
A Proofs — Operations on Generating Functions

Proof of Proposition 1. This is a standard fact about multivariate PGFs:
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Proof of Proposition 3. The PGF is
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In the third line, we used the fact that the PGF of the Binomial distribution isP
x

Binomial(x|n, ⇢)sx = (⇢s+ 1� ⇢)n.

Proof of Proposition 4.
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Proof of Proposition 5. We can combine Propositions 3 and 2 to first expand the factor with a thinned
variable x
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and then observe x
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Algorithm 4 PGF-FORWARD implementation

Input: Vectors �, �, ⇢, y
Output: Likelihood p(y1:K)

1: a 0, b 0, f(s) 1

2: for k = 1 to K do
3: [a, b] ARRIVALS(a, b,�k)

4: [a, f ] EVIDENCE(a, f, yk, ⇢k)
5: if k < K then
6: [a, b, f ] SURVIVORS(a, b, f, �k)
7: end if
8: end for
9: return f(1) exp{a+ b}

10: function ARRIVALS(a, b,�)
11: a0  a+ �
12: b0  b� �
13: return a0, b0

14: end function

15: function EVIDENCE(a, f, y, ⇢)
16: a0  a(1� ⇢)
17: g  0, df  f
18: for ` = 0 to y do
19: g  g + df/(a``!(y � `)!)
20: df  DERIV(df)
21: end for
22: g  COMPOSE(g, s(1� ⇢))
23: g  (a⇢)ysyg
24: return a0, g
25: end function

26: function SURVIVORS(a, b, f, �)
27: a0  a�
28: b0  b+ a(1� �)
29: f 0  COMPOSE(f, �s+ 1� �)
30: return a0, b0, f 0

31: end function

Proof of Proposition 6. This is an immediate consequence of Proposition 3 and Proposition 1 by
setting s

i

= 1 in Proposition 3.

Proof of Proposition 7. This is an immediate consequence of Proposition 4 and Proposition 1 by
setting s

i

= 1 and s
j

= 1 in Proposition 4.

B Implementation of PGF-FORWARD

The detailed algorithm, based on the proof of Theorem 1, is listed in Algorithm 4.

Here is the proof of the runtime result (Theorem 2):

Proof of Theorem 2. We assume a polynomial f is represented as a vector of coefficients {f
i

} of
length deg(f)+1. ARRIVALS takes constant time. The running time of EVIDENCE is O(y deg(f)) =
O(Y 2

): Lines 19 and 20 are executed y times and take time proportional to deg(g) and deg(df),
respectively, each of which is no more than deg(f). The operations outside the loop are bounded by
O(y+deg(f)). (Note that the COMPOSE operation in Line 22 is linear in deg(g)—simply multiply the
ith coefficient of g by (1� ⇢)i for all i.) The SURVIVORS function takes O(Y 2

) time. The COMPOSE
operation in Line 29 is more costly than the one on Line 22: we must expand

P
i

g
i

(�s + 1 � �)i
to compute the coeffients of si for all i—this can be done in O(deg(g)2) time by a number of
methods, e.g., applying the Binomial Theorem to expand each term. The ARRIVALS, EVIDENCE,
and SURVIVORS functions are each called K or K � 1 times. Therefore, the overall running time is
O(KY 2

).

C Implementation of PGF-TAIL-ELIMINATE

We provide a side-by-side comparison of PGF-TAIL-ELIMINATE with a non-PGF implementation
of the equivalent algorithm, TAIL-ELIMINATE, in Figure 7. The detailed PGF-TAIL-ELIMINATE
algorithm is listed in Algorithm 7.

Proof of Theorem 3. We again proceed inductively. From the proof of Theorem 1, we initially have
that A
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equal to deg(f), and the second term has the desired exponential form.
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Algorithm 5 TAIL-ELIMINATE
Output: Unnormalized marginal p(ni, y1:K)

1: �i,i+1(ni, zi+1) := ↵i(ni)p(zi+1|ni)

2: for j = i+ 1 to K do
3: ⌘ij(ni, nj) :=

P
mj ,zj

�(ni, zj)p(mj)p(nj |zj ,mj)

4: ✓ij(ni, nj) :=⌘ij(ni, nj)p(yj |nj)

5: if j < K then
6: �i,j+1(ni, zj+1) :=✓ij(ni, nj)p(zj |nj�1)

7: end if
8: end for
9: return p(ni, y1:K) =

P
nK

✓iK(ni, nK)

Algorithm 6 PGF-TAIL-ELIMINATE
Output: PGF of unnormalized marginal p(ni, y1:K)

1: �i,i+1(s, t) := Ai(s(�it+ 1� �i))

2: for j = i+ 1 to K do
3: Hij(s, t) := �ij(s, t) exp{�k(t� 1)}
4: ⇥ij(s, t) :=

1
yj !

(t⇢j)
yj @

yjHij(s,u)

@u
yj

���
u=t(1�⇢j)

5: if j < K then
6: �i,j+1(s, t) := ⇥ij(s, �jt+ 1� �j)

7: end if
8: end for
9: return ⇥iK(s, 1)

Figure 7: Comparison of the PGF-TAIL-ELIMINATE algorithm with its equivalent using non-PGF
factors, TAIL-ELIMINATE.
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The term in parentheses is again a bivariate polynomial—the largest exponent of s and t have both
increased by y

j

, so the max-degree increases by y
j

. The exponential term is in the desired form and
can absorb the scalar ⇢yj . Therefore, in Line 4, ⇥
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polynomial part of the representation increases by y
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We have shown that each PGF retains the desired form. Furthermore, the max-degree of the polyno-
mial is initially equal to
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for all j = i+ 1 to K, so it is always bounded
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Proof of Theorem 4 (PGF-TAIL-ELIMINATE running time). We assume for simplicity that all poly-
nomials have max-degree equal to the upper bound Y . A bivariate polynomial is represented as a
matrix of Y 2 coefficients for the monomials sitj .

The running time of INIT-SURVIVORS function is dominated by Line 16, which takes O(Y 2

) time.
For each term in the sum, the coefficients of the polynomial (�t + 1 � �)i can be computed in
O(i) = O(Y ) time (e.g., by the Binomial Theorem) and then multiplied by f

i

to determine the
coefficients of sitj for all j. This repeats O(Y ) times, once for each term in the sum.

The running time of ARRIVALS is O(1).
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).
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Algorithm 7 PGF-TAIL-ELIMINATE implementation
Input: Vectors �, �, ⇢, y, index i, parameters f, a, b of initial PGF Ai(s) = f(s) exp{as + b} (from PGF-

FORWARD)
Output: Final PGF for unnormalized marginal p(ni, y1:K) in form f(s) exp{as+ b}

1: // Initialize: f(s, t) exp{ast+ bs+ ct+ d}
2: [a, b, c, d, f ] INIT-SURVIVORS(a, b, f, �i)
3: for j = i+ 1 to K do
4: [c, d] ARRIVALS(c, d,�k)

5: [a, c, f ] EVIDENCE(a, c, f, yk, ⇢k)
6: if k < K then
7: [a, b, c, d, f ] SURVIVORS(a, b, c, d, f, �k)
8: end if
9: end for

10: return f(s, 1) exp{(a+ b)s+ (c+ d)}

11: function INIT-SURVIVORS(a, b, f, �)
12: a0  a�
13: b0  b(1� �)
14: c0  0

15: d0  b
16: f 0

(s, t) 
P

i fis
i
(�t+ 1� �)i

17: return a0, b0, c0, d0, f 0

18: end function

19: function ARRIVALS(c, d,�)
20: c0  c+ �
21: d0  d� �
22: return c0, d0

23: end function

24: function EVIDENCE(a, c, f, y, ⇢)
25: a0  a(1� ⇢)
26: c0  c(1� ⇢)
27: g  0, df  f
28: for ` = 0 to y do

29: g  g +

MULT(df, (as+ c)y�`
)

`!(y � `)!
30: df  PARTIAL(df, t)
31: end for
32: g  COMPOSE(g, t(1� ⇢))
33: g  ⇢ysyg
34: return a0, g
35: end function

36: function SURVIVORS(a, b, f, �)
37: a0  a�
38: b0  b+ a(1� �)
39: c0  c�
40: d0  d+ c(1� �)
41: f 0  COMPOSE(f, �t+ 1� �)
42: return a0, b0, f 0

43: end function

The total running time of PGF-TAIL-ELIMINATE excluding the EVIDENCE function is therefore
O(KY 3

).

The running time of one call to EVIDENCE is O(yY 2

log Y ). It is dominated by Line 29. The
multiplication in this line can be structured as
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X

j
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⇣X
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For each value of j, we multiply two univariate polynomials in s whose total degree is at most
Y . This can be done in time O(Y log Y ) using a fast Fourier transform. We repeat this at most
Y · y times—once for each possible value of j and `. The total running time of a single call to
EVIDENCE is therefore O(yY 2

log Y ). The total running time of all calls to the evidence function is
O(

P
K

j=i+1

y
k

Y 2

log Y ) = O(Y 3

log Y ).

The overall running time is therefore O(Y 3

(K + log Y )).

D Proof of Theorem 5 — Extracting Marginal Probabilities and Moments

Proof of Theorem 5. We assume for the proof that the PGF is already normalized, which can be
done by setting b  b � logZ. For (i) and (ii), we use the following standard facts about PGFs:
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For part (iii), we use the following standard fact about the Taylor expansion of the exponential:
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The final expression reveals the unique explicit representation of the PGF as a formal power series in
s. The coefficient of s`, which is equal to the value of the PMF at `, is eb

P
min{m,`}
i=0

f
i

a

`�i

(`�i)!

.

14


	Introduction
	The Poisson Hidden Markov Model
	Variable Elimination with Generating Functions
	Operations on Generating Functions
	The PGF-Forward Algorithm for Poisson HMMs
	Computing Marginals by Tail Elimination
	Extracting Posterior Marginals and Moments

	Experiments
	Conclusion
	Proofs — Operations on Generating Functions
	Implementation of pgf-forward
	Implementation of pgf-tail-eliminate
	Proof of Theorem 5 — Extracting Marginal Probabilities and Moments

