1

81og(2/9)

B.2 Proof of Theorem 4

Lemma 7 ¢(.,y) is convex and 2-Lipschitz continuous with respect to £y norm.

Proof: Convexity follows form ® being a marginal of a convex function. For a any convex set C
and its projection operator Pc, we have the following for all z, z:

e = Pe(2)llz — ll2" = Po(@)2| < [lz = Po(z) — 2" + Po(a')|l2
< llz = 2'll2 + | Po(x) = Po(a')|l2 < 2|z — 2|2

Consider a vector class of functions in R®, Fr = {Q(s) = Xqe) € R? : || X||. < M}, where
Q(s) are sampled as in the main paper. Also, consider another function classes F;; = {(¢,7) —
Xi; ¢ | X ||« < M}. It can be seen that Fr is an R way direct sum of 7;;. In order to use Theorem 6,
we need to estimate the Rademacher complexity of ;.

Lemma 8 Let ) = U;$); obtained from combining samples form Assumption 1. The distribution of
O is equivalent to uniformly sampling with replacement |Q)| = cods R log ds entries from [dy] x [da].

Proof: Fork =1,2...|Q|,V(i,5) € [d1] X [d2],
P((i,5) = ) = gz
Thus, given (i, ) € [d1] x [d2], P((i,5) € Q) = dllﬂd‘g. O

Lemma 9 (Theorem 29 in [31]) For a universal constant K, the Rademacher complexity of matri-
ces in R4*% of trace norm M, over uniform sampling of index pairs §) is bounded by the following
whenever |Q)] > dlogd

Mlog'/*d |dlogd
Vdida €]

RUEIX] < M}) < K (12)
From Lemma 8, it can be seen that Lemma 9 applies to samples drawn according to Assumption 1.

For the function class Fr = {Q(s) — Xq() @ | X[« < M}, for some M. The theorem now
follows by using the Rademacher complexity bound in Lemma 9 and Lipschitz continuity of ®(., y)
from 7 in Theorem 6.
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