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Abstract

We develop tools for selective inference in the setting of group sparsity, including
the construction of confidence intervals and p-values for testing selected groups of
variables. Our main technical result gives the precise distribution of the magnitude
of the projection of the data onto a given subspace, and enables us to develop
inference procedures for a broad class of group-sparse selection methods, including
the group lasso, iterative hard thresholding, and forward stepwise regression. We
give numerical results to illustrate these tools on simulated data and on health
record data.

1 Introduction

Significant progress has been recently made on developing inference tools to complement the feature
selection methods that have been intensively studied in the past decade [6, 5, 9]. The goal of selective
inference is to make accurate uncertainty assessments for the parameters estimated using a feature
selection algorithm, such as the lasso [12]. The fundamental challenge is that after the data have
been used to select a set of coefficients to be studied, this selection event must then be accounted
for when performing inference, using the same data. A specific goal of selective inference is to
provide p-values and confidence intervals for the fitted coefficients. As the sparsity pattern is chosen
using nonlinear estimators, the distribution of the estimated coefficients is typically non-Gaussian
and multimodal, even under a standard Gaussian noise model, making classical techniques unusable
for accurate inference. It is of particular interest to develop finite-sample, non-asymptotic results.

In this paper, we present new results for selective inference in the setting of group sparsity [15, 3, 10].
We consider the linear model Y = Xβ +N (0, σ2In) where X ∈ Rn×p is a fixed design matrix. In
many applications, the p columns or features of X are naturally grouped into blocks C1, . . . , CG ⊆
{1, . . . , p}. In the high dimensional setting, the working assumption is that only a few of the
corresponding blocks of the coefficients β contain nonzero elements; that is, βCg = 0 for most groups
g. This group-sparse model can be viewed as an extension of the standard sparse regression model.
Algorithms for fitting this model, such as the group lasso [15], extend well-studied methods for sparse
linear regression to this grouped setting.

In the group-sparse setting, recent results of Loftus and Taylor [9] give a selective inference method
for computing p-values for each group chosen by a model selection method such as forward stepwise
regression; selection via cross-validation was studied in [9]. More generally, the inference technique
of [7] applies to any model selection method whose outcome can be described in terms of quadratic
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conditions on Y . However, their technique cannot be used to construct confidence intervals for the
selected coefficients or for the size of the effects of the selected groups.

Our main contribution in this work is to provide a tool for constructing confidence intervals as well
as p-values for testing selected groups. In contrast to the (non-grouped) sparse regression setting,
the confidence interval construction does not follow immediately from the p-value calculation, and
requires a careful analysis of non-centered multivariate normal distributions. Our key technical result
precisely characterizes the density of ‖PLY ‖2 (the magnitude of the projection of Y onto a given
subspace L), conditioned on a particular selection event. This “truncated projection lemma” is the
group-wise analogue of the “polyhedral lemma” of Lee et al. [5] for the lasso. This technical result
enables us to develop inference tools for a broad class of model selection methods, including the
group lasso [15], iterative hard thresholding [1, 4], and forward stepwise group selection [14].

In the following section we frame the problem of group-sparse inference more precisely, and present
previous results in this direction. We then state our main technical results; the proofs of the results are
given in the supplementary material. In Section 3 we show how these results can be used to develop
inferential tools for three different model selection algorithms for group sparsity. In Section 4 we
give numerical results to illustrate these tools on simulated data, as well as on the California county
health data used in previous work [9]. We conclude with a brief discussion of our work.

2 Main results: selective inference over subspaces
To establish some notation, we will write PL for the projection to any linear subspace L ⊆ Rn, and
P⊥L for the projection to its orthogonal complement. For y ∈ Rn, dirL(y) = PLy

‖PLy‖2 ∈ L ∩ Sn−1 is
the unit vector in the direction of PLy. This direction is not defined if PLy = 0.

We focus on the linear model Y = Xβ + N (0, σ2In), where X ∈ Rn×p is fixed and σ2 > 0 is
assumed to be known. More generally, our model is Y ∼ N (µ, σ2In) with µ ∈ Rn unknown and σ2

known. For a given block of variables Cg ⊆ [p], we write Xg to denote the n× |Cg| submatrix of X
consisting of all features of this block. For a set S ⊆ [G] of blocks, XS consists of all features that
lie in any of the blocks in S .

When we refer to “selective inference,” we are generally interested in the distribution of subsets
of parameters that have been chosen by some model selection procedure. After choosing a set of
groups S ⊆ [G], we would like to test whether the true mean µ is correlated with a group Xg for
each g ∈ S after controlling for the remaining selected groups, i.e. after regressing out all the other
groups, indexed by S\g. Thus, the following question is central to selective inference:

Questiong,S : What is the magnitude of the projection of µ onto the span of P⊥XS\gXg? (1)

In particular, we are interested in a hypothesis test to determine if µ is orthogonal to this span, that
is, whether block g should be removed from the model with group-sparse support determined by S;
this is the question studied by Loftus and Taylor [9] for which they compute p-values. Alternatively,
we may be interested in a confidence interval on ‖PLµ‖2, where L = span(P⊥XS\gXg). Since S
and g are themselves determined by the data Y , any inference on these questions must be performed
“post-selection,” by conditioning on the event that S is the selected set of groups.

2.1 Background: The polyhedral lemma
In the more standard sparse regression setting without grouped variables, after selecting a set S ⊆ [p]
of features corresponding to columns of X, we might be interested in testing whether the column Xj

should be included in the model obtained by regressing Y onto XS\j . We may want to test the null
hypothesis that X>j P⊥XS\jµ is zero, or to construct a confidence interval for this inner product.

In the setting where S is the output of the lasso, Lee et al. [5] and Tibshirani et al. [13] characterize
the selection event as a polyhedron in Rn: for any set S ⊆ [p] and any signs s ∈ {±1}S , the event
that the lasso (with a fixed regularization parameter λ) selects the given support with the given signs
is equivalent to the event Y ∈ A =

{
y : Ay < b

}
, where A is a fixed matrix and b is a fixed

vector, which are functions of X, S, s, λ. The inequalities are interpreted elementwise, yielding a
convex polyhedron A. To test the regression question described above, one then tests η>µ for a fixed
unit vector η ∝ P⊥XS\jXj . The “polyhedral lemma”, found in [5, Theorem 5.2] and [13, Lemma
2], proves that the distribution of η>Y , after conditioning on {Y ∈ A} and on P⊥η Y , is given by a
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truncated normal distribution, with density
f(r) ∝ exp

{
−(r − η>µ)2/2σ2

}
· 1 {a1(Y ) ≤ r ≤ a2(Y )} . (2)

The interval endpoints a1(Y ), a2(Y ) depend on Y only through P⊥η Y and are defined to include
exactly those values of r that are feasible given the event Y ∈ A. That is, the interval contains all
values r such that r · η + P⊥η Y ∈ A.

Examining (2), we see that under the null hypothesis η>µ = 0, this is a truncated zero-mean normal
density, which can be used to construct a p-value testing η>µ = 0. To construct a confidence interval
for η>µ, we can instead use (2) with nonzero η>µ, which is a truncated noncentral normal density.

2.2 The group-sparse case
In the group-sparse regression setting, Loftus and Taylor [9] extend the work of Lee et al. [5] to
questions where we would like to test PLµ, the projection of the mean µ to some potentially multi-
dimensional subspace, rather than simply testing η>µ, which can be interpreted as a projection to
a one-dimensional subspace, L = span(η). For a fixed set A ⊆ Rn and a fixed subspace L of
dimension k, Loftus and Taylor [9, Theorem 3.1] prove that, after conditioning on {Y ∈ A}, on
dirL(Y ), and on P⊥L Y , under the null hypothesis PLµ = 0, the distribution of ‖PLY ‖2 is given by
a truncated χk distribution,

‖PLY ‖2 ∼ (σ · χk truncated toRY ) whereRY =
{
r : r · dirL(Y ) + P⊥L Y ∈ A

}
. (3)

In particular, this means that, if we would like to test the null hypothesis PLµ = 0, we can compute
a p-value using the truncated χk distribution as our null distribution. To better understand this null
hypothesis, suppose that we run a group-sparse model selection algorithm that chooses a set of blocks
S ⊆ [G]. We might then want to test whether some particular block g ∈ S should be retained in this
model or removed. In that case, we would set L = span(P⊥XS\gXg) and test whether PLµ = 0.

Examining the parallels between this result and the work of Lee et al. [5], where (2) gives either
a truncated zero-mean normal or truncated noncentral normal distribution depending on whether
the null hypothesis η>µ = 0 is true or false, we might expect that the result (3) of Loftus and
Taylor [9] can extend in a straightforward way to the case where PLµ 6= 0. More specifically, we
might expect that (3) might then be replaced by a truncated noncentral χk distribution, with its
noncentrality parameter determined by ‖PLµ‖2. However, this turns out not to be the case. To
understand why, observe that ‖PLY ‖2 and dirL(Y ) are the length and the direction of the vector
PLY ; in the inference procedure of Loftus and Taylor [9], they need to condition on the direction
dirL(Y ) in order to compute the truncation intervalRY , and then they perform inference on ‖PLY ‖2,
the length. These two quantities are independent for a centered multivariate normal, and therefore if
PLµ = 0 then ‖PLY ‖2 follows a χk distribution even if we have conditioned on dirL(Y ). However,
in the general case where PLµ 6= 0, we do not have independence between the length and the
direction of PLY , and so while ‖PLY ‖2 is marginally distributed as a noncentral χk, this is no
longer true after conditioning on dirL(Y ).

In this work, we consider the problem of computing the distribution of ‖PLY ‖2 after conditioning
on dirL(Y ), which is the setting that we require for inference. This leads to the main contribution of
this work, where we are able to perform inference on PLµ beyond simply testing the null hypothesis
that PLµ = 0.

2.3 Key lemma: Truncated projections of Gaussians
Before presenting our key lemma, we introduce some further notation. Let A ⊆ Rn be any fixed
open set and let L ⊆ Rn be a fixed subspace of dimension k. For any y ∈ A, consider the set

Ry = {r > 0 : r · dirL(y) + P⊥L y ∈ A} ⊆ R+.

Note thatRy is an open subset of R+, and its construction does not depend on ‖PLy‖2, but we see
that ‖PLy‖2 ∈ Ry by definition.
Lemma 1 (Truncated projection). Let A ⊆ Rn be a fixed open set and let L ⊆ Rn be a fixed
subspace of dimension k. Suppose that Y ∼ N (µ, σ2In). Then, conditioning on the values of
dirL(Y ) and P⊥L Y and on the event Y ∈ A, the conditional distribution of ‖PLY ‖2 has density1

f(r) ∝ rk−1 exp
{
− 1

2σ2

(
r2 − 2r · 〈dirL(Y ), µ〉

)}
· 1 {r ∈ RY } .

We pause to point out two special cases that are treated in the existing literature.
1Here and throughout the paper, we ignore the possibility that Y ⊥ L since this has probability zero.
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Special case 1: k = 1 andA is a convex polytope. SupposeA is the convex polytope {y : Ay < b}
for fixed A ∈ Rm×n and b ∈ Rm. In this case, this almost exactly yields the “polyhedral lemma” of
Lee et al. [5, Theorem 5.2]. Specifically, in their work they perform inference on η>µ for a fixed
vector η; this corresponds to taking L = span(η) in our notation. Then since k = 1, Lemma 1 yields
a truncated Gaussian distribution, coinciding with Lee et al. [5]’s result (2). The only difference
relative to [5] is that our lemma implicitly conditions on sign(η>Y ), which is not required in [5].

Special case 2: the mean µ is orthogonal to the subspace L. In this case, without conditioning
on {Y ∈ A}, we have PLY = PL

(
µ+N (0, σ2I)

)
= PL

(
N (0, σ2I)

)
, and so ‖PLY ‖2 ∼ σ · χk.

Without conditioning on {Y ∈ A} (or equivalently, taking A = Rn), the resulting density is then

f(r) ∝ rk−1e−r
2/2σ2

· 1 {r > 0}

which is the density of the χk distribution (rescaled by σ), as expected. If we also condition on
{Y ∈ A} then this is a truncated χk distribution, as proved in Loftus and Taylor [9, Theorem 3.1].

2.4 Selective inference on truncated projections
We now show how the key result in Lemma 1 can be used for group-sparse inference. In particular, we
show how to compute a p-value for the null hypothesis H0 : µ ⊥ L, or equivalently, H0 : ‖PLµ‖2 =
0. In addition, we show how to compute a one-sided confidence interval for ‖PLµ‖2, specifically,
how to give a lower bound on the size of this projection.

Theorem 1 (Selective inference for projections). Under the setting and notation of Lemma 1, define

P =

∫
r∈RY ,r>‖PLY ‖2 r

k−1e−r
2/2σ2

dr∫
r∈RY r

k−1e−r2/2σ2 dr
. (4)

If µ ⊥ L (or, more generally, if 〈dirL(Y ), µ〉 = 0), then P ∼ Uniform[0, 1]. Furthermore, for any
desired error level α ∈ (0, 1), there is a unique value Lα ∈ R satisfying∫

r∈RY ,r>‖PLY ‖2 r
k−1e−(r

2−2rLα)/2σ2

dr∫
r∈RY r

k−1e−(r2−2rLα)/2σ2 dr
= α, (5)

and we have

P {‖PLµ‖2 ≥ Lα} ≥ P {〈dirL(Y ), µ〉 ≥ Lα} = 1− α.

Finally, the p-value and the confidence interval agree in the sense that P < α if and only if Lα > 0.

From the form of Lemma 1, we see that we are actually performing inference on 〈dirL(Y ), µ〉.
Since ‖PLµ‖2 ≥ 〈dirL(Y ), µ〉, this means that any lower bound on 〈dirL(Y ), µ〉 also gives a lower
bound on ‖PLµ‖2. For the p-value, the statement 〈dirL(Y ), µ〉 = 0 is implied by the stronger null
hypothesis µ ⊥ L. We can also use Lemma 1 to give a two-sided confidence interval for 〈dirL(Y ), µ〉;
specifically, 〈dirL(Y ), µ〉 lies in the interval [Lα/2, L1−α/2] with probability 1 − α. However, in
general this cannot be extended to a two-sided interval for ‖PLµ‖2.

To compare to the main results of Loftus and Taylor [9], their work produces the p-value (4) testing
the null hypothesis µ ⊥ L, but does not extend to testing PLµ beyond the null hypothesis, which the
second part (5) of our main theorem is able to do.2

3 Applications to group sparse regression methods
In this section we develop inference tools for three methods for group-sparse model selection: forward
stepwise regression (also considered by Loftus and Taylor [9] with results on hypothesis testing),
iterative hard thresholding (IHT), and the group lasso.

2Their work furthermore considers the special case where the conditioning event, Y ∈ A, is determined by a
“quadratic selection rule,” that is, A is defined by a set of quadratic constraints on y ∈ Rn. However, extending
to the general case is merely a question of computation (as we explore below for performing inference for the
group lasso) and this extension should not be viewed as a primary contribution of this work.
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3.1 General recipe
With a fixed design matrix, the outcome of any group-sparse selection method is a function of Y .
For example, a forward stepwise procedure determines a particular sequence of groups of variables.
We call such an outcome a selection event, and assume that the set of all selection events forms a
countable partition of Rn into disjoint open sets: Rn = ∪eAe.3 Each data vector y ∈ Rn determines
a selection event, denoted e(y), and thus y ∈ Ae(y).

Let S(y) ⊆ [G] be the set of groups selected for testing. This is assumed to be a function of e(y),
i.e. S(y) = Se for all y ∈ Ae. For any g ∈ Se, let Le,g = span(P⊥XSe\gXg), the subspace of Rn

indicating correlation with group Xg beyond what can be explained by the other selected groups.

Write RY = {r > 0 : r · U + Y⊥ ∈ Ae(Y )}, where U = dirLe(Y ),g
(Y ) and Y⊥ = P⊥Le(Y ),g

Y . If
we condition on the event {Y ∈ Ae} for some e, then as soon as we have calculated the region
RY ⊆ R+, Theorem 1 will allow us to perform inference on the quantity of interest ‖PLe,gµ‖2
by evaluating the expressions (4) and (5). In other words, we are testing whether µ is significantly
correlated with the group Xg , after controlling for all the other selected groups, S(Y )\g = Se\g.

To evaluate these expressions accurately, ideally we would like an explicit characterization of the
regionRY ⊆ R+. To gain a better intuition for this set, define zY (r) = r · U + Y⊥ ∈ Rn for r > 0,
and note that zY (r) = Y when we plug in r = ‖PLe(Y ),g

Y ‖2. Then we see that

RY =
{
r > 0 : e(zY (r)) = e(Y )

}
. (6)

In other words, we need to find the range of values of r such that, if we replace Y with zY (r), then
this does not change the output of the model selection algorithm, i.e. e(zY (r)) = e(Y ). For the
forward stepwise and IHT methods, we find that we can calculate RY explicitly. For the group
lasso, we cannot calculateRY explicitly, but we can nonetheless compute the integrals required by
Theorem 1 through numerical approximations. We now present the details for each of these methods.

3.2 Forward stepwise regression
Forward stepwise regression [2, 14] is a simple and widely used method. We will use the following
version:4 for design matrix X and response Y = y,

1. Initialize the residual ε̂0 = y and the model S0 = ∅.
2. For t = 1, 2, . . . , T ,

(a) Let gt = argmaxg∈[G]\St−1
{‖X>g ε̂t−1‖2}.

(b) Update the model, St = {g1, . . . , gt}, and update the residual, ε̂t = P⊥XSt y.
Testing all groups at time T . First we consider the inference procedure where, at time T , we would
like to test each selected group gt for t = 1, . . . , T ; inference for this procedure was derived also
in [8]. Our selection event e(Y ) is the ordered sequence g1, . . . , gT of selected groups. For a response
vector Y = y, this selection event is equivalent to

‖X>gkP
⊥
XSk−1

y‖2 > ‖X>g P⊥XSk−1
y‖2 for all k = 1, . . . , T , for all g 6∈ Sk. (7)

Now we would like to perform inference on the group g = gt, while controlling for the other groups
in S(Y ) = ST . Define U , Y⊥, and zY (r) as before. Then, to determine RY = {r > 0 : zY (r) ∈
Ae(Y )}, we check whether all of the inequalities in (7) are satisfied with y = zY (r): for each
k = 1, . . . , T and each g 6∈ Sk, the corresponding inequality of (7) can be expressed as

r2 · ‖X>gkP
⊥
XSk−1

U‖22 + 2r · 〈X>gkP
⊥
XSk−1

U,X>gkP
⊥
XSk−1

Y⊥〉+ ‖X>gkP
⊥
XSk−1

Y⊥‖22
> r2 · ‖X>g P⊥XSk−1

U‖22 + 2r · 〈X>g P⊥XSk−1
U,X>g P⊥XSk−1

Y⊥〉+ ‖X>g P⊥XSk−1
Y⊥‖22.

Solving this quadratic inequality over r ∈ R+, we obtain a region Ik,g ⊆ R+ which is either a single
interval or a union of two disjoint intervals, whose endpoints we can calculate explicitly with the
quadratic formula. The setRY is then given by all values r that satisfy the full set of inequalities:

RY =
⋂

k=1,...,T

⋂
g∈[G]\Sk

Ik,g.

This is a union of finitely many disjoint intervals, whose endpoints are calculated explicitly as above.
3Since the distribution of Y is continuous on Rn, we ignore sets of measure zero without further comment.
4In practice, we would add some correction for the scale of the columns of Xg or for the number of features

in group g; this can be accomplished with simple modifications of the forward stepwise procedure.
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Sequential testing. Now suppose we carry out a sequential inference procedure, testing group gt
at its time of selection, controlling only for the previously selected groups St−1. In fact, this is a
special case of the non-sequential procedure above, which shows how to test gT while controlling
for ST \gT = ST−1. Applying this method at each stage of the algorithm yields a sequential testing
procedure. (The method developed in [9] computes p-values for this problem, testing whether
µ ⊥ P⊥XSt−1

Xgt at each time t.) See the supplementary material for detailed pseudo-code.

3.3 Iterative hard thresholding (IHT)
The iterative hard thresholding algorithm finds a k-group-sparse solution to the linear regression
problem, iterating gradient descent steps with hard thresholding to update the model choice as needed
[1, 4]. Given k ≥ 1, number of iterations T , step sizes ηt, design matrix X and response Y = y,

1. Initialize the coefficient vector, β0 = 0 ∈ Rp (or any other desired initial point).
2. For t = 1, 2, . . . , T ,

(a) Take a gradient step, β̃t = βt−1 − ηtX>(Xβt−1 − y).
(b) Compute ‖(β̃t)Cg‖2 for each g ∈ [G] and let St ⊆ [G] index the k largest norms.

(c) Update the fitted coefficients βt via (βt)j = (β̃t)j · 1 {j ∈ ∪g∈StCg}.

Here we are typically interested in testing Questiong,ST for each g ∈ ST . We condition on the
selection event, e(Y ), given by the sequence of k-group-sparse models S1, . . . ,ST selected at each
stage of the algorithm, which is characterized by the inequalities

‖(β̃t)Cg‖2 > ‖(β̃t)Ch‖2 for all t = 1, . . . , T , and all g ∈ St, h 6∈ St. (8)
Fixing a group g ∈ ST to test, determining RY = {r > 0 : zY (r) ∈ Ae(Y )} involves checking
whether all of the inequalities in (8) are satisfied with y = zY (r). First, with the response Y replaced
by y = zY (r), we show that we can write β̃t = r · ct + dt for each t = 1, . . . , T , where ct, dt ∈ Rp
are independent of r; in the supplementary material, we derive ct, dt inductively as{
c1 = η1

n X>U,

d1 = (I− η1
n X>X)β0 +

η1
n X>Y⊥,

{
ct = (Ip − ηt

nX
>X)PSt−1

ct−1 +
ηt
nX

>U,

dt = (Ip − ηt
nX

>X)PSt−1
dt−1 +

ηt
nX

>Y⊥
for t ≥ 2.

Now we compute the regionRY . For each t = 1, . . . , T and each g ∈ St, h 6∈ St, the corresponding
inequality in (8), after writing β̃t = r · ct + dt, can be expressed as

r2·‖(ct)Cg‖22+2r·〈(ct)Cg , (dt)Cg 〉+‖(dt)Cg‖22 > r2·‖(ct)Ch‖22+2r·〈(ct)Ch , (dt)Ch〉+‖(dt)Ch‖22.
As for the forward stepwise procedure, solving this quadratic inequality over r ∈ R+, we obtain a
region It,g,h ⊆ R+ that is either a single interval or a union of two disjoint intervals whose endpoints
we can calculate explicitly. Finally, we obtainRY =

⋂
t=1,...,T

⋂
g∈St

⋂
h∈[G]\St It,g,h.

3.4 The group lasso
The group lasso, first introduced by Yuan and Lin [15], is a convex optimization method for linear
regression where the form of the penalty is designed to encourage group-wise sparsity of the solution.
It is an extension of the lasso method [12] for linear regression. The method is given by

β̂ = argminβ
{

1
2‖y −Xβ‖22 + λ

∑
g‖βCg‖2

}
,

where λ > 0 is a penalty parameter. The penalty
∑
g‖βCg‖2 promotes sparsity at the group level.5

For this method, we perform inference on the group support S of the fitted model β̂. We would like
to test Questiong,S for each g ∈ S. In this setting, for groups of size ≥ 2, we believe that it is not
possible to analytically calculateRY , and furthermore, that there is no additional information that we
can condition on to make this computation possible, without losing all power to do inference.

We thus propose a numerical approximation that circumvents the need for an explicit calculation of
RY . Examining the calculation of the p-value P and the lower bound Lα in Theorem 1, we see that
we can write P = fY (0) and can find Lα as the unique solution to fY (Lα) = α, where

fY (t) =
Er∼σ·χk

[
ert/σ

2 · 1 {r ∈ RY , r > ‖PLY ‖2}
]

Er∼σ·χk
[
ert/σ2 · 1 {r ∈ RY }

] ,

5Our method can also be applied to a modification of group lasso designed for overlapping groups [3] with a
nearly identical procedure but we do not give details here.
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where we treat Y as fixed in this calculation and set k = dim(L) = rank(XS\g). Both the numerator
and denominator can be approximated by taking a large number B of samples r ∼ σ · χk and taking
the empirical expectations. Checking r ∈ RY is equivalent to running the group lasso with the
response replaced by y = zY (r), and checking if the resulting selected model remains unchanged.

This may be problematic, however, if RY is in the tails of the σ · χk distribution. We implement
an importance sampling approach by repeatedly drawing r ∼ ψ for some density ψ; we find that
ψ = ‖PLY ‖2 +N (0, σ2) works well in practice. Given samples r1, . . . , rB ∼ ψ we then estimate

fY (t) ≈ f̂Y (t) :=
∑
b

ψσ·χk (rb)

ψ(rb)
· erbt/σ2 · 1 {rb ∈ RY , rb > ‖PLY ‖2}∑

b

ψσ·χk (rb)

ψ(rb)
· erbt/σ2 · 1 {rb ∈ RY }

where ψσ·χk is the density of the σ ·χk distribution. We then estimate P ≈ P̂ = f̂Y (0). Finally, since
f̂Y (t) is continuous and strictly increasing in t, we estimate Lα by numerically solving f̂Y (t) = α.

4 Experiments
In this section we present results from experiments on simulated and real data, performed in R [11].6

4.1 Simulated data
We fix sample size n = 500 and G = 50 groups each of size 10. For each trial, we generate a design
matrix X with i.i.d. N (0, 1/n) entries, set β with its first 50 entries (corresponding to first s = 5
groups) equal to τ and all other entries equal to 0, and set Y = Xβ + N (0, In). We present the
result for IHT here; the results for the other two methods can be found in the supplementary material.

We run IHT to select k = 10 groups over T = 5 iterations, with step sizes ηt = 2 and initial point
β0 = 0. For a moderate signal strength τ = 1.5, we plot the p-values for each selected group in
Figure 1; each group displays p-values only for those trials in which it was selected. The histogram of
p-values for the s true signals and for the G− s nulls are also shown. We see that the the distribution
of p-values for the true signals concentrates near zero while the null p-values are roughly uniform.

Next we look at the confidence intervals given by our method, examining their empirical coverage
across different signal strengths τ in Figure 2. We fix confidence level 0.9 (i.e. α = 0.1) and check
empirical coverage with respect to both ‖PLµ‖2 and 〈dirL(Y ), µ〉, with results shown separately
for true signals and for nulls. For true signals, the confidence interval for ‖PLµ‖2 is somewhat
conservative while the coverage for 〈dirL(Y ), µ〉 is right at the target level, as expected from our
theory. As signal strength τ increases, the gap is reduced for the true signals; this is because
dirL(Y ) becomes an increasingly more accurate estimate of dirL(µ), and so the gap in the inequality
‖PLµ‖2 ≥ 〈dirL(Y ), µ〉 is reduced. For the nulls, if the set of selected groups contains the support
of the true model, which is nearly always true for higher signal levels τ , then the two are equivalent
(as ‖PLµ‖2 = 〈dirL(Y ), µ〉 = 0), and coverage is at the target level. At low signal levels τ , however,
a true group is occasionally missed, in which case ‖PLµ‖2 > 〈dirL(Y ), µ〉 strictly.






























































































































































































































































































































































































































































 



















































 

















































  






















































































































































































 














































































































 











































 





























































































































 





















 



 


























































 

































































































 



































































































































































 























































































































 





































 







































 
























































































































































































 











































































 

















 









 









 





























































































  
 






































































 






































































































































































































  


















































 























































































 












































































































 




































































































































































































































































































 



































































































































































 







 









 

















































 



















 



 










































 















































 



























































 





































































 






























 




























































































 










































































 



































 






































































































































 














 







 





























 















































































 




















































 




























 



          

















































































































































































































  







































































































  














































 









 









































































































 




































































































































 



















 





 









 




































  






















 

































































  









 










































































 































































































 


























































 

















































































 







































































































 







 





















































 




 













 



























 


















 








 

Figure 1: Iterative hard thresholding (IHT). For each group, we plot its p-value for each trial in which
that group was selected, for 200 trials. Histograms of the p-values for true signals (left, red) and for
nulls (right, gray) are attached.

4.2 California health data
We examine the 2015 California county health data7 which was also studied by Loftus and Taylor
[9]. We fit a linear model where the response is the log-years of potential life lost and the covariates

6Code reproducing experiments: http://www.stat.uchicago.edu/~rina/group_inf.html
7Available at http://www.countyhealthrankings.org
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Figure 2: Iterative hard thresholding (IHT). Empirical coverage over 2000 trials with signal strength
τ . “Norm” and “inner product” refer to coverage of ‖PLµ‖2 and 〈dirL(Y ), µ〉, respectively.

are the 34 predictors in this data set. We first let each predictor be its own group (i.e., group
size 1) and run the three algorithms considered in Section 3. Next, we form a grouped model by
expanding each predictor Xj into a group using the first three non-constant Legendre polynomials,
(Xj ,

1
2 (3X

2
j −1), 12 (5X

3
j −3Xj)). In each case we set parameters so that 8 groups are selected. The

selected groups and their p-values are given in Table 1; interestingly, even when the same predictor is
selected by multiple methods, its p-value can differ substantially across the different methods.

Group size Forward stepwise p-value / seq. p-value Iterative hard thresholding p-value Group lasso p-value

1

80th percentile income 0.116 / 0.000 80th percentile income 0.000 80th percentile income 0.000
Injury death rate 0.000 / 0.000 Injury death rate 0.000 % Obese 0.007

Violent crime rate 0.016 / 0.000 % Smokers 0.004 % Physically inactive 0.040
% Receiving HbA1c 0.591 / 0.839 % Single-parent household 0.009 Violent crime rate 0.055

% Obese 0.481 / 0.464 % Children in poverty 0.332 % Single-parent household 0.075
Chlamydia rate 0.944 / 0.975 Physically unhealthy days 0.716 Injury death rate 0.235

% Physically inactive 0.654 / 0.812 Food environment index 0.807 % Smokers 0.701
% Alcohol-impaired 0.104 / 0.104 Mentally unhealthy days 0.957 Preventable hospital stays rate 0.932

3

80th percentile income 0.001 / 0.000 Injury death rate 0.000 80th percentile income 0.000
Injury death rate 0.044 / 0.000 80th percentile income 0.000 Injury death rate 0.000

Violent crime rate 0.793 / 0.617 % Smokers 0.000 % Single-parent household 0.038
% Physically inactive 0.507 / 0.249 % Single-parent household 0.005 % Physically inactive 0.043
% Alcohol-impaired 0.892 / 0.933 Food environment index 0.057 % Obese 0.339

% Severe housing problems 0.119 / 0.496 % Children in poverty 0.388 % Alcohol-impaired 0.366
Chlamydia rate 0.188 / 0.099 Physically unhealthy days 0.713 % Smokers 0.372

Preventable hospital stays rate 0.421 / 0.421 Mentally unhealthy days 0.977 Violent crime rate 0.629

Table 1: Selective p-values for the California county health data experiment. The predictors obtained
with forward stepwise are tested both simultaneously at the end of the procedure (first p-value shown),
and also tested sequentially (second p-value shown), and are displayed in the selected order.

5 Conclusion
We develop selective inference tools for group-sparse linear regression methods, where for a data-
dependent selected set of groups S, we are able to both test each group g ∈ S for inclusion in the
model defined by S, and form a confidence interval for the effect size of group g in the model. Our
theoretical results can be easily applied to a range of commonly used group-sparse regression methods,
thus providing an efficient tool for finite-sample inference that correctly accounts for data-dependent
model selection in the group-sparse setting.
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