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The appendix is organised as follows. Section A presents other existing definitions of α-divergences.
Section B provides the mathematical details for the Bayesian linear regression example. Section
C provides the proofs for the main theoretical results. Section D briefly discusses the optimisation
issues brought from the selection of α values and the number of MC samples K. Section E applies
the reparametrization trick to the MC approximated bound, which leads to a unified implementation.
Section F demonstrates the connections between the proposed sub-sampling approximation and
existing algorithms (SEP [1] and BB-α [2]). Section G provides detailed experimental set-up and
further results for the tests considered in the main text.

A Other α-divergence definitions

Here we include some existing α-divergence definitions other than Rényi’s.

• Amari’s α-divergence [3]

Dα[p||q] =
4

1− α2

(
1−

∫
p(θ)

1+α
2 q(θ)

1−α
2 dθ

)
.

• Tsallis’s α-divergence [4]

Dα[p||q] =
1

α− 1

(∫
p(θ)αq(θ)1−αdθ − 1

)
.

Consider the problem of posterior approximation by minimising an α-divergence. When the approxi-
mate posterior q has an exponential family form, minimising Dα[p||q], no matter which definition
above is used (although may use different alpha), requires moment matching to the tilted distribution
p̃α(θ) ∝ p(θ)αq(θ)1−α. In the EP literature Amari’s definition is often discussed. We focus on
Rényi’s definition in the main text simply because Dα[q(θ)||p(θ|D)] using Rényi’s definition contains
log p(D) that can be cancelled in the same way as VI is derived.

B A mean-field approximation example

We present the mean-field approximation method for the VR bound family, with Bayesian linear
regression as an illustrating example. Recall the VR bound for α 6= 1:

Lα(q;D) :=
1

1− α
logEq

[(
p(θ,D)

q(θ)

)1−α
]
, (1)
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where the q distribution is factorised over the components of θ = (θ1, ..., θd): q(θ) =
∏
i q(θi). In

the following we denote qj = q(θj) to reduce notational clutter, and re-write the VR bound as

Lα(q;D) =
1

1− α
log

∫ ∏
i

qi

(
p(θ,D)∏

i qi

)1−α

dθ

=
1

1− α
log

∫
qαj

∫ ∏
i 6=j

qi

(
p(θ,D)∏
i 6=j qi

)1−α

dθi 6=j

 dθj

:=
1

1− α
log

∫
qαj p̃

1−α
j dθj + const,

where p̃j denote the “marginal” distribution satisfying

log p̃j =
1

1− α
log

∫ ∏
i6=j

qi

(
p(θ,D)∏
i6=j qi

)1−α

dθi6=j + const.

Now maximising the VR bound (when α > 0, and for α < 0 we minimise the bound) is equivalent
to minimising Dα[qj ||p̃j ] (for α > 0, and when α < 0 we minimise D1−α[p̃j ||qj ]), which means
log qj = log p̃j + const. One can verify that when α → 1 it recovers the traditional variational
mean-field approximation

lim
α→1

qj =

∫ ∏
i6=j

qi log p(θ,D)dθi 6=j + const,

and when α→ 0 it returns the exact marginal of the posterior distribution limα→0 qj = p(θj |D).

Now consider Bayesian linear regression with 2-D input x and 1-D output y, as an example:

θ ∼ N (θ;µ0,Λ
−1
0 ), y|x ∼ N (y;θTx, σ2).

Given the observations D = {xn, yn}, the posterior distribution of θ can be computed analytically as
p(θ|D) = N (θ;µ,Λ−1) with Λ = Λ0 + 1

σ2

∑
n xnx

T
n and Λµ = Λ0µ0 + 1

σ2

∑
n ynxn. To see

how the mean-field approach work we explicitly write down the elements of the posterior parameters

µ =

(
µ1

µ2

)
, Λ =

(
Λ11 Λ12

Λ21 Λ22

)
, Λ12 = Λ21,

and define qi = N (θi;mi, λ
−1
i ) as a univariate Gaussian distribution. Then

log q1 =
1

1− α
log

∫
q2(θ2)

(
p(θ,D)

q2(θ2)

)1−α

dθ2 + const

=
1

1− α
log

∫
exp

[
−1− α

2
(θ − µ)TΛ(θ − µ)− α

2
λ2(θ2 −m2)2

]
dθ2 + const

=
1

1− α
log

∫
N (θ;µ, Σ̃)dθ2 + const

= logN (θ1;m1, λ
−1) + const

where the new mean m1 and the precision λ1 satisfies

m1 = µ1 + C1(µ2 −m2), C1 =
αλ2Λ12

(1− α)|Λ|+ αλ2Λ11
,

λ1 = Λ11 − (1− α)Λ12((1− α)Λ22 + αλ2)−1Λ21.

One can derive the terms m2 and C2 for q2 in the same way, and show that m = µ is the only
stable fixed point of this iterative update. So we have q1 = N (θ1;µ1, λ

−1
1 ), and similarly q2 =

N (θ1;µ2, λ
−1
2 ) with λ2 = Λ22− (1−α)Λ21((1−α)Λ11 +αλ1)−1Λ12. In this example λ1, λ2 are

feasible for all α, and solving the fixed point equations, finally we have the stable fixed point as

λ1 = ραΛ11, λ2 = ραΛ22, ρα =
1

2α

(2α− 1) +

√
1− 4α(1− α)Λ2

12

Λ11Λ22

 .
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The other solution for the quadratic formula is eliminated since it violates the assumptions that λ1 > 0
(when 0 < α < 1) and |Lα| < +∞ (when α < 0 or α > 1, since it requires |αdiag(λ)+(1−α)Λ| >
0). Thus the stable fixed point in this case is unique.

One can show that limα→1 λ1 = Λ11, limα→0 λ1 = Λ11 − Λ12Λ−122 Λ21 and limα→±∞ λ1 =

Λ11 ± |Λ12|
√

Λ11Λ−122 (similar results for λ2). Also ρα is continuous and non-decreasing in α. This
means one can interpolate between mass-covering and zero-forcing behaviour by increasing α values.
Moreover, notice that the limiting case α→ +∞ still returns uncertain estimates, although it is even
more over-confident than VI. This is different from maximum a posteriori (MAP) which captures the
mode but only returns a point estimate.

C Proofs of the main results

We provide the proofs of the theorems presented in section 4 of the main text.

C.1 Proof of Theorem 2

Proof. 1) First we prove for α ≤ 1, E{hk}[L̂α,K ] is non-decreasing in K. It is straight forward to
show the results holds for α = 1. We follow the proof in [5] for fixed α < 1. Let K > 1 and the
subset of indices I = {i1, ..., iK′} ⊂ {1, ...,K},K ′ < K randomly sampled from integers 1 to K.
Then for any α < 1:

E{hk}Kk=1
[L̂α,K ] =

1

1− α
E{hk}

[
log

1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−α
]

=
1

1− α
E{hk}

logEI⊂{1,...,K}

 1

K ′

K′∑
k=1

(
p(hik ,x)

q(hik)

)1−α


≥ 1

1− α
E{hk}

EI⊂{1,...,K}
log

1

K ′

K′∑
k=1

(
p(hik ,x)

q(hik)

)1−α
 (log x is concave)

=
1

1− α
E{hk}

log
1

K ′

K′∑
k=1

(
p(hk,x)

q(hk|x)

)1−α
 = E{hk}K′k=1

[L̂α,K′ ]

We used Jensen’s inequality of logarithm for the lower-bounding result here. When α > 1 we can
proof similar result but with inequality reversed, simply because now 1− α < 0.

2) Next we prove that, when K → ∞ and |Lα| < +∞, we have E{hk}Kk=1
[L̂α,K ] → Lα if L̂α,K

is absolutely integrable wrt. qdµ = dQ for all K ≥ 1 (in other words E{hk}Kk=1
[|L̂α,K |] < +∞).

We only prove it for α ≤ 1, and for α > 1 it can be proved in a similar way. First we use Jensen’s
inequality again for all finite K:

E{hk}Kk=1
[L̂α,K ] =

1

1− α
E{hk}

[
log

1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−α
]

≤ 1

1− α
logE{hk}

[
1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−α
]

= Lα.

This implies lim supK→+∞ E{hk}Kk=1
[L̂α,K ] ≤ Lα.

Then as an intermediate result we prove L̂α,K → Lα almost surely when K →∞. For α 6= 1, since
function log is continuous we again swap the limit and logarithm:

lim
K→+∞

1

1− α
log

1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−α

=
1

1− α
log lim

K→+∞

1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−α

.
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Now since we assume |Lα| < +∞, this implies Eq
[(

p(h,x)
q(h|x)

)1−α]
is finite. Also notice for all α

values the ratio p/q is non-negative. Thus by the strong law of large numbers we have

lim
K→+∞

1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−α

= Eq(h|x)

[(
p(h,x)

q(h|x)

)1−α
]

a. s.,

then L̂α,K → Lα almost surely as K → +∞. When α = 1 we can use similar method to prove
limK→+∞ L̂1,K = LVI almost surely.

Finally, using the non-increasing in α result we will prove later we have L̂α,K ≥ L̂1,K . Thus we can
apply Fatou’s Lemma and obtain the following almost surely (notice E[L̂1,K ] = LVI for all K):

Lα − LVI = E{hk}Kk=1
[ lim
K→+∞

L̂α,K − L̂1,K ]

≤ lim inf
K→+∞

E{hk}Kk=1
[L̂α,K − L̂1,K ]

= lim inf
K→+∞

E{hk}Kk=1
[L̂α,K ]− LVI.

Combining with the supremum bound, we have E{hk}Kk=1
[L̂α,K ]→ Lα when K goes to infinity. For

α > 1 we use Jensen’s inequality to bound the limit infimum and the non-increasing property in α to
bound the limit supremum. Thus the convergence result holds for all α ∈ {α : |Lα| < +∞}.

3) E[L̂α,K ] is non-increasing in α: since expectation preserves monotonicity, it is sufficient to prove
the result for L̂α,K . This can be proved in similar way as Theorem 3 and 39 in [6], and we include
the prove here for completeness. Notice that for α < β function x

1−α
1−β defined on x > 0 is convex

when α < 1 and concave when α > 1. So applying Jensen’s inequality:

L̂α,K =
1

1− α
log

1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−α

=
1

1− α
log

1

K

K∑
k=1

((
p(hk,x)

q(hk|x)

)1−β
) 1−α

1−β

≥ 1

1− α
log

(
1

K

K∑
k=1

(
p(hk,x)

q(hk|x)

)1−β
) 1−α

1−β

= L̂β,K .

Continuity in α: First we show L̂α,K is continuous in α when p(hk,x) 6= 0 for hk ∼ q. For
α 6= 0, 1,∞ and for any sequence {αn} → α it is sufficient to show that

lim
n→∞

log
1

K

∑
k

q(hk|x)αnp(hk,x)1−αn

= log lim
n→∞

1

K

∑
k

q(hk|x)αnp(hk,x)1−αn (log x is a continuous function)

= log
1

K

∑
k

lim
n→∞

q(hk|x)αnp(hk,x)1−αn (finite sum)

= log
1

K

∑
k

q(hk|x)

(
p(hk,x)

q(hk|x)

)1−limn→∞ αn

(ax is continuous in x for all a > 0)

= log
1

K

∑
k

q(hk|x)αp(hk,x)1−α.

We note that since we assume L̂α,K is absolutely integrable, we have p/q > 0 almost everywhere on
the support of q. Hence {L̂αn,K} has point-wise limit L̂α,K almost everywhere as n→ +∞.

For α = 0, 1,∞ the Rényi divergence is defined by continuity so one can use the same technique to
show the continuity of L̂α,K on those α values for fixed K. Then since αn → α, for any ε > 0, there
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exists n that is large enough such that αm ∈ (α− ε, α+ ε) for all m > n. Using the monotonicity
result, we have for ∀m > n, L̂αm,K is bounded in the interval (L̂α+ε,K , L̂α−ε,K) and by assumption
we have E[|L̂α−ε,K |] < +∞ and E[|L̂α+ε,K |] < +∞. This allows us to apply the dominated
convergence theorem to prove limn→+∞ E[L̂αn,K ] = E[limn→+∞ L̂αn,K ] = E[L̂α,K ]. Thus we
have proved that E[L̂α,K ] is continuous on α ∈ {|Lα| < +∞} if L̂α,K is absolutely integrable.

C.2 Proof of Corollary 1

It is sufficient to prove the corollary for the case q(h|x) 6= p(h|x). We first introduce the following
lemmas. With overloaded notation, µ denotes the measure on the corresponding space, which also
means dQ = qdµ. As we assume supp(p) ⊆ supp(q), there might exist some regions that q > 0 but
p = 0. We define ρ = Q(supp(q)\supp(p)) and rewrite the computation of E[L̂α,K ].

Lemma 1. Assume ρ > 0. Then for all finite K and α < 0, E{hk}Kk=1
[L̂α,K(q;x)] = −∞ and thus

L̂α,K is not integrable wrt. qdµ = dQ.

Proof. We define q̃ as the q distribution restricted on the support of p, i.e. q̃ = q/(1− ρ) defined on
supp(p). Then for any fixed K < +∞ and α < 0, we have

E{hk}Kk=1∼q
[L̂α,K(q;x)] =ρK log 0 +

K∑
k=1

(
K

k

)
ρK−k(1− ρ)k

(
E{hj}kj=1∼q̃[L̂α,k(q̃;x)] + log k

)
−(1− ρK)((1− α) log(1− ρ) + logK)

Thus E{hk}Kk=1
[L̂α,K(q;x)] = −∞ for all finite K and α < 0.

The above example shows the pathology of MC approximation which is further discussed in section
D. From now on we assume L̂α,K is absolutely integrable in order to apply Theorem 2.

Lemma 2. Assume α < 0, L̂α,K absolutely integrable wrt. qdµ = dQ for all K, Lα > LVI,
and |Lα| < +∞. Then there exists 1 ≤ Kα < +∞ such that for all K ≤ Kα < K ′,
E{hk}Kk=1

[L̂α,K(q;x)] ≤ log p(x) < E{hk}K′k=1
[L̂α,K′(q;x)]. Also Kα is non-decreasing in α

with limα→0Kα = +∞ and limα→−∞Kα ≥ 1.

Proof. 1) Existence of Kα: first from Theorem 2 we have E[L̂α,K ] is non-decreasing in K when
α < 0. Then since for all α, E[L̂α,1] = LVI ≤ log p(x), we have Kα ≥ 1 if Kα exists. Also
from Theorem 2 we have limK→+∞ E[L̂α,K ] = Lα > log p(x) for all α < 0. Hence for ε =

Lα − log p(x) there exist K that is finite but large enough such that Lα − E[L̂α,K′ ] < ε for all
K ′ > K. Now we can define ε = Lα − LVI and take Kα as the minimum of such K, and it is
straight-forward to show that 1 ≤ Kα < +∞.

2) Kα is non-decreasing in α: suppose there exist α > β such that Kα < Kβ . Then there exist
Kα < K ≤ Kβ such that E[L̂α,K ] > log p(x) ≥ E[L̂β,K ]. But Theorem 2 says E[L̂α,K ] is
non-increasing in α, a contradiction.

3) Since limK→+∞ E[L̂α,K ] = Lα and Lα ↓ log p(x) when α ↑ 0, we have limα→0Kα = +∞.
Also since Kα is non-decreasing in α and is lower-bounded by 1, we have the limit exists and
limα→−∞Kα ≥ 1.

Now we prove Corollary 1, and we only prove it with the conditions assumed in Lemma 2 since
Kα = +∞ for the other cases, and if so for all α < 0, then αK = −∞ for all finite K.

Proof. 1) Existence of αK for limα→−∞Kα < K < +∞: from Lemma 2 we can find α > β such
that Kα ≥ K ≥ Kβ . This means E[L̂α,K ] ≤ log p(x) ≤ E[L̂β,K ]. Since E[L̂α,K ] is continuous in
α for any fixed K, there exits α ≤ γ ≤ β to have E[L̂γ,K ] = log p(x). Note that γ might not be
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unique, so we define αK as the minimum of such γ, which also gives E[L̂α,K ] > log p(x) for all
α < αK .

2) αK is non-decreasing in K: suppose there exist K < K ′ with αK > αK′ . Then we can find
αK > α > αK′ such that E[L̂α,K ] > log p(x) = E[L̂αK′ ,K′ ] ≥ E[L̂α,K′ ]. But from Theorem 2
E[L̂α,K ] is non-decreasing in K, a contradiction.

3) Since limK→+∞ E[L̂α,K ] = Lα and Lα ↓ log p(x) when α ↑ 0, we have limK→+∞ αK = 0.
Also for all α, E[L̂α,1] = LV I ≤ log p(x), so limK→1 αK = −∞.

D Optimisation issues with α-divergences and MC approximations

It is in general an outstanding research question on how to select the divergence measure for a
particular machine learning problem. In our case this corresponds to selecting the α value. Also an
approximate inference algorithm can be evaluated with different performance measures, and it is
impossible to find a single algorithm value that returns the best performance on all evaluations. Thus
we only present the evaluation in test error and test log-likelihood in the main text.

We discuss two conjectures to explain the difficulty of selecting α in the Bayesian neural network
experiments. The first conjecture is that zero-forcing algorithms tend to favour minimising the test
error, while mass-covering methods tend to improve the test log-likelihood. However zero-forcing
methods can fail as it might miss an important mode due to local optima. Similarly mass-covering
methods can be pathological if the exact posterior includes modes that are very far away from each
other. Furthermore, the form of the posterior will change with the number of observed datapoints N ,
so the “optimal” setting of α for a fixed task may change with N .

The second conjecture states that the MC approximation complicates the selection of α, since
it favours zero-forcing (because of the bias introduced). For example, in order to maximize the
quantity of the MC approximation the algorithm need to make E[L̂α,K ] finite first. However,
Lemma 1 indicates that, if ρ > 0, then for finite sample size, there’s a small probability ρK that
the MC approximation goes wrong. Hence to avoid this pathology the optimisation procedure
will ensure q = 0 whenever p is zero. Combining with Theorem 2, we conjecture that the MC
approximation makes the algorithm more “VI-like” compared to the exact case. In other words, when
MC approximation is deployed, the effective α value is closer to α = 1 which is the value for VI
(consider K = 1). This means, if there exists αopt 6= 1 for a specific task, in practice one should use
α ≤ αopt (for αopt < 1, and should use α ≥ αopt if αopt > 1) when running the MC algorithm. In
general one should be very careful when estimating the ratio between distribution with Monte Carlo
methods. Also the introduced MC approach usually has higher variance compared to the variational
case, so further control variate techniques should be applied to reduce the sampling variance.

Still we want to emphasize that for many problems, minimising an α-divergence other than the
KL-divergence can be very useful, even when with MC approximations. Approximate EP has been
applied to deep Gaussian process regression and has shown to achieve the state-of-the-art results for
benchmark datasets [7]. A recent paper [8] tested BB-α for model-based reinforcement learning with
Bayesian neural networks. In their tests using α = 0.5 successfully captured the bi-modality and
heteroskedasticity in the predictive distribution, while VI failed disastrously.

E Unified implementation: derivation details

We provide detailed derivations of the gradient computation here. Recall from the main text that
when α 6= 1, the VR bound with the reparameterization trick becomes

Lα(qφ;x) =
1

1− α
logEε

[(
p(gφ(ε),x)

q(gφ(ε))

)1−α
]
. (2)

6



So the distribution p(ε) does not depend on the recognition model. We short-hand gφ = gφ(ε), then,

∇φLα(qφ;x) =
1

1− α
∇φ logEε

[(
p(gφ,x)

q(gφ)

)1−α
]

=
1

1− α

(
Eε

[(
p(gφ,x)

q(gφ)

)1−α
])−1

Eε

[
∇φ

(
p(gφ,x)

q(gφ)

)1−α
]

=
1

1− α

(
Eε

[(
p(gφ,x)

q(gφ)

)1−α
])−1

Eε

[(
p(gφ,x)

q(gφ)

)1−α

∇φ(1− α) log
p(gφ,x)

q(gφ)

]

= Eε
[
wα(ε;φ,x)∇φ log

p(gφ,x)

q(gφ)

]
.

Here we define

wα(ε;φ,x) :=

(
p(gφ,x)

q(gφ)

)1−α/
Eε

[(
p(gφ,x)

q(gφ)

)1−α
]
. (3)

For MC approximation with finite K samples, one can use the same technique to show that

∇φL̂α,K(qφ;x) =

K∑
k=1

[
ŵα,k(εk;φ,x)∇φ log

p(gφ(εk),x)

q(gφ(εk))

]
.

with the importance weights

ŵα,k(εk;φ,x) :=

(
p(gφ(εk),x)

q(gφ(εk))

)1−α/ K∑
k=1

(
p(gφ(εk),x)

q(gφ(εk))

)1−α

. (4)

One can show that limα→1 wα(ε;φ,x) = 1 and limα→1 ŵα,k(εk;φ,x) = 1/K. This indicates the
recovery of the original VAE algorithm.

F Stochastic approximation for large-scale learning: derivations

This section shows the connection between VR bound optimisation and the recently proposed
algorithms: SEP [1] and BB-α [2], by taking M = 1 and α = 1− β/N .

Recall that in the main text we define the “average likelihood” f̄D(θ) = [
∏N
n=1 p(xn|θ)]

1
N .

Hence the joint distribution can be rewritten as p(θ,D) = p0(θ)f̄D(θ)N . Also for a mini-
batch of M datapoints S = {xn1

, ...,xnm} ∼ D, we define the “subset average likelihood”
f̄S = [

∏M
m=1 p(xnm |θ)]

1
M . When M = 1 we also write f̄S(θ) = fn(θ) for S = {xn}.

Now assume the posterior approximation is defined as q(θ) = 1
Zq
p0(θ)t(θ)N . Often t(θ) is chose to

have an exponential family form t(θ) ∝ exp [〈λ,Φ(θ)〉] with Φ(θ) denoting the sufficient statistic.
Then picking α = 1− β/N , β 6= 0, we have the exact VR bound as

Lα(q;D) = logZq +
N

β
logEq

[(
f̄D(θ)

t(θ)

)β]
(5)

The first proposal considers deriving the exact fixed point conditions, then approximating them
with mini-batch sub-sampling. In our example the exact fixed point condition for the variational
parameters λ is

∇λLα(q;D) = 0 ⇒ Eq[Φ(θ)] = Ep̃α [Φ(θ)], (6)
with the tilted distribution defined as

p̃α(θ) ∝ q(θ)αp0(θ)1−αf̄D(θ)N(1−α) ∝ p0(θ)t(θ)N−β f̄D(θ)β .

Now given a mini-batch of datapoints S, the moment matching update can be approximated by
replacing f̄D(θ) with f̄S(θ) = [

∏M
m=1 p(xnm |θ)]

1
M . More precisely, each iteration we sample a

7



subset of data S = {xn1 , ...,xnM } ∼ D, and compute the new update for λ by first computing
p̃α,S(θ) ∝ p0(θ)t(θ)N−β f̄S(θ)β then taking Eq[Φ(θ)]← Ep̃α,S [Φ(θ)]. This method returns SEP
when M = 1, i.e. in each iteration only one datapoint is sampled to update the approximate posterior.

The second proposal also applies this subset average likelihood approximation idea, but directly to
the VR bound (5), with ES denotes the expectation over mini-batch sub-sampling:

ES
[
L̃α(q;S)

]
= logZq +

N

β
ES

[
logEq

[(
f̄S(θ)

t(θ)

)β]]
. (7)

It recovers the energy function of BB-α when M = 1. Note that the original paper [2] uses an
adapted form of Amari’s α-divergence, and the α value in the BB-α algorithm corresponds to β in
our exposition. Now the gradient of this approximated energy function becomes

∇λES
[
L̃α(q;S)

]
= N(Eq[Φ(θ)]− ESEp̃α,S [Φ(θ)]). (8)

Both SEP and BB-α return SVI when α→ 1 (or equivalently β → 0). But for other α values it is
important to note that these two proposals return different optimum at convergence. BB-α requires
averages the moment of the tilted distribution ESEp̃α,S [Φ(θ)]. However SEP first compute the
inverse mapping from the moment Ep̃α,S [Φ(θ)] to obtain the natural parameters λS , then update
the q distribution by λ← ES [λS ]. In general the inverse mapping is non-linear so the fixed point
conditions of SEP and BB-α are different.

SEP is arguably more well justified since it returns the exact posterior if the approximation family Q
is large enough to include the correct solution, just like VI and VR computed on the whole dataset.
BB-α might still be biased even in this scenario. But BB-α is much simpler to implement since
the energy function can be optimised with stochastic gradient descent. Indeed the authors of [2]
considered the same black-box approach as to VI, by computing a stochastic estimate of the energy
function then using automatic differentiation tools to obtain the gradients.

We also provide a bound of the energy approximation (7) by the following theorem.

Theorem 3. If the approximate distribution q(θ) is Gaussian N (µ,Σ), and the likelihood functions
has an exponential family form p(x|θ) = exp[〈θ,Ψ(x)〉 − A(θ)], then for α ≤ 1 and r > 1 the
stochastic approximation is bounded by

ES [L̃α(q;S)] ≤ L1−(1−α)r(q;D) +
N2(1− α)r

2(r − 1)
tr(ΣCovS∼D(Ψ̄S)).

Proof. We substitute the exponential family likelihood term into the stochastic approximation of
the VR bound with α < 1, and use Hölder’s inequality for any 1/r + 1/s = 1, r > 1 (define
α̃ = 1− (1− α)r):

ES [L̃α(q;S)] =
1

1− α
logEq[

(
p0(θ)f̄D(θ)N

q(θ)

f̄S(θ)N

f̄D(θ)N

)1−α

]

≤ Lα̃(q;D) +
1

(1− α)s
ES
{

logEq[exp[N(1− α)s〈Ψ̄S − Ψ̄D,θ〉]]
}

= Lα̃(q;D) +
1

(1− α)s
ES [Kθ(N(1− α)s(Ψ̄S − Ψ̄D))],

where Ψ̄S and Ψ̄D denote the mean of the sufficient statistic Ψ(x) on the mini-batch S and the
whole dataset D, respectively. For Gaussian distribution q(θ) = N (µ,Σ) the cumulant generating
function Kθ(t) has a closed form

Kθ(t) = µT t+
1

2
tTΣt.

8



Define tS = N(1− α)s∆S with ∆S = Ψ̄S − Ψ̄D, then ES [tS ] = 0 and the upper-bound becomes

ES [L̃α(q;S)] ≤ Lα̃(q;D) +
1

(1− α)s
ES [Kθ(tS)]

= Lα̃(q;D) +
1

(1− α)s
ES [µT tS +

1

2
tTSΣtS ]

= Lα̃(q;D) +
N2(1− α)s

2
ES [∆T

SΣ∆S ]

= Lα̃(q;D) +
N2(1− α)s

2
tr(ΣCovS∼D(Ψ̄S)).

Applying the condition of Hölder’s inequality 1/r + 1/s = 1 proves the result.

The following corollary is a direct result of Theorem 3 applied to BB-α. Note here we follow
the convention of the original paper [2] to use M = 1 and overload the notation α = β and
LBB−α(q;D) = E{xn}

[
L̃1−α/N (q; {xn})

]
.

Corollary 2. Assume the approximate posterior and the likelihood functions satisfy the assumptions
in Theorem 3, then for α > 0 and r > 1, the black-box alpha energy function is upper-bounded by

LBB−α(q;D) ≤ L1−αrN (q;D) +
Nαr

2(r − 1)
tr(ΣCovD(Ψ)).

G Further experimental details and results

G.1 Bayesian neural network

We detail the experimental set-up of the Bayesian neural network example. For regression tests,
we consider Protein and Year as the large datasets and the others as small datasets. The likelihood
function is defined as p(y|x,θ) = N (y;Fθ(x), σ2) where Fθ(x) denotes the non-linear transform
from the neural network with weights θ. We use unit Gaussian prior θ ∼ N (θ; 0, I) and Gaussian
approximation q(θ) = N (θ;µq, diag(σq)), where we fit the parameters of q and the noise level σ
by optimising the lower-bound. For all datasets we use single-layer neural networks with 50 hidden
units (ReLUs) for datasets except Protein and Year (100 units). The methods for comparison were
run for 500 epochs on the small datasets and 100, 40 epochs for the large datasets Protein and Year,
respectively. We used ADAM [9] for optimisation with learning rate 0.001 and the standard setting for
other parameters. For stochastic optimisation we used learning rate 0.001, mini-batch size M = 32
and number of samples K = 100, 10 for small and large datasets. The number of dataset random
splits is 20 except for the large datasets, which is 5 and 1 for Protein and Year, respectively.

The full test results are provided in Figure 1 and Table 1, 2. In the tables the best performing results
are underlined, while the worse cases are also bold-faced. Clearly the optimal α setting is dataset
dependent, although for Boston and Power the performances are very similar. Also for Naval mass-
covering seems to be harmful not only for predictive error but also for test log-likelihood measure.
Overall mode-seeking methods tend to focus on improving the predictive error, while mass-covering
regimes often return better test log-likelihood.

G.2 Variational auto-encoder

We describe the network architecture tested in the VAE experiments. The number of stochastic layers
L, number of hidden units, and the activation function are summarised in Table 3. The prefix of the
number indicates whether this layer is deterministic or stochastic, e.g. d500-s200 stands for a neural
network with one deterministic layer of 500 units followed by a stochastic layer of 200 units. For
Frey Face data we train the models using learning rate 0.0005 and mini-batch size 100. For MNIST
and OMNIGLOT we reuse the settings from [5]: the training process runs for 3i passes with learning
rate 0.0001 · 10−i/7 for i = 0, ..., 7, and the batch size is 20. For Caltech Silhouettes we use the same
settings as MNIST and OMNIGLOT except that the training proceeded for

∑7
i=0 2i = 255 epochs.

We also present some samples from the VR-max trained auto-encoders in Figure 2, and note that the
visual quality of these samples are almost identical to those from IWAE.
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mass-covering zero-forcing

Figure 1: Test LL and RMSE results for Bayesian neural network regression. The lower the better.

Table 1: Regression experiment: Average negative test log likelihood/nats
Dataset N D α→ −∞ α = 0.0 α = 0.5 α = 1.0 (VI) α→ +∞
boston 506 13 2.47±0.08 2.47±0.07 2.46±0.07 2.52±0.03 2.50±0.05
concrete 1030 8 3.09±0.02 3.08±0.02 3.09±0.02 3.11±0.02 3.12±0.02
energy 768 8 1.39±0.02 1.42±0.02 1.40±0.03 0.77±0.02 1.23±0.01
naval 11934 16 -3.43±0.08 -3.02±0.48 -3.58±0.08 -6.49±0.04 -6.47±0.09
kin8nm 8192 8 -1.13±0.01 -1.13±0.01 -1.14±0.01 -1.12±0.01 -1.12±0.01
power 9568 4 2.82±0.01 2.83±0.01 2.82±0.01 2.82±0.01 2.83±0.01
protein 45730 9 2.94±0.01 2.91±0.00 2.92±0.01 2.91±0.00 2.91±0.00
wine 1588 11 0.95±0.01 0.95±0.01 0.95±0.01 0.96±0.01 0.97±0.01
yacht 308 6 1.82±0.01 1.83±0.01 1.82±0.01 1.77±0.01 2.01±0.00
year 515345 90 3.54±NA 3.55±NA 3.55±NA 3.60±NA 3.60±NA

Average Rank 2.80±0.34 3.00±0.45 2.20±0.37 3.20±0.51 3.80±0.39

Table 2: Regression experiment: Average test RMSE
Dataset N D α→ −∞ α = 0.0 α = 0.5 α = 1.0 (VI) α→ +∞
boston 506 13 2.84±0.18 2.85±0.17 2.85±0.15 2.89±0.17 2.86±0.17
concrete 1030 8 5.28±0.10 5.24±0.11 5.34±0.10 5.42±0.11 5.40±0.11
energy 768 8 0.79±0.04 0.88±0.05 0.81±0.06 0.51±0.01 0.62±0.02
naval 11934 16 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00
kin8nm 8192 8 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00
power 9568 4 4.08±0.03 4.10±0.04 4.07±0.04 4.07±0.04 4.08±0.04
protein 45730 9 4.57±0.05 4.44±0.03 4.51±0.03 4.45±0.02 4.45±0.01
wine 1588 11 0.64±0.01 0.64±0.01 0.64±0.01 0.63±0.01 0.63±0.01
yacht 308 6 1.12±0.09 1.24±0.11 1.11±0.08 0.81±0.05 0.96±0.07
year 515345 90 8.95±NA 9.13±NA 8.94±NA 8.91±NA 8.88±NA

Average Rank 3.40±0.38 3.70±0.51 3.20±0.31 2.40±0.45 2.30±0.38
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Figure 2: Sampled images from the the best models trained with IWAE (left) and VR-max (right).

Table 3: Network architecture of tested VAE algorithms.
Dataset L architecture activation probability type (p/q)
Frey Face 1 d200-d200-s20 softplus Gaussian/Gaussian
Caltech 101 1 d500-s200 tanh Bernoulli/Gaussian
MNIST & 1 d200-d200-s50 tanh Bernoulli/Gaussian
OMNIGLOT 2 d200-d200-s100-d100-d100-s50 tanh Bernoulli/Gaussian
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