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A Supplement

A.1 Proof of Theorem/[I]
For any y € A, define a function f, : R — [0,1] as

k—1,—(r?>—2rt) /20>
frERy,T>H7’£yH2r € dr

rk=1g—(r2=2rt)/202 ¢

fy(t) =

erRy

(As always we ignore the case P,y = 0 to avoid degeneracy.) By examining the integrals, we
can immediately see that, for any fixed y, f,(t) is strictly increasing as a function of ¢, with
limy_,_ fy,(t) = 0 and lim,;_, , f,,(t) = 1. These properties guarantee that, for any fixed y and any
fixed o € (0, 1), there is a unique ¢ € R with f, (¢) = «, i.e. this proves the existence and uniqueness
of L, as required.

Furthermore, Lemmaimmediately implies that, after conditioning on the event Y € A, and on the
values of dirz(Y") and P2 Y, the conditional density of ||P,Y |2 is

o ph=le=(r*=2rty)/20% 4 {reRyv}

for ty = (dirz(Y"), u), and therefore, fy (ty) ~ Uniform[0, 1]. In the case that u L £, we have
ty = 0 always and therefore P = fy(0) ~ Uniform|0, 1], as desired. In the general case, by
definition of L, we have fy (L, ) = « and so, again using the fact that fy () is strictly increasing,

frty) <a=fy(La) & ty < La,
and so by definition of ty-,
P{(dirg(Y), ) < Lo} =P{ty < Lo} =P{fy(ly) <o} =oa.
Furthermore, we know that | Pzull2 > (dirz(Y), u) = ty, and so
P{[[Peullz < Lo} <P{(dire(Y), u) < La} = .
Finally, we see that since P = fy (0) while a = fy (L,), P < aif and only if 0 < L.
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A.2  Proof of Lemmalll

We begin with the following elementary calculation (for completeness the proof is given below):

Lemma A.1. Suppose that Y ~ N (ji,c2I},). Let R = ||Y |2 € Ry and U = dir(Y) € S*~! be the

radius and direction of the random vector Y. Then the joint distribution of (R, U) has density

f(r,u) oc r*Lexp {%; (r* —2r- <u,ﬁ>)} for (r,u) € Ry x SF1.

Next, let V € R™*¥ be an orthonormal basis for £ and let
Y =V'Y ~ N(fi,0°I},) where i = V' .
Now let R = ||V ||y = || P.Y |2 and let U = dir(Y) = VT dir.(Y); note that dir. (V) = VU.

Defining W = PﬁlY, we see that Y = r - Vu + w, and that Y 1L W by properties of the normal
distribution. Combining this with the result of Lemma we see that the joint density of (R, U, W)
is given by

1 ~ 1
frow (ryu,w) ocr*texp g =5 (r? = 2r- (u, 1)) ¢ - exp{ — 55 [lw = Prul3
20 20
for (r,u,w) € Ry x Sk~ x £ . After conditioning on the event {Y € A}, this density becomes

1 1
k-1 2 ~ L2
o r exp{—202 (r —2T'<U7M>)}'eXP{—Q(Ig”w_ﬁcM2}'1{7“' Vu+w € A}

Next note that the event {Y” € A} is equivalentto {R € Ry } where Ry = {r >0:r- VU 4+ W €
A}, and so the conditional density of R, after conditioning on U, W, and on the event Y € A, is

X 1 -
o rk_lexp{—22 (r2 —2r. <U,u))} -1{R e Ry},
o

as desired. Now we prove our supporting result, Lemma|A.1

Proof of LemmalA.1} 1t’s easier to work with the parametrization (Z,U) where Z = log(R). By a
simple change of variables calculation, the claim in the lemma is equivalent to showing that
1

fzu(z,u) o e exp {—22 (e —2€* - <u,ﬁ>)} for (z,u) € R x SF~1.

o
Fix any € € (0, 1) and, for each (z,u) € RxS*~L, consider the region (z—¢, z+¢&) xC5 C RxSF~1,
where C¢ is a spherical cap, C5 := {v € S¥71 : |[v —ul|s < €}. Let s. be the surface area of
Cc; C S*=1 (note that this surface area does not depend on w since it’s rotation invariant).

To check that our density is correct, it is sufficient to check that

P{(Z,U)e(z—e,z+¢) xC;} x
1

kz
Volume ((z — &,z +¢) X C7) - € - exp {_202

(2~ 20° <u,ﬁ>)} (14 o(1)),

where the o(1) term is with respect to the limit ¢ — 0 while (z,u) is held fixed, and
where the constant of proportionality is independent of € and of z,u. We can also calculate
Volume ((z — &,z 4+ &) x C5) = 2¢ - s..

Now consider
Y. = {y € R™: —” y” e C:log(|lyll2) € (2 —¢, 2 —1—5)} C R™.
, Yl

‘We have ~
P{ZU)€ (z—e,z+¢) xCi} =P{V € V2, }.



Since V<, = Upe(ez—= ex+¢)(t - C5), and the surface area of ¢ - C C ¢ - S*~1is equal to st~ we
can also calculate
zte z+e

€ ) 1 e
Volume(): ) = / seth~ldt = %set’f
t=e*—¢

since eF(*F¢) — k(=€) = b= . 2ke . (14 0(1)). And, since maxyeye |y — e - ull — 0ase — 0,

= —5.-(eFCFE) b ==9)) = 9c.5_ €% (140(1)),

t=e*—¢

then for any y € V; ,,, the density of Y at this point is given by

1 1 ~i2 1
- — -z lly=Rllz —
= ——————— ¢ 202 2 =
@ (2wo2)n (2wo2)n

where again the o(1) term is with respect to the limit ¢ — 0 while (z, u) is held fixed. So, we have

IP{(Z,U)6(z—s,z-l—a)xCﬁ}:P{f/eyiu}:/y I3 (y) dy
YEVZ 4

e worlleT ez (1 4 (1)),

1 P
_ Volume(yju) . 7e_ﬁ”6 ~u—MH§ . (1 + 0(1))
’ (2mo?)n
1 P
=2 -5.-e” . (140(1))- S —— (14 0(1))
(2wo2)n
1

1 12
= 2¢ - RPLZE - 2Z_2 2. ”“ . *?HMb
€-8c-€ exp{ 5,2 (e e (u u))} [ (27ro2)”6 2

which gives the desired result since the term in square brackets is constant with respect to z, u,e. [

(L+0(1)),

A.3 Derivations for IHT inference

Here we derive the formulas for the coefficients ¢, d; used in the inference procedure for group-sparse
IHT. First, at time ¢ = 1,

. 1
B1="bo —mVf(bo) =bo—m (nXT(Xbo - ZYU“)))
—r V—IXTU} + {(I— MXTX)bo+ XTY, | =1 e) +dy.
n n n

Next, at each time ¢ = 2,...,7T, assume that Et,l = ¢t—17 + di—1. Then, writing Ps,_, as the
matrix in RP*P which acts as the identity on groups in S;—; and sets all other groups to zero, we
have b;_1 = Ps, ,Bi—1 = Ps,_,ct—17 + Ps,_,di—1, and so

Br=1by1— eV f(be—1) = b1 — ¢ (iXT(th—l - ZY("")))

= (I, - EXTX)Ps, o1+ LXTU|+ [T, - LXTX)Ps,  diy + XY | = rcitd,.
L ¢ n L ¢ n

A.4 Simulation results for group lasso and forward stepwise regression

The group lasso is run with penalty parameter A\ = 4. The group lasso algorithm is run via the R
package gglasso [1]]. Figure [I]shows the p-values obtained with the group lasso, while Figure 2]
displays the coverage for the norms ||P. |2 and the inner products (dir.(Y'), ); these plots are
produced exactly as Figures T[] and 2] for IHT, except that only 200 trials are shown for the coverage
plot due to the slower run time of this method. We observe very similar trends for this method as for
IHT.

The forward stepwise method is implemented with 7" = 10 many steps, and p-values and confidence
intervals are computed by considering all 10 selected groups simultaneously at the end of the
procedure (rather than sequentially) so that the results are more comparable to the other two methods.
Figure [3] shows the p-values obtained with the forward stepwise method, while Figure [ displays
the coverage for the norms ||P.u||2 and the inner products (dir.(Y'), u); these plots are produced
exactly as Figures [T]and 2] for IHT. We again observe similar trends in the results.
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Figure 1: Group lasso. For each group, we plot its p-value for each trial in which that group was
selected, for 200 trials. Histograms of the p-values for true signals (left, red) and for nulls (right,
gray) are attached.
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Figure 2: Group lasso. Empirical coverage over 200 trials with signal strength 7. “Norm” and “inner
product” refer to coverage of ||P.u|2 and (dirz (Y), i), respectively.

A.5 Pseudo-code: post-selection inference for forward selection

In Algorithm [I| we provide a detailed pseudo-code of our inference method for forward selection
(described in Section [3.2). Here, we compute the P value as well as confidence interval for each
selected group conditioned on our previous selections. The algorithm is efficient and only overhead
above the Forward Selection method is computation of the integral of a one-dimensional density over
different intervals (see Step 15).
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Figure 3: Forward stepwise regression. For each group, we plot its p-value for each trial in which

that group was selected, for 200 trials. Histograms of the p-values for true signals (left, red) and for

nulls (right, gray) are attached.
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Figure 4: Forward stepwise regression. Empirical coverage over 2000 trials with signal strength 7.

“Norm” and “inner product” refer to coverage of | P ull2 and (dirz(Y), ), respectively.



Algorithm 1 Post-selection Inference for Forward Selection

1: Input : Response Y, design matrix X, groups C1,...,Cq C {1,...,p}, maximum number of

selected groups 7', desired accuracy o
2: Initialize : Sop = @, residual g = Y, Ry = Ry
3: fort=1,2,...,Tdo
. _ T=
4 g =argmaxgcigps,_, X €-1ll2}

5:  Update the model, S; = {g1,- .., g:+}, and the residual, € = Pj( Y
St

Pr,Y

6: L+ Span(P;Lcst_ngt)’ Ut TP, YTz
7. forg & S; do
8.
9

T T
ag + |1 X;. Phs, Ul — |1Xg Py Uil3

Y« PrY

brg  (Xg,Pxs, U Xy, Px,, Y1) —(XyPx,, Ui Xy Px,, Y1)

T T
100 cg e |X] PR, VB I1X)Pr, Y1
11: It,g — {’I" c R+ : (Lt’g"’2 + thygr + Ct.g > 0}
12: Ry < Ry NZiq
13:  end for

2 2
k—1_-r2/20
r e dr
f;~e7zy,r>upﬁtyu2

14: Pt:

erRY rk—le—r2/20% dr
k—1_—(r2—2rB)/202
15: Lt =pfst Jremy otpe,via ™ ¢ : A
: a e f’r‘ERy rk—1le—(r2—2rB)/202 (.
16: end for

17: Output : Selected groups {g1,...,gr}, p-values {P,..

bounds {LL,..., L1}

(e

., Pr}, confidence interval lower
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