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Abstract

Signed networks allow to model positive and negative relationships. We analyze
existing extensions of spectral clustering to signed networks. It turns out that
existing approaches do not recover the ground truth clustering in several situations
where either the positive or the negative network structures contain no noise. Our
analysis shows that these problems arise as existing approaches take some form of
arithmetic mean of the Laplacians of the positive and negative part. As a solution
we propose to use the geometric mean of the Laplacians of positive and negative
part and show that it outperforms the existing approaches. While the geometric
mean of matrices is computationally expensive, we show that eigenvectors of the
geometric mean can be computed efficiently, leading to a numerical scheme for
sparse matrices which is of independent interest.

1 Introduction

A signed graph is a graph with positive and negative edge weights. Typically positive edges model
attractive relationships between objects such as similarity or friendship and negative edges model
repelling relationships such as dissimilarity or enmity. The concept of balanced signed networks
can be traced back to [10, 3]. Later, in [5], a signed graph is defined as k-balanced if there exists
a partition into k groups where only positive edges are within the groups and negative edges are
between the groups. Several approaches to find communities in signed graphs have been proposed
(see [23] for an overview). In this paper we focus on extensions of spectral clustering to signed
graphs. Spectral clustering is a well established method for unsigned graphs which, based on the
first eigenvectors of the graph Laplacian, embeds nodes of the graphs in Rk and then uses k-means
to find the partition. In [16] the idea is transferred to signed graphs. They define the signed ratio
and normalized cut functions and show that the spectrum of suitable signed graph Laplacians yield a
relaxation of those objectives. In [4] other objective functions for signed graphs are introduced. They
show that a relaxation of their objectives is equivalent to weighted kernel k-means by choosing an
appropriate kernel. While they have a scalable method for clustering, they report that they can not
find any cluster structure in real world signed networks.

We show that the existing extensions of the graph Laplacian to signed graphs used for spectral
clustering have severe deficiencies. Our analysis of the stochastic block model for signed graphs
shows that, even for the perfectly balanced case, recovery of the ground-truth clusters is not guaranteed.
The reason is that the eigenvectors encoding the cluster structure do not necessarily correspond to
the smallest eigenvalues, thus leading to a noisy embedding of the data points and in turn failure
of k-means to recover the cluster structure. The implicit mathematical reason is that all existing
extensions of the graph Laplacian are based on some form of arithmetic mean of operators of the
positive and negative graphs. In this paper we suggest as a solution to use the geometric mean of
the Laplacians of positive and negative part. In particular, we show that in the stochastic block
model the geometric mean Laplacian allows in expectation to recover the ground-truth clusters in
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any reasonable clustering setting. A main challenge for our approach is that the geometric mean
Laplacian is computationally expensive and does not scale to large sparse networks. Thus a main
contribution of this paper is showing that the first few eigenvectors of the geometric mean can still be
computed efficiently. Our algorithm is based on the inverse power method and the extended Krylov
subspace technique introduced by [8] and allows to compute eigenvectors of the geometric mean
A#B of two matrices A,B without ever computing A#B itself.

In Section 2 we discuss existing work on Laplacians on signed graphs. In Section 3 we discuss the
geometric mean of two matrices and introduce the geometric mean Laplacian which is the basis of our
spectral clustering method for signed graphs. In Section 4 we analyze our and existing approaches for
the stochastic block model. In Section 5 we introduce our efficient algorithm to compute eigenvectors
of the geometric mean of two matrices, and finally in Section 6 we discuss performance of our
approach on real world graphs. .

2 Signed graph clustering

Networks encoding positive and negative relations among the nodes can be represented by weighted
signed graphs. Consider two symmetric non-negative weight matrices W+ and W−, a vertex set
V = {v1, . . . , vn}, and let G+ = (V,W+) and G− = (V,W−) be the induced graphs. A signed
graph is the pair G± = (G+, G−) where G+ and G− encode positive and the negative relations,
respectively.

The concept of community in signed networks is typically related to the theory of social balance.
This theory, as presented in [10, 3], is based on the analysis of affective ties, where positive ties are a
source of balance whereas negative ties are considered as a source of imbalance in social groups.

Definition 1 ([5], k-balance). A signed graph is k-balanced if the set of vertices can be partitioned
into k sets such that within the subsets there are only positive edges, and between them only negative.

The presence of k-balance in G± implies the presence of k groups of nodes being both assortative
in G+ and dissassortative in G−. However this situation is fairly rare in real world networks and
expecting communities in signed networks to be a perfectly balanced set of nodes is unrealistic.

In the next section we will show that Laplacians inspired by Definition 1 are based on some form of
arithmetic mean of Laplacians. As an alternative we propose the geometric mean of Laplacians and
show that it is able to recover communities when either G+ is assortative, or G− is disassortative, or
both. Results of this paper will make clear that the use of the geometric mean of Laplacians allows to
recognize communities where previous approaches fail.

2.1 Laplacians on Unsigned Graphs

Spectral clustering of undirected, unsigned graphs using the Laplacian matrix is a well established
technique (see [19] for an overview). Given an unsigned graph G = (V,W ), the Laplacian and its
normalized version are defined as

L = D −W Lsym = D−1/2LD−1/2 (1)

where Dii =
∑n
j=1 wij is the diagonal matrix of the degrees of G. Both Laplacians are positive

semidefinite, and the multiplicity k of the eigenvalue 0 is equal to the number of connected compo-
nents in the graph. Further, the Laplacian is suitable in assortative cases [19], i.e. for the identification
of clusters under the assumption that the amount of edges inside clusters has to be larger than the
amount of edges between them.

For disassortative cases, i.e. for the identification of clusters where the amount of edges has to be
larger between clusters than inside clusters, the signless Laplacian is a better choice [18]. Given the
unsigned graph G = (V,W ), the signless Laplacian and its normalized version are defined as

Q = D +W, Qsym = D−1/2QD−1/2 (2)

Both Laplacians are positive semi-definite, and the smallest eigenvalue is zero if and only if the graph
has a bipartite component [6].
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2.2 Laplacians on Signed Graphs

Recently a number of Laplacian operators for signed networks have been introduced. Consider the
signed graph G± = (G+, G−). Let D+

ii =
∑n
j=1 w

+
ij be the diagonal matrix of the degrees of G+

and D̄ii =
∑n
j=1 w

+
ij + w−ij the one of the overall degrees in G±.

The following Laplacians for signed networks have been considered so far

LBR = D+ −W++W−, LBN = D̄−1LBR, (balance ratio/normalized Laplacian)

LSR = D̄ −W++W−, LSN = D̄−1/2LSRD̄
−1/2, (signed ratio/normalized Laplacian)

(3)

and spectral clustering algorithms have been proposed for G±, based on these Laplacians [16, 4].
Let L+ and Q− be the Laplacian and the signless Laplacian matrices of the graphs G+ and G−,
respectively. We note that the matrix LSR blends the informations from G+ and G− into (twice) the
arithmetic mean of L+ and Q−, namely the following identity holds

LSR = L+ +Q− . (4)

Thus, as an alternative to the normalization defining LSN from LSR, it is natural to consider the
arithmetic mean of the normalized Laplacians LAM = L+

sym + Q−sym. In the next section we
introduce the geometric mean of L+

sym and Q−sym and propose a new clustering algorithm for signed
graphs based on that matrix. The analysis and experiments of next sections will show that blending
the information from the positive and negative graphs trough the geometric mean overcomes the
deficiencies showed by the arithmetic mean based operators.

3 Geometric mean of Laplacians

We define here the geometric mean of matrices and introduce the geometric mean of normalized
Laplacians for clustering signed networks. Let A1/2 be the unique positive definite solution of the
matrix equation X2 = A, where A is positive definite.
Definition 2. Let A,B be positive definite matrices. The geometric mean of A and B is the positive
definite matrix A#B defined by A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

One can prove that A#B = B#A (see [1] for details). Further, there are several useful ways to
represent the geometric mean of positive definite matrices (see f.i. [1, 12])

A#B = A(A−1B)1/2 = (BA−1)1/2A = B(B−1A)1/2 = (AB−1)1/2B (5)

The next result reveals further consistency with the scalar case, in fact we observe that ifA andB have
some eigenvectors in common, thenA+B andA#B have those eigenvectors, with eigenvalues given
by the arithmetic and geometric mean of the corresponding eigenvalues of A and B, respectively.
Theorem 1. Let u be an eigenvector of A and B with eigenvalues λ and µ, respectively. Then, u is
an eigenvector of A+B and A#B with eigenvalue λ+ µ and

√
λµ, respectively.

Proof. Using the identities Au = λu and Bu = µu we have (A + B)u = (λ + µ)u. For
the geometric mean, observe that for any positive definite matrix M , if Mx = λ(M)x, then
M1/2x = λ(M)1/2x. In particular we have

A−1/2BA−1/2u = λ−1/2A−1/2Bu = λ−1/2µA−1/2u = (µ/λ)u

thus (A−1/2BA−1/2)1/2u =
√
µ/λu. As a consequence

(A#B)u = A1/2(A−1/2BA−1/2)1/2A1/2u = λ1/2A1/2(A−1/2BA−1/2)1/2u = (
√
λµ)u

which concludes the proof.

3.1 Geometric mean for signed networks clustering

Consider the signed network G± = (G+, G−). We define the normalized geometric mean Laplacian
of G± as

LGM = L+
sym#Q−sym (6)
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We propose Algorithm 1 for clustering signed networks, based on the spectrum of LGM . By
definition 2, the matrix geometric mean A#B requires A and B to be positive definite. As both
the Laplacian and the signless Laplacian are positve semi-definte, in what follows we shall assume
that the matrices L+

sym and Q−sym in (6) are modified by a small diagonal shift, ensuring positive
definiteness. That is, in practice, we consider L+

sym + ε1I and Q−sym + ε2I being ε1 and ε2
small positive numbers. For the sake of brevity, we do not explicitly write the shifting matrices.

Input: Symmetric weight matrices W+,W− ∈ Rn×n, number k of clusters to construct.
Output: Clusters C1, . . . , Ck.

1 Compute the k eigenvectors u1, . . . ,uk corresponding to the k smallest eigenvalues of LGM .
2 Let U = (u1, . . . ,uk).
3 Cluster the rows of U with k-means into clusters C1, . . . , Ck.

Algorithm 1: Spectral clustering with LGM on signed networks

The main bottleneck of Algorithm 1 is the computation of the eigenvectors in step 1. In Section 5 we
propose a scalable Krylov-based method to handle this problem.

Let us briefly discuss the motivating intuition behind the proposed clustering strategy. Algorithm 1,
as well as state-of-the-art clustering algorithms based on the matrices in (3), rely on the k smallest
eigenvalues of the considered operator and their corresponding eigenvectors. Thus the relative
ordering of the eigenvalues plays a crucial role. Assume the eigenvalues to be enumerated in
ascending order. Theorem 1 states that the functions (A,B) 7→ A + B and (A,B) 7→ A#B map
eigenvalues of A and B having the same corresponding eigenvectors, into the arithmetic mean
λi(A) + λj(B) and geometric mean

√
λi(A)λj(B), respectively, where λi(·) is the ith smallest

eigenvalue of the corresponding matrix. Note that the indices i and j are not the same in general,
as the eigenvectors shared by A and B may be associated to eigenvalues having different positions
in the relative ordering of A and B. This intuitively suggests that small eigenvalues of A+B are
related to small eigenvalues of both A and B, whereas those of A#B are associated with small
eigenvalues of either A or B, or both. Therefore the relative ordering of the small eigenvalues of
LGM is influenced by the presence of assortative clusters in G+ (related to small eigenvalues of
L+
sym) or by disassortative clusters inG− (related to small eigenvalues inQ−sym), whereas the ordering

of the small eigenvalues of the arithmetic mean takes into account only the presence of both those
situations.

In the next section, for networks following the stochastic block model, we analyze in expectation
the spectrum of the normalized geometric mean Laplacian as well as the one of the normalized
Laplacians previously introduced. In this case the expected spectrum can be computed explicitly and
we observe that in expectation the ordering induced by blending the informations of G+ and G−
trough the geometric mean allows to recover the ground truth clusters perfectly, whereas the use of
the arithmetic mean introduces a bias which reverberates into a significantly higher clustering error.

4 Stochastic block model on signed graphs

In this section we present an analysis of different signed graph Laplacians based on the Stochastic
Block Model (SBM). The SBM is a widespread benchmark generative model for networks showing a
clustering, community, or group behaviour [22]. Given a prescribed set of groups of nodes, the SBM
defines the presence of an edge as a random variable with probability being dependent on which
groups it joins. To our knowledge this is the first analysis of spectral clustering on signed graphs
with the stochastic block model. Let C1, . . . , Ck be ground truth clusters, all having the same size |C|.
We let p+in (p−in) be the probability that there exists a positive (negative) edge between nodes in the
same cluster, and let p+out (p−out) denote the probability of a positive (negative) edge between nodes in
different clusters.

Calligraphic letters denote matrices in expectation. In particularW+ andW− denote the weight
matrices in expectation. We haveW+

i,j = p+in andW−i,j = p−in if vi, vj belong to the same cluster,
whereasW+

i,j = p+out andW−i,j = p−out if vi, vj belong to different clusters. Sorting nodes according
to the ground truth clustering shows thatW+ andW− have rank k.
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(E+) p+out < p+in

(E−) p−in < p−out

(Ebal) p−in + p+out < p+in + p−out

(Evol) p−in + (k − 1)p−out < p+in + (k − 1)p+out

(Econf )
(

kp+out
p+in+(k−1)p+out

)(
kp−in

p−in+(k−1)p−out

)
< 1

(EG)
(

kp+out
p+in+(k−1)p+out

)(
1 +

p−in−p
−
out

p−in+(k−1)p−out

)
< 1

Table 1: Conditions for the Stochastic Block Model analysis of Section 4

Consider the relations in Table 1. Conditions E+ and E− describe the presence of assortative or
disassortative clusters in expectation. Note that, by Definition 1, a graph is balanced if and only if
p+out = p−in = 0. We can see that if E+ ∩ E− then G− and G+ give information about the cluster
structure. Further, if E+ ∩E− holds then Ebal holds. Similarly Econf characterizes a graph where
the relative amount of conflicts - i.e. positive edges between the clusters and negative edges inside the
clusters - is small. Condition EG is strictly related to such setting. In fact when E− ∩ EG holds then
Econf holds. Finally condition Evol implies that the expected volume in the negative graph is smaller
than the expected volume in the positive one. This condition is therefore not related to any signed
clustering structure.

Let
χ1 = 1, χi = (k − 1)1Ci − 1Ci .

The use of k-means on χi, i = 1, . . . , k identifies the ground truth communities Ci. As spectral
clustering relies on the eigenvectors corresponding to the k smallest eigenvalues (see Algorithm 1)
we derive here necessary and sufficient conditions such that in expectation the eigenvectors χi, i =
1, . . . , k correspond to the k smallest eigenvalues of the normalized Laplacians introduced so far. In
particular, we observe that condition EG affects the ordering of the eigenvalues of the normalized
geometric mean Laplacian. Instead, the ordering of the eigenvalues of the operators based on the
arithmetic mean is related to Ebal and Evol. The latter is not related to any clustering, thus introduces
a bias in the eigenvalues ordering which reverberates into a noisy embedding of the data points and in
turn into a significantly higher clustering error.
Theorem 2. Let LBN and LSN be the normalized Laplacians defined in (3) of the expected graphs.
The following statements are equivalent:

1. χ1, . . . ,χk are the eigenvectors corresponding to the k smallest eigenvalues of LBN .
2. χ1, . . . ,χk are the eigenvectors corresponding to the k smallest eigenvalues of LSN .
3. The two conditions Ebal and Evol hold simultaneously.

Proof. We first prove thatχ1, . . . ,χk are the eigenvectors corresponding to the k smallest eigenvalues
of LBN if and only if the two conditions Ebal and Evol hold simultaneously. It is simple to verify
that χi are eigenvectors ofW+ andW−, with eigenvalues denoted by λ+i and λ−i , respectively. Thus
W+ andW− are simultaneously diagonalizable, that is there exists a non-singular matrix Σ such
that Σ−1W±Σ = Λ±, where Λ+ and Λ− are diagonal matrices Λ± = diag(λ±1 , . . . , λ

±
k , 0, . . . , 0).

Observe that the eigenvalues λ+i and λ−i admits the following explicit representations

λ+1 = |C| (p+in + (k − 1)p+out), λ−1 = |C| (p−in + (k − 1)p−out)

λ+i = |C| (p+in − p
+
out) λ−i = |C| (p−in − p

−
out),

(7)

for i = 2, . . . , k. As we assume clusters of the same size, the nodes have the same de-
gree in expectation, inducing a regular graph. Hence the expected degrees of the graph are
d+ =W+1= |C| (p+in + (k − 1)p+out)1, d− =W−1 = |C| (p−in + (k − 1)p−out)1 and d̄ = d+ + d−.
With corresponding degree matrices D+ = d+I and D̄ = d̄I . The expected balanced-ratio cut
Laplacian operator is thus given by LBR = Σ(d+I − Λ+ + Λ−)Σ−1. It follows that the eigenvalues
of LBR correspond to eigenvectors in the following way{

d+ − λ+i + λ−i with eigenvector χi, i = 1, . . . , k

d+ corresponding to the remaining eigenvectors

Thus, eigenvectors χi, i = 1, . . . , k correspond to the smallest eigenvalues if and only if

d+ − λ+i + λ−i < d+ ⇐⇒ λ−i < λ+i
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By Eqs. (7) we see that for the constant eigenvector we have

λ−1 < λ+1 ⇐⇒ d− < d+ ⇐⇒ p−in + (k − 1)p−out < p+in + (k − 1)p+out ,

whereas for the eigenvectors χi, i = 2, . . . , k the corresponding condition is

λ−i < λ+i ⇐⇒ p−in + p+out < p+in + p−out .

We deduce that the eigenvectors χi, i = 1, . . . , k correspond to the smallest eigenvalues of LBR if
and only if p−in + (k − 1)p−out < p+in + (k − 1)p+out and p−in + p+out < p+in + p−out.

As LBN differs from LBR by a constant factor, the conditions hold for LBN . Conditions for LSN
can be proved in the same way, as the only difference in the eigenvalues is a shift given by the degree
vector d̄.

Theorem 3. Let LGM = L+
sym#Q−sym be the geometric mean of the Laplacians of the expected

graphs. Then χ1, . . . ,χk are the eigenvectors corresponding to the k smallest eigenvalues of LGM
if and only if condition EG holds.

Proof. We use the same notation as in the proof of Theorem 2. Observing that L+
sym and Q−sym have

the same eigenvectors, it follows from Theorem 1 that

LGM = Σ

√
(I − Λ̂+)(I + Λ̂−) Σ−1 (8)

where d+Λ̂+ = Λ+, and d−Λ̂− = Λ−. We deduce that the eigenvalues of LGM correspond to
eigenvectors in the following way

√(
1− λ+

i

d+

)(
1 +

λ−
i

d−

)
with eigenvector χi, i = 1, . . . , k

1 corresponding to the remaining eigenvectors

Thus, eigenvectors χi, i = 1, . . . , k correspond to the smallest eigenvalues if and only if(
1− λ+i

d+

)(
1 +

λ−i
d−

)
< 1

By eqs. (7) we see that for the constant eigenvector χ1 we have(
1− λ+1

d+

)(
1 +

λ−1
d−

)
=
(

1− d+

d+

)(
1 +

d−

d−

)
= 0 < 1 .

For eigenvectors χi, i = 2, . . . , k first observe that

1− λ+i
d+

= (d+ − λ+i )/d+ =
(
d+ − |C| (p+in − p

+
out)

)
/d+ =

kp+out
p+in + (k − 1)p+out

In the same way we have

1 +
λ−i
d−

= 1 +
p−in − p

−
out

p−in + (k − 1)p−out
.

Thus, for the eigenvectors χi, i = 2, . . . , k we have the following condition(
1− λ+i

d+

)(
1 +

λ−i
d−

)
< 1 ⇐⇒

( kp+out
p+in + (k − 1)p+out

)(
1 +

p−in − p
−
out

p−in + (k − 1)p−out

)
< 1 ,

which implies in turn that the eigenvectors χi, i = 1, . . . , k correspond to the smallest eigenvalues of
LGM if and only if EG holds.

As mentioned above, in practical implementations one modifies the Laplacians defining LGM by
adding a small diagonal shift. This is done to ensure positive definiteness of the matrices. The next
theorem shows how to extend the previous result to the case of diagonally shifted Laplacians.
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Theorem 4. Let LGM = (L+
sym + ε1I)#(Q−sym + ε2I) be the geometric mean of the shifted

Laplacians of the expected graphs. Then χ1, . . . ,χk are the eigenvectors corresponding to the k
smallest eigenvalues of LGM if the following conditions hold.

1. ε1 + ε2 < 1.

2.
(

kp+out

p+in+(k−1)p+out

)(
1 +

p−in−p
−
out

p−in+(k−1)p−out

)
+ (ε1 + ε2) < 1.

Proof. We use the same notation as in the previous proof. Observing that L+
sym and Q−sym have the

same eigenvectors, it follows from Theorem 1 that

LGM = Σ

√
(I − Λ̂+ + ε1I)(I + Λ̂− + ε2I) Σ−1 (9)

where d+Λ̂+ = Λ+, and d−Λ̂− = Λ−. We deduce that the eigenvalues of LGM correspond to
eigenvectors in the following way

√(
1− λ+

i

d+ + ε1

)(
1 +

λ−
i

d− + ε2

)
with eigenvector χi, i = 1, . . . , k

(1 + ε1)(1 + ε2) corresponding to the remaining eigenvectors

Thus, eigenvectors χi, i = 1, . . . , k correspond to the smallest eigenvalues if and only if(
1− λ+i

d+
+ ε1

)(
1 +

λ−i
d−

+ ε2

)
< (1 + ε1)(1 + ε2) (10)

Further, we can see that the previous equation holds if and only if(
1− λ+i

d+

)(
1 +

λ−i
d−

)
+ ε1

(
1 +

λ−i
d−

)
+ ε2

(
1− λ+i

d+

)
< 1 + ε1 + ε2

More over, as
(

1− λ+
i

d+

)
,
(

1 +
λ−
i

d−

)
∈ [0, 2], we can see that eq.(10) holds if(

1− λ+i
d+

)(
1 +

λ−i
d−

)
+ ε1 + ε2 < 1

By eqs. (7) we see that for the constant eigenvector χ1 we have 1− λ+
1

d+ = 1− d+

d+ = 0. Thus,(
1− λ+i

d+

)(
1 +

λ−i
d−

)
+ ε1 + ε2 = ε1 + ε2 < 1

For eigenvectors χi, i = 2, . . . , k first observe that

1− λ+i
d+

= (d+ − λ+i )/d+ =
(
d+ − |C| (p+in − p

+
out)

)
/d+ =

kp+out
p+in + (k − 1)p+out

In the same way we have

1 +
λ−i
d−

= 1 +
p−in − p

−
out

p−in + (k − 1)p−out
.

Thus, for the eigenvectors χi, i = 2, . . . , k we have the following condition(
1− λ+i

d+

)(
1 +

λ−i
d−

)
+ ε1 + ε2 < 1 ⇐⇒( kp+out

p+in + (k − 1)p+out

)(
1 +

p−in − p
−
out

p−in + (k − 1)p−out

)
+ ε1 + ε2 < 1 ,

This implies in turn that the eigenvectors χi, i = 1, . . . , k correspond to the smallest eigenvalues of
LGM if the following conditions hold

1. ε1 + ε2 < 1.

2.
(

kp+out

p+in+(k−1)p+out

)(
1 +

p−in−p
−
out

p−in+(k−1)p−out

)
+ (ε1 + ε2) < 1.
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Intuition suggests that a good model should easily identify clusters when E+ ∩ E−. However, unlike
condition EG, condition Evol ∩ Ebal is not directly satisfied under that regime. Specifically, we have
Corollary 1. Assume that E+ ∩E− holds. Then χ1, . . . ,χk are eigenvectors corresponding to the
k smallest eigenvalues of LGM . Let p(k) denote the proportion of cases where χ1, . . . ,χk are the
eigenvectors of the k smallest eigenvalues of LSN or LBN , then p(k) ≤ 1

6 + 2
3(k−1) + 1

(k−1)2 .

Proof. The event Evol is defined as

Evol = {(p−in, p
−
out, p

+
in, p

+
out) ∈ [0, 1]4 | p−in + (k − 1)p−out < p+in + (k − 1)p+out}

We can rewrite the inequality as

p−out − p+out <
1

k − 1

(
p+in − p

−
in

)
<

1

k − 1
.

Thus the event Ẽvol defined as

Ẽvol = {(p−in, p
−
out, p

+
in, p

+
out) ∈ [0, 1]4 | p−out − p+out <

1

k − 1
},

satisfies Evol ⊂ Ẽvol. Then with

E3 = E+ ∩ E− = {(p−in, p
−
out) ∈ [0, 1]2 | p−in < p−out} ∩ {(p+in, p

+
out) ∈ [0, 1]2 | p+out < p+in}

EB = {(p−in, p
−
out, p

+
in, p

+
out) ∈ [0, 1]4 | p−in + p+out < p+in + p−out}

we observe E3 ⊂ EB . Then

p(k) = P(EB ∩ Evol |E3) =
P(EB ∩ Evol ∩ E3)

P(E3)
=

P(Evol ∩ E3)

P(E3)

≤ P(Ẽvol ∩ E3)

P(E3)

Then we get with (x1, x2, x3, x4) corresponding to (p+in, p
+
out, p

−
out, p

−
in)

P(Ẽvol ∩ E3) ≤
∫ 1

0

(∫ x1

0

(∫ x2+
1

k−1

0

(∫ x3

0

dx4

)
dx3

)
dx2

)
dx1

=

∫ 1

0

(∫ x1

0

(∫ x2+
1

k−1

0

x3dx3

)
dx2

)
dx1

=

∫ 1

0

(∫ x1

0

(1

2

(
x2 +

1

k − 1

)2)
dx2

)
dx1

=

∫ 1

0

[1

6

(
x1 +

1

k − 1

)3]x1

0
dx1

=

∫ 1

0

[x31
6

+
x21

2(k − 1)
+

x1
2(k − 1)2

]
dx1

=
[x41

24
+

x31
6(k − 1)

+
x21

4(k − 1)2

]1
0

=
1

24
+

1

6(k − 1)
+

1

4(k − 1)2

The first inequality comes from the fact that we do not ensure that the integration upper border for x3
is smaller or equal to one. Thus with P(E3) = 1

4 we get

p(k) ≤ 1

6
+

2

3(k − 1)
+

1

(k − 1)2
.
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Figure 1: Fraction of cases where in expectation χ1, . . . ,χk correspond to the k smallest eigenvalues
under the SBM.
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Figure 2: Median clustering error under the stochastic block model over 50 runs.

In order to grasp the difference in expectation between LBN , LSN and LGM , in Fig 1 we present the
proportion of cases where Theorems 2 and 3 hold under different contexts. Experiments are done with
all four parameters discretized in [0, 1] with 100 steps. The expected proportion of cases where EG
holds (Theorem 3) is far above the corresponding proportion for Evol ∩Ebal (Theorem 2), showing
that in expectation the geometric mean Laplacian is superior to the other signed Laplacians. In
Fig. 2 we present experiments on sampled graphs with k-means on top of the k smallest eigenvectors.
In all cases we consider clusters of size |C| = 100 and present the median of clustering error (i.e.,
error when clusters are labeled via majority vote) of 50 runs. The results show that the analysis
made in expectation closely resembles the actual behavior. In fact, even if we expect only one noisy
eigenvector for LBN and LSN , the use of the geometric mean Laplacian significantly outperforms
any other previously proposed technique in terms of clustering error. LSN and LBN achieve good
clustering only when the graph resembles a k-balanced structure, whereas they fail even in the ideal
situation where either the positive or the negative graphs are informative about the cluster structure.
As shown in Section 6, the advantages of LGM over the other Laplacians discussed so far allow us to
identify a clustering structure on the Wikipedia benchmark real world signed network, where other
clustering approaches have failed.

5 Krylov-based inverse power method for small eigenvalues of L+
sym#Q−

sym

The computation of the geometric mean A#B of two positive definite matrices of moderate size
has been discussed extensively by various authors [20, 11, 12, 13]. However, when A and B have
large dimensions, the approaches proposed so far become unfeasible, in fact A#B is in general a full
matrix even if A and B are sparse. In this section we present a scalable algorithm for the computation
of the smallest eigenvectors of L+

sym#Q−sym. The method is discussed for a general pair of matrices
A and B, to emphasize its general applicability which is therefore interesting in itself. We remark that
the method takes advantage of the sparsity of A and B and does not require to explicitly compute the
matrix A#B. To our knowledge this is the first effective method explicitly built for the computation
of the eigenvectors of the geometric mean of two large and sparse positive definite matrices.

Given a positive definite matrix M with eigenvalues λ1 ≤ · · · ≤ λn, letH be any eigenspace of M
associated to λ1, . . . , λt. The inverse power method (IPM) applied to M is a method that converges
to an eigenvector x associated to the smallest eigenvalue λH of M such that λH 6= λi, i = 1, . . . , t.
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The pseudocode of IPM applied to A#B = A(A−1B)1/2 is shown in Algorithm 2. Given a vector
v and a matrix M , the notation solve{M,v} is used to denote a procedure returning the solution
x of the linear system Mx = v. At each step the algorithm requires the solution of two linear
systems. The first one (line 2) is solved by the preconditioned conjugate gradient method, where the
preconditioner is obtained by the incomplete Cholesky decomposition of A. Note that the conjugate
gradient method is very fast, as A is assumed sparse and positive definite, and it is matrix-free, i.e. it
requires to compute the action of A on a vector, whereas it does not require the knowledge of A (nor
its inverse). The solution of the linear system occurring in line 3 is the major inner-problem of the
proposed algorithm. Its efficient solution is performed by means of an extended Krylov subspace
technique that we describe in the next section. The proposed implementation ensures the whole IPM
is matrix-free and scalable.

5.1 Extended Krylov subspace method for the solution of the linear system (A−1B)1/2x = y

We discuss here how to apply the technique known as Extended Krylov Subspace Method (EKSM) for
the solution of the linear system (A−1B)1/2x = y. LetM be a large and sparse matrix, and y a given
vector. When f is a function with a single pole, EKSM is a very effective method to approximate
the vector f(M)y without ever computing the matrix f(M) [8]. Note that, given two positive
definite matrices A and B and a vector y, the vector we want to compute is x = (A−1B)−1/2y,
so that our problem boils down to the computation of the product f(M)y, where M = A−1B and
f(X) = X−1/2. The general idea of EKSM s-th iteration is to project M onto the subspace

Ks(M,y) = span{y,My,M−1y, . . . ,Ms−1y,M1−sy} ,
and solve the problem there. The projection onto Ks(M,y) is realized by means of the Lanczos
process, which produces a sequence of matrices Vs with orthogonal columns, such that the first
column of Vs is a multiple of y and range(Vs) = Ks(M,y). Moreover at each step we have

MVs = VsHs + [us+1,vs+1][e2s+1, e2s+2]T (11)
where Hs is 2s× 2s symmetric tridiagonal, us+1 and vs+1 are orthogonal to Vs, and ei is the i-th
canonical vector. The solution x is then approximated by xs = Vsf(Hs)e1‖y‖ ≈ f(M)y. If n
is the order of M , then the exact solution is obtained after at most n steps. However, in practice,
significantly fewer iterations are enough to achieve a good approximation, as the error ‖xs − x‖
decays exponentially with s (Thm 3.4 and Prop. 3.6 in [14]).

The pseudocode for the extended Krylov iteration is presented in Algorithm 3. We use the stopping
criterion proposed in [14]. It is worth pointing out that at step 4 of the algorithm we can freely
choose any scalar product 〈·, ·〉, without affecting formula (11) nor the convergence properties of
the method. As M = A−1B, we use the scalar product 〈u,v〉A = uTAv induced by the positive
definite matrix A, so that the computation of the tridiagonal matrix Hs in the algorithm simplifies
to V Ts BVs. We refer to [9] for further details. As before, the solve procedure is implemented
by means of the preconditioned conjugate gradient method, where the preconditioner is obtained
by the incomplete Cholesky decomposition of the coefficient matrix. Figure 3 shows that we are
able to compute the smallest eigenvector of L+

sym#Q−sym being just a constant factor worse than
the computation of the eigenvector of the arithmetic mean, whereas the direct computation of the
geometric mean followed by the computation of the eigenvectors is unfeasible for large graphs.

Input: x0, eigenspaceH of A#B.
Output: Eigenpair (λH,x) of A#B

1 repeat
2 uk ← solve{A,xk}
3 vk ← solve{(A−1B)1/2,uk}
4 yk ← project uk overH⊥
5 xk+1← yk/‖yk‖2
6 until tolerance reached
7 λH← xT

k+1xk, x← xk+1

Algorithm 2: IPM applied to
A#B.1/2

Input: u0 = y, V0 = [ · ]
Output: x = (A−1B)−1/2y

1 v0← solve{B,Au0}
2 for s = 0, 1, 2, . . . , n do
3 Ṽs+1← [Vs,us,vs]

4 Vs+1← Orthogonalize columns of Ṽs+1 w.r.t. 〈·, ·〉A
5 Hs+1← V T

s+1BVs+1

6 xs+1←H
−1/2
s+1 e1

7 if tolerance reached then break
8 us+1← solve{A,BVs+1e1}
9 vs+1← solve{B,AVs+1e2}

10 end
11 x← Vs+1xs+1

Algorithm 3: EKSM for the computation of
(A−1B)−1/2y
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Figure 3: Median execution time of 10 runs for different Lapla-
cians. Graphs have two perfect clusters and 2.5% of edges
among nodes. LGM (ours) uses Algs 2 and 3, whereas we
used Matlab’s eigs for the other matrices. The use of eigs
on LGM is prohibitive as it needs the matrix LGM to be built
(we use the toolbox provided in [2]), destroying the sparsity
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5.2 On the computational cost of the method

Let c(n) denote the computational cost to compute the solution of a linear system with coefficient
matrix either L+

sym or Q−sym. Standard iterative techniques allows to compute the smallest eigenvector
of L+

sym or Q−sym at a cost of O(c(n)) operations per step. We show that the use of Algorithms 2 and
3 allows to compute the eigenvectors of L+

sym#Q−sym with the same order of operations.

First of all it is important to realize that the matrix Hs = V Ts BVs, defined in line 5, can be defined
iteratively and does not require any additional matrix multiplication [14]. Thus the cost of each
iteration of Algorithm 3 dominated by lines 8 and 9, and requires O(2c(n)) ops. The algorithm
converges exponentially, namely if [a, b] is any interval containing the eigenvalues of A−1B, then
‖xs − x‖ = O(exp(−2s 4

√
a/b)), where x = (A−1B)−1/2y. See f.i. [14] for details. Thus O(sε)

iterations are enough to reach the prescribed tolerance ε > 0, where sε = | log ε/2 4
√
a/b|. However

it is worth pointing out that in practice, at least for the matrices considered in this work, much less
iterations than O(sε) are enough. Therefore the proposed IPM technique allows to compute the
smallest eigenvector of L+

sym#Q−sym at a cost of O(c(n)) + O(2sεc(n)) operations per step. This
shows that the method is scalable. A final important remark concerns step 6. The matrix Hs is
tridiagonal of size 2s× 2s, thus the function H−1/2s can be implemented directly using a method for
dense matrices, without any notable change to the overall algorithm cost.

Next Figure 3 shows that, despite the computationally ugly definition of L+
sym#Q−sym, we are

able to compute its smallest eigenvector with a constant factor overcome, whereas the naive direct
computation would be extremely prohibitive or unfeasible.

In Fig. 3 we show the median execution time for the computation of the smallest eigenvector of
the signed ratio/normalized cut Laplacians , the balance ratio/normalized cut Laplacians and the
geometric mean L+

sym#Q−sym. We randomly generate graphs with a sparsity of 2.5% under the
perfect stochastic case, i.e. p+in = p−out = 1 and p+out = p−in = 0, where the size of graphs goes from
10, 000 to 100, 000 in steps of 10, 000. For each setting we report the median execution time out of
10 runs. Experiments are performed using one thread.

For the computation of the smallest eigenvector of the signed ratio/normalized cut Laplacians and
the balance ratio/normalized cut Laplacians we compute the Laplacian matrix (i.e. LSR, LSN , LBR
and LBN ) and use the function eigs from Matlab. For the computation of the smallest eigenvector
of the geometric mean we consider two approaches: one approach is based on the computation of
the geometric mean L+

sym#Q−sym using the Matlab toolbox provided by [12] and then the use of the
function eigs from Matlab (in Fig. 3 denoted as LGM (eigs)). The second approach is based on the
Inverse Power Method of Algorithm 2 together with the extended Krylov method of Algorithm 3 (in
Fig. 3 denoted as LGM (ours)).

We can see that the execution time of for signed Laplacians is rather similar. One can observe that the
execution time for the geometric mean with Matlab’s eigs is truncated for graphs that have more
than 20,000 nodes. This happens as the computation of the geometric mean does not fit into memory.
On the other side, the time execution for the geometric mean with the Inverse Power Method and
extended Krylov methods (Algorithms 2 and 3) is comparable with the one of the signed Laplacians
that use eigs. In particular it is noticeable that the time executions differs just by a constant factor.
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6 Experiments

Sociology Networks We evaluate signed Laplacians LSN , LBN , LAM and LGM through three real-
world and moderate size signed networks: Highland tribes (Gahuku-Gama) network [21], Slovene
Parliamentary Parties Network [15] and US Supreme Court Justices Network [7]. For the sake of
comparison we take as ground truth the clustering that is stated in the corresponding references. We
observe that all signed Laplacians yield zero clustering error.

Experiments on Wikipedia signed network. We consider the Wikipedia adminship election dataset
from [17], which describes relationships that are positive, negative or non existent. We use Algs. 1−3
and look for 30 clusters. Positive and negative adjacency matrices sorted according to our clustering
are depicted in Figs. 4(a) and 4(b). We can observe the presence of a large relatively empty cluster.
Zooming into the denser portion of the graph we can see a k-balanced behavior (see Figs. 4(c) and
4(d)), i.e. the positive adjacency matrix shows assortative groups - resembling a block diagonal
structure - while the negative adjacency matrix shows a disassortative setting. Using LAM and LBN
we were not able to find any clustering structure, which corroborates results reported in [4]. This
further confirms that LGM overcomes other clustering approaches. To the knowledge of the authors,
this is the first time that clustering structure has been found in this dataset.

(a) W+ (b) W− (c) W+(Zoom) (d) W−(Zoom)

Figure 4: Wikipedia weight matrices sorted according to the clustering obtained with LGM (Alg. 1).

Experiments on UCI datasets. We evaluate our method LGM (Algs. 1−3) against LSN , LBN ,
and LAM with datasets from the UCI repository (see Table. 2). We build W+ from a symmetric
k+-nearest neighbor graph, whereas W− is obtained from the symmetric k−-farthest neighbor
graph. For each dataset we test all clustering methods over all possible choices of k+, k− ∈
{3, 5, 7, 10, 15, 20, 40, 60}. In Table 2 we report the fraction of cases where each method achieves
the best and strictly best clustering error over all the 64 graphs, per each dataset. We can see that our
method outperforms other methods across all datasets.

iris wine ecoli optdig USPS pendig MNIST
# vertices 150 178 310 5620 9298 10992 70000
# classes 3 3 3 10 10 10 10

LSN
Best (%) 23.4 40.6 18.8 28.1 10.9 10.9 12.5

Str. best (%) 10.9 21.9 14.1 28.1 9.4 10.9 12.5

LBN
Best (%) 17.2 21.9 7.8 0.0 1.6 3.1 0.0

Str. best (%) 7.8 4.7 6.3 0.0 1.6 3.1 0.0

LAM
Best (%) 12.5 28.1 14.1 0.0 0.0 1.6 0.0

Str. best (%) 10.9 14.1 12.5 0.0 0.0 1.6 0.0

LGM
Best (%) 59.4 42.2 65.6 71.9 89.1 84.4 87.5

Str. best (%) 57.8 35.9 60.9 71.9 87.5 84.4 87.5

a MNIST, k+ = 10
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Table 2: Experiments on UCI datasets. Left: fraction of cases where methods achieve best and strictly
best clustering error. Right: clustering error on MNIST dataset.

In the figure on the right of Table 2 we present the clustering error on MNIST dataset fixing k+ = 10.
With Q−sym one gets the highest clustering error, which shows that the k−-farthest neighbor graph is a
source of noise and is not informative. In fact, we observe that a small subset of nodes is the farthest
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neighborhood of a large fraction of nodes. The noise from the k−-farthest neighbor graph is strongly
influencing the performances of LSN and LBN , leading to a noisy embedding of the datapoints and
in turn to a high clustering error. On the other hand we can see that LGM is robust, in the sense that
its clustering performances are not affected negatively by the noise in the negative edges. Similar
behaviors have been observed for the other datasets in Table 2.
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Figure 5: Clustering error on UCI datasets, for k+ = 10.
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