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Abstract

Graphical models with latent count variables arise in a number of fields. Standard
exact inference techniques such as variable elimination and belief propagation
do not apply to these models because the latent variables have countably infinite
support. As a result, approximations such as truncation or MCMC are employed.
We present the first exact inference algorithms for a class of models with latent
count variables by developing a novel representation of countably infinite factors
as probability generating functions, and then performing variable elimination with
generating functions. Our approach is exact, runs in pseudo-polynomial time, and
is much faster than existing approximate techniques. It leads to better parameter
estimates for problems in population ecology by avoiding error introduced by
approximate likelihood computations.

1 Introduction

A key reason for the success of graphical models is the existence of fast algorithms that exploit the
graph structure to perform inference, such as Pearl’s belief propagation [19] and related propagation
algorithms [13, 16, 23] (which we refer to collectively as “message passing” algorithms), and variable
elimination [27]. For models with a simple enough graph structure, these algorithms can compute
marginal probabilities exponentially faster than direct summation.

However, these fast exact inference methods apply only to a relatively small class of models—those
for which the basic operations of marginalization, conditioning, and multiplication of constituent
factors can be done efficiently. In most cases, this means that the user is limited to models where the
variables are either discrete (and finite) or Gaussian, or they must resort to some approximate form of
inference. Why are Gaussian and discrete models tractable while others are not? The key issue is one
of representation. If we start with factors that are all discrete or all Gaussian, then: (1) factors can be
represented exactly and compactly, (2) conditioning, marginalization, and multiplication can be done
efficiently in the compact representation, and (3) each operation produces new factors of the same
type, so they can also be represented exactly and compactly.

Many models fail the restriction of being discrete or Gaussian even though they are qualitatively
“easy”. The goal of this paper is to expand the class of models amenable to fast exact inference
by developing and exploiting a novel representation for factors with properties similar to the three
above. In particular, we investigate models with latent count variables, and we develop techniques to
represent and manipulate factors using probability generating functions.

Figure 1 provides a simple example to illustrate the main ideas. It shows a model that is commonly
used to interpret field surveys in ecology, where it is known as an N-mixture model [22]. The latent
variable n ⇠ Poisson(�) represents the unknown number of individual animals at a given site.
Repeated surveys are conducted at the site during which the observer detects each individual with
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Figure 1: The N-mixture model [22] is a simple model with a Poisson latent variable for which
no exact inference algorithm is known: (a) the model, (b) the prior and posterior for � = 20,
⇢ = 0.25, y

1

= 2, y
2

= 5, y
3

= 3, (c) a closed form representation of the generating function of the
unnormalized posterior, which is a compact and exact description of the posterior.

probability ⇢, so each observation y
k

is Binomial(n, ⇢). From these observations (usually across
many sites with shared �), the scientist wishes to infer n and fit � and ⇢.

This model is very simple: all variables are marginally Poisson, and the unnormalized posterior has a
simple form (e.g., see Figure 1b). However, until recently, there was no known algorithm to exactly
compute the likelihood p(y

1:K

). The naive way is to sum the unnormalized posterior p(n, y
1

, . . . , y
K

)

over all possible values of n. However, n has a countably infinite support, so this is not possible. In
practice, users of this and related models truncate the infinite sum at a finite value [22]. A recent paper
developed an exact algorithm for the N-mixture model, but one with running time that is exponential
in K [8]. For a much broader class of models with Poisson latent variables [5, 7, 11, 15, 28], there
are no known exact inference algorithms. Current methods either truncate the support [5, 7, 11], which
is slow (e.g., see [4]) and interacts poorly with parameter estimation [6, 8], or use MCMC [15, 28],
which is slow and for which convergence is hard to assess. The key difficulty with these models
is that we lack finite and computationally tractable representations of factors over variables with a
countably infinite support, such as the posterior distribution in the N-mixture model, or intermediate
factors in exact inference algorithms.

The main contribution of this paper is to develop compact and exact representations of countably
infinite factors using probability generating functions (PGFs) and to show how to perform variable
elimination in the domain of generating functions. We provide the first exact pseudo-polynomial
time inference algorithms (i.e., polynomial in the magnitude of the observed variables) for a class of
Poisson latent variable models, including the N-mixture model and a more general class of Poisson
HMMs. For example, the generating function of the unnormalized N-mixture posterior is shown
in Figure 1c, from which we can efficiently recover the likelihood p(y

1

= 2, y
2

= 5, y
3

= 3) =

F (1) = 0.0025. For Poisson HMMs, we first develop a PGF-based forward algorithm to compute
the likelihood, which enables efficient parameter estimatation. We then develop a “tail elimination”
approach to compute posterior marginals. Experiments show that our exact algorithms are much
faster than existing approximate approaches, and lead to better parameter estimation.

Related work. Several previous works have used factor transformations for inference. Bickson and
Guestrin [2] show how to perform inference in the space of characteristic functions (see also [17])
for a certain class of factor graphs. Xue et al. [26] perform variable elimination in discrete models
using Walsh-Hadamard transforms. Jha et al. [14] use generating functions (over finite domains) to
compute the partition function of Markov logic networks. McKenzie [18] describes the use of PGFs
in discrete time series models, which are related to our models except they are fully observed, and
thus require no inference.

2 The Poisson Hidden Markov Model

Although our PGF-based approaches will apply more broadly, the primary focus of our work is a
Poisson hidden Markov model (HMM) that captures a number of models from different disciplines.
To describe the model, we first introduce notation for an operation called binomial thinning [24].
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Figure 2: Poisson HMM

Write z = ⇢�n to mean that z|n ⇠ Binomial(n, ⇢), i.e., z is the result
of “thinning” the n individuals so that each remains with probability
⇢. The Poisson HMM model is given by:

n
k

= Poisson(�
k

) + �
k�1

� n
k�1

, y
k

= ⇢
k

� n
k

.

for k � 1, with the initialization condition n
0

= 0. The variables
n
1

, . . . , n
K

describe the size of a population at sampling times t
1

<
t
2

< . . . < t
K

. At time t
k

, the population consists of a Poisson(�
k

) number of new arrivals, plus
�
k�1

� n
k�1

survivors from the previous time step (each individual survives with probability �
k

). A
noisy count y

k

= ⇢
k

� n
k

is made of the population at time t
k

, where ⇢
k

is the detection probability
of each individual. This model is broadly applicable. It models situations where individuals arrive in
an iid fashion, and the time they remain is “memoryless”. Versions of this model are used in ecology
to model surveys of “open populations” (individuals arrive and depart over time) [7] and the timing
and abundance of insect populations [12, 25, 29], and it also capture models from queueing theory [9]
and generic time series models for count data [1, 18].

Existing approaches. Two classes of methods have been applied for inference in Poisson HMMs
and related models. The first is to truncate the support of the Poisson variables at a large but finite
value N

max

[5, 7, 11, 22]. Then, for example, the Poisson HMM reduces to a standard discrete
HMM. This is unsatisfactory because it is slow (a smart implementation that uses the fast Fourier
transform takes time O(KN2

max

logN
max

)), and the choice of N
max

is intertwined with the unknown
Poisson parameters �

k

, so the approximation interacts poorly with parameter estimation [6, 8]. The
second class of approximate methods that has been applied to these problems is MCMC [28]. This is
undesirable because it is also slow, and because the problem has a simple structure that should admit
fast algorithms.

3 Variable Elimination with Generating Functions

Our approach to inference in Poisson HMMs will be to implement the same abstract set of operations
as variable elimination, but using a representation based on probability generating functions. Because
variable elimination will produce intermediate factors on larger sets of variables, and to highlight
the ability of our methods to generalize to a larger class of models, we first abstract from the
Poisson HMM to introduce notation general for graphical models with multivariate factors, and their
corresponding multivariate generating functions.

Factors. Let x = (x
1

, . . . , x
d

) be a vector of nonnegative integer-valued random variables where
x
i

2 X
i

✓ Z�0

. The set X
i

may be finite (e.g., to model binary or finite discrete variables), but
we assume without loss of generality that X

i

= Z�0

for all i by defining factors to take value zero
for integers outside of X

i

. For any set ↵ ✓ {1, . . . , d}, define the subvector x
↵

:= (x
i

, i 2 ↵).
We consider probability models of the form p(x) = 1

Z

Q
↵2A  ↵(x↵), where Z is a normalization

constant and { 
↵

} is a set of factors  
↵

: Z�0

! R+ indexed by subsets ↵ ✓ {1, . . . , d} in a
collection A.

Generating Functions. A general factor  
↵

on integer-valued variables cannot be finitely rep-
resented. We instead use the formalization of probability generating functions (PGFs). Let
s = (s

1

, . . . , s
d

) be a vector of indeterminates corresponding to the random variables x. The
joint PGF of a factor  

↵

is

F
↵

(s
↵

) =

X

x↵

 
↵

(x
↵

) ·
Y

i2↵
sxi
i

=

X

x↵

 
↵

(x
↵

) · sx↵
↵

.

Here, for two vectors a and b with the same index set I , we have defined ab =
Q

i2I abi
i

. The sum is
over all vectors x

↵

of non-negative integers.

Univariate PGFs of the form F (s) =

P1
x=0

Pr(X = x)sx = E[sX ], where X is a nonnegative
integer-valued random variable, are widely used in probability and statistics [3, 21], and have a
number of nice properties. A PGF uniquely encodes the distribution of X , and there are formulas
to recover moments and entries of the the probability mass function from the PGF. Most common
distributions have closed-form PGFs, e.g., F (s) = exp{�(s� 1)} when X ⇠ Poisson(�). Similarly,
the joint PGF F

↵

uniquely encodes the factor  
↵

, and we will develop a set of useful operations on
joint PGFs. Note that we abuse terminology slightly by referring to the generating function of the
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factor  
↵

as a probability generating function; however, it is consistent with the view of  
↵

as an
unnormalized probability distribution.

3.1 Operations on Generating Functions

Our goal is to perform variable elimination using factors represented as PGFs. To do this, the basic
operations we need to support are are multiplication, marginalization, and “entering evidence” into
factors (reducing the factor by fixing the value of one variable). In this section we state a number of
results about PGFs that show how to perform such operations. For the most part, these are either well
known or variations on well known facts about PGFs (e.g., see [10], Chapters 11, 12). All proofs can
be found in the supplementary material.

First, we see that marginalization of factors is very easy in the PGF domain:
Proposition 1 (Marginalization). Let  

↵\i(x↵\i) :=
P

xi2Xi
 
↵

(x
↵\i, xi

) be the factor obtained
from marginalizing i out of  

↵

. The joint PGF of  
↵\i is F

↵\i(s↵\i) = F
↵

(s
↵\i, 1). The normaliza-

tion constant
P

x↵
 
↵

(x
↵

) is equal to F
↵

(1, . . . , 1).

Entering evidence is also straightforward:
Proposition 2 (Evidence). Let  

↵\i(x↵\i) :=  
↵

(x
↵\i, a) be the factor resulting from observing

the value x
i

= a in  
↵

. The joint PGF of  
↵\i is F

↵\i(s↵\i) =
1

a!

@

a

@s

a
i
F
↵

(s
↵

)

��
si=0

.

Multiplication in the PGF domain—i.e., computing the PGF of the product  
↵

(x
↵

) 
�

(x
�

) of
two factors  

↵

and  
�

—is not straightforward in general. However, for certain types of factors,
multiplication is possible. We give two cases.
Proposition 3 (Multiplication: Binomial thinning). Let  

↵[j

(x
↵

, x
j

)= 
↵

(x
↵

)·Binomial(x
j

|x
i

, ⇢)
be the factor resulting from expanding  

↵

to introduce a thinned variable x
j

:= ⇢ � x
i

, where i 2 ↵
and j /2 ↵. The joint PGF of  

↵[j

is F
↵[j

(s
↵

, s
j

) = F
↵

(s
↵\i, si(⇢sj + 1� ⇢)).

Proposition 4 (Multiplication: Addition of two variables). Let  
�

(x
↵

, x
�

, x
k

) :=

 
↵

(x
↵

) 
�

(x
�

)I{x
k

= x
i

+ x
j

} be the joint factor resulting from the introduction of a new variable
x
k

= x
i

+ x
j

, where i 2 ↵, j 2 �, k /2 ↵ [ �, � := ↵ [ � [ {k}. The joint PGF of  
�

is
F
�

(s
↵

, s
�

, s
k

) = F
↵

(s
↵\i, sksi)F�(s�\j , sksj).

The four basic operations above are enough to perform variable elimination on a large set of models.
In practice, it is useful to introduce additional operations that combine two of the above operations.
Proposition 5 (Thin then observe). Let  0

↵

(x
↵

) :=  
↵

(x
↵

)·Binomial(a|x
i

, ⇢) be the factor resulting
from observing the thinned variable ⇢ � x

i

= a for i 2 ↵. The joint PGF of  0
↵

is F 0
↵

(s
↵

) =

1

a!

(s
i

⇢)a @

a

@t

a
i
F
↵

(s
↵\i, ti)

���
ti=si(1�⇢)

.

Proposition 6 (Thin then marginalize). Let  
(↵\i)[j

(x
↵\i, xj

) :=

P
xi
 
↵

(x
↵

) ·Binomial(x
j

|x
i

, ⇢)
be the factor resulting from introducing x

j

:= ⇢ � x
i

and then marginalizing x
i

for i 2 ↵, j /2 ↵. The
joint PGF of  

(↵\i)[j

is F
(↵\i)[j

(s
↵\i, sj) = F

↵

(s
↵\i, ⇢sj + 1� ⇢).

Proposition 7 (Add then marginalize). Let  
�

(x
↵\i, x�\j , xk

) :=

P
xi,xj

 
↵

(x
↵

) 
�

(x
�

)I{x
k

=

x
i

+ x
j

} be the factor resulting from the deterministic addition x
i

+ x
j

= x
k

followed by marginal-
ization of x

i

and x
j

, where i 2 ↵, j 2 �, k /2 ↵ [ �, � := (↵ \ i) [ (� \ j) [ {k}. The joint PGF of
 
�

is F
�

(s
↵\i, s�\j , sk) = F

↵

(s
↵\i, sk)F�(s�\j , sk).

3.2 The PGF-Forward Algorithm for Poisson HMMs

We now use the operations from the previous section to implement the forward algorithm for Poisson
HMMs in the domain of PGFs. The forward algorithm is an instance of variable elimination, but in
HMMs is more easily described using the following recurrence for the joint probability p(n

k

, y
1:k

):

p(n
k

, y
1:k

)| {z }
↵k(nk)

=

X

nk�1

p(n
k�1

, y
1:k�1

)| {z }
↵k�1(nk�1)

p(n
k

|n
k�1

)p(y
k

|n
k

)

We can compute the “forward messages” ↵
k

(n
k

) := p(n
k

, y
1:k

) in a sequential forward pass,
assuming it is possible to enumerate all possible values of n

k

to store the messages and compute the
recurrence. In our case, n

k

can take on an infinite number of values, so this is not possible.
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Algorithm 1 FORWARD

1:  1(z1) := I{z1 = 0}
2: for k = 1 to K do
3: �k(nk) :=

P
zk,mk

 k(zk)p(mk)I{nk = zk+mk}

4: ↵k(nk) := �k(nk)p(yk | nk)

5: if k < K then
6:  k+1(zk+1) :=

P
nk
↵k(nk)p(zk+1 | nk)

7: end if
8: end for

Algorithm 2 PGF-FORWARD

1:  1(s) := 1

2: for k = 1 to K do
3: �k(s) :=  k(s) · exp{�k(s� 1)}
4: Ak(s) := 1

yk!
(s⇢k)

yk
�

(yk)
k

�
s(1� ⇢k)

�

5: if k < K then
6:  k+1(s) := Ak

�
�ks+ 1� �k

�

7: end if
8: end for

nk–1

yk–1 yk

nkzk

mk

!k–1 !k

!k "k

Figure 3: Expanded model.

We proceed instead using generating functions. To apply the oper-
ations from the previous section, it is useful to instantiate explicit
random variables m

k

and z
k

for the number of new arrivals in step
k and survivors from step k � 1, respectively, to get the model (see
Figure 3):

m
k

⇠ Poisson(�
k

), z
k

= �
k�1

� n
k�1

,

n
k

= m
k

+ z
k

, y
k

= ⇢
k

� n
k

.

We can now expand the recurrence for ↵
k

(n
k

) as:

↵
k

(n
k

) = p(y
k

|n
k

)

1X

mk=0

1X

zk=0

p(m
k

)p(n
k

|z
k

,m
k

)

 k(zk)z }| {
1X

nk�1=0

↵
k�1

(n
k�1

)p(z
k

|n
k�1

)

| {z }
�k(nk)

(1)

We have introduced the intermediate factors  
k

(z
k

) and �
k

(n
k

) to clarify the implementation.

FORWARD (Algorithm 1) is a dynamic programming algorithm based on this recurrence to compute
the ↵

k

messages for all k. However, it cannot be implemented due to the infinite sums. PGF-FORWARD
(Algorithm 2) instead performs the same operations in the domain of generating functions— 

k

, �
k

,
and A

k

are the PGFs of  
k

, �
k

, and ↵
k

, respectively. Each line in PGF-FORWARD implements the
operation in the corresponding line of FORWARD using the operations given in Section 3.1. In Line 1,
 

1

(s) =
P

z1
 
1

(z
1

)sz1 = 1 is the PGF of  
1

. Line 3 uses “Add then marginalize” (Proposition 7)
combined with the fact that the Poisson PGF for m

k

is exp{�
k

(s � 1)}. Line 4 uses “Thin then
observe” (Proposition 5), and Line 6 uses “Thin then marginalize” (Proposition 6).

Implementation and Complexity. The PGF-FORWARD algorithm as stated is symbolic. It remains
to see how it can be implemented efficiently. For this, we need to respresent and manipulate the PGFs
in the algorithm efficiently. We do so based on the following result:
Theorem 1. All PGFs in the PGF-FORWARD algorithm have the form f(s) exp{as+ b} where f is
a polynomial with degree at most Y =

P
k

y
k

.

Proof. We verify the invariant inductively. It is clearly satisfied in Line 1 of PGF-FORWARD (f(s) =
1, a = b = 0). We check that it is preserved for each operation within the loop. In Line 3, suppose
 

k

(s) = f(s) exp{as+ b}. Then �
k

(s) = f(s) exp{(a+ �
k

)s+ (b� �
k

)} has the desired form.

In Line 4, assume that �
k

(s) = f(s) exp{as+ b}. Then one can verify by taking the y
k

th derivative
of �

k

(s) that A
k

(s) is given by:

A
k

(s) = (a⇢
k

)

yk ·
 
syk

ykX

`=0

f (`)

(s(1� ⇢
k

))

a``!(y
k

� `)!

!
· exp{a(1� ⇢

k

)s+ b}

The scalar (a⇢)yk can be combined with the polynomial coefficients or the scalar exp(b) in the
exponential. The second term is a polynomial of degree y

k

+ deg(f). The third term has the form
exp{a0s+ b0}. Therefore, in Line 4, A

k

(s) has the desired form, and the degree of the polynomial
part of the representation increases by y

k

.
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In Line 6, suppose A
k

(s) = f(s) exp{as+b}. Then 
k+1

(s) = g(s) exp
�
a�

k

s+
�
b+a(1��

k

)

� 
,

where g(s) is the composition of f with the affine function �
k

s+ 1� �
k

, so g is a polynomial of the
same degree as f . Therefore,  

k+1

(s) has the desired form.

We have shown that each PGF retains the desired form, and the degree of the polynomial is initially
zero and increases by y

k

each time through the loop, so it is always bounded by Y =

P
k

y
k

.

The important consequence of Theorem 1 is that we can represent and manipulate PGFs in PGF-
FORWARD by storing at most Y coefficients for the polynomial f plus the scalars a and b. An
efficient implementation based on this principle and the proof of the previous theorem is given in the
supplementary material.
Theorem 2. The running time of PGF-FORWARD for Poisson HMMs is O(KY 2

).

3.3 Computing Marginals by Tail Elimination

Algorithm 3 PGF-TAIL-ELIMINATE
Output: PGF of unnormalized marginal p(ni, y1:K)

1: �i,i+1(s, t) := Ai(s(�it+ 1� �i))

2: for j = i+ 1 to K do
3: Hij(s, t) := �ij(s, t) exp{�k(t� 1)}
4: ⇥ij(s, t) :=

1
yj !

(t⇢j)
yj @

yjHij(s,u)

@u
yj

���
u=t(1�⇢j)

5: if j < K then
6: �i,j+1(s, t) := ⇥ij(s, �jt+ 1� �j)

7: end if
8: end for
9: return ⇥iK(s, 1)

PGF-FORWARD allows us to efficiently compute
the likelihood in a Poisson HMM. We would also
like to compute posterior marginals, the standard
approach for which is the forward-backward al-
gorithm [20]. A natural question is whether there
is an efficient PGF implementation of the back-
ward algorithm for Poisson HMMs. While we
were able to derive this algorithm symbolically,
the functional form of the PGFs is more complex
and we do not know of a polynomial-time im-
plementation. Instead, we adopt a variable elim-
ination approach that is less efficient in terms of
the number of operations performed on factors
(O(K2

) instead of O(K) to compute all poste-
rior marginals) but with the significant advantage
that those operations are efficient. The key principle is to always eliminate predecessors before suc-
cessors in the Poisson HMM. This allows us to apply operations similar to those in PGF-FORWARD.

Define ✓
ij

(n
i

, n
j

) := p(n
i

, n
j

, y
1:j

) for j > i. We can write a recurrence for ✓
ij

similar to Equation
(1). For j > i+ 1:

✓
ij

(n
i

, n
j

) = p(y
j

|n
j

)

X

mj ,zj

p(m
j

)p(n
j

|z
j

,m
j

)

�ij(ni,zj)z }| {X

nj�1

✓
i,j�1

(n
i

, n
j�1

)p(z
j

|n
j�1

)

| {z }
⌘ij(ni,nj)

.

We have again introduced intermediate factors, with probabilistic meanings �
ij

(n
i

, z
j

) =

p(n
i

, z
j

, y
1:j�1

) and ⌘
ij

(n
i

, n
j

) = p(n
i

, n
j

, y
1:j�1

).

PGF-TAIL-ELIMINATE (Algorithm 3) is a PGF-domain dynamic programming algorithm based on
this recurrence to compute the PGFs of the ✓

ij

factors for all j 2 {i + 1, . . . ,K}. The non-PGF
version of the algorithm appears in the supplementary material for comparison. We use ⇥

ij

, �
ij

,
and H

ij

to represent the joint PGFs of ✓
ij

, �
ij

, and ⌘
ij

, respectively. The algorithm can also be
interpreted as variable elimination using the order z

i+1

, n
i+1

, . . . , z
K

, n
K

, after having already
eliminated variables n

1:i�1

and z
1:i�1

in the forward algorithm, and therefore starting with the PGF
of ↵

i

(n
i

). PGF-TAIL-ELIMINATE concludes by marginalizing n
K

from ⇥

iK

to obtain the PGF of
the unnormalized posterior marginal p(n

i

, y
1:K

). Each line of PGF-TAIL-ELIMINATE uses the same
operations given in Section 3.1. Line 1 uses “Binomial thinning” (Proposition 3), Line 3 uses “Add
then marginalize” (Proposition 7), Line 4 uses “Thin then observe” (Proposition 5) and Line 6 uses
“Thin then marginalize” (Proposition 6).

Implementation and Complexity. The considerations for implementating PGF-TAIL-ELIMINATE
are similar to those of PGF-FORWARD, with the details being slightly more complex due to the
larger factors. We state the main results here and include proofs and implementation details in the
supplementary material.
Theorem 3. All PGFs in the PGF-TAIL-ELIMINATE algorithm have the form f(s, t) exp{ast+ bs+
ct+ d} where f is a bivariate polynomial with maximum exponent most Y =

P
k

y
k

.
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10 30 50 70 90 110 130 150
6

0

20

40

60

80

100

120

140

160

180

200

6̂

6  Recovery
Trunc
PGFFA
True 6

Figure 5: Parameter estimation
w/ PGF-FORWARD

Theorem 4. PGF-TAIL-ELIMINATE can be implemented to run in time O(Y 3

(log Y +K)), and the
PGFs for all marginals can be computed in time O(KY 3

(log Y +K)).

3.4 Extracting Posterior Marginals and Moments

After computing the PGF of the posterior marginals, we wish to compute the actual probabilities and
other quantities, such as the moments, of the posterior distribution. This can be done efficiently:
Theorem 5. The PGF of the unnormalized posterior marginal p(n

i

, y
1:K

) has the form F (s) =

f(s) exp{as+ b} where f(s) =
P

m

j=0

c
j

sj is a polynomial of degree m  Y . Given the parameters
of the PGF, the posterior mean, the posterior variance, and an arbitrary entry of the posterior
probability mass function can each be computed in O(m) = O(Y ) time as follows, where Z =

f(1) exp{a+ b}:

(i) µ := E[n
i

| y
1:k

] = ea+b�logZ

P
m

j=0

(a+m)c
j

(ii) �2

:= Var(n
i

| y
1:k

) = µ� µ2

+ ea+b�logZ

P
m

j=0

((a+m)

2 �m)c
j

(iii) Pr(n
i

= ` | y
1:k

) = eb�logZ

P
min{m,`}
j=0

c
j

a

`�i

(`�i)!

4 Experiments

We conducted experiments to demonstrate that our method is faster than standard approximate
approaches for computing the likelihood in Poisson HMMs, that it leads to better parameter estimates,
and to demonstrate the computation of posterior marginals on an ecological data set.

Running time. We compared the runtimes of PGF-FORWARD and the truncated forward algorithm, a
standard method for Poisson HMMs in the ecology domain [7]. The runtime of our algorithm depends
on the magnitude of the observed counts. The runtime of the truncated forward is very sensitive to
the setting of the trunctation parameter N

max

: smaller values are faster, but may underestimate the
likelihood. Selecting N

max

large enough to yield correct likelihoods but small enough to be fast is
difficult [4, 6, 8]. We evaluated two strategies to select N

max

. The first is an oracle strategy, where
we first searched for the smallest value of N

max

for which the error in the likelihood is at most 0.001,
and then compared vs. the runtime for that value (excluding the search time). The second strategy,
adapted from [8], is to set N

max

such that the maximum discarded tail probability of the Poisson
prior over any n

k

is less than 10

�5.

To explore these issues we generated data from models with arrival rates � = ⇤ ⇥
[0.0257, 0.1163, 0.2104, 0.1504, 0.0428] and survival rates � = [0.2636, 0.2636, 0.2636, 0.2636]
based on a model for insect populations [29]. We varied the overall population size parameter
⇤ 2 {10, 20, . . . , 100, 125, 150, . . . , 500}, and detection probability ⇢ 2 {0.05, 0.10, . . . , 1.00}. For
each parameter setting, we generated 25 data sets and recorded the runtime of both methods.

Figure 4 shows that PGF-FORWARD is 2–3 orders of magnitude faster than even the oracle truncated
algorithm. The runtime is plotted against ⇤⇢ / E[Y ], the primary parameter controlling the runtime
of PGF-FORWARD. Empirically, the runtime depends linearly instead of quadratically, as predicted,
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on the magnitude of observed counts—this is likely due to the implementation, which is dominated
by loops that execute O(Y ) times, with much faster vectorized O(Y ) operations within the loops.

Parameter Estimation. We now examine the impact of exact vs. truncated likelihood computations
on parameter estimation in the N-mixture model [22]. A well-known feature of this and related
models is that it is usually easy to estimate the product of the population size parameter � and
detection probability ⇢, which determines the mean of the observed counts, but, without enough
data, it is difficult to estimate both parameters accurately, especially as ⇢! 0 (e.g., see [8]). It was
previously shown that truncating the likelihood can artificially suppress instances where the true
maximum-likelihood estimates are infinite [8], a phenomenon that we also observed. We designed
a different, simple, experiment to reveal another failure case of the truncated likelihood, which is
avoided by our exact methods. In this case, the modeler is given observed counts over 50 time steps
(K = 50) at 20 iid locations. She selects a heuristic fixed value of N

max

approximately 5 times the
average observed count based on her belief that the detection probability is not too small and this will
capture most of the probability mass.

To evaluate the accuracy of parameter estimates obtained by numerically maximizing the truncated
and exact likelihoods using this heuristic for N

max

we generated true data from different values of �
and ⇢ with �⇢ = E[y] fixed to be equal to 10—the modeler does not know the true parameters, and in
each cases chooses N

max

= 5E[y] = 50. Figure 5 shows the results. As the true � increases close
to and beyond N

max

, the truncated method cuts off significant portions of the probability mass and
severely underestimates �. Estimation with the exact likelihood is noisier as � increases and ⇢! 0,
but not biased by truncation. While this result is not surprising, it reflects a realistic situation faced by
the practitioner who must select this trunctation parameter.

Figure 6: Posterior marginals for
abundance of Northern Dusky Sala-
manders at 1 site. See text.

Marginals. We demonstrate the computation of posterior
marginals and parameter estimation on an end-to-end case
study to model the abundance of Northern Dusky Salamanders
at 15 sites in the mid-Atlantic US using data from [28]. The
data consists of 14 counts at each site, conducted in June and
July over 7 years. We first fit a Poisson HMM by numerically
maximizing the likelihood as computed by PGF-FORWARD.
The model has three parameters total, which are shared across
sites and time: arrival rate, survival rate, and detection proba-
bility. Arrivals are modeled as a homogenous Poisson process,
and survival is modeled by assuming indvidual lifetimes are
exponentially distributed. The fitted parameters indicated an
arrival rate of 0.32 individuals per month, a mean lifetime of
14.25 months, and detection probability of 0.58.

Figure 6 shows the posterior marginals as computed by PGF-TAIL-ELIMINATE with the fitted pa-
rameters, which are useful both for model diagnostics and for population status assessments. The
crosses show the posterior mean, and color intensity indicates the actual PMF. Overall, computing
maximum likelihood estimates required 189 likelihood evaluations and thus 189 ⇥ 15 = 2835 calls
to PGF-FORWARD, which took 24s total. Extracting posterior marginals at each site required 14
executions of the full PGF-TAIL-ELIMINATE routine (at all 14 latent variables), and took 1.6s per site.
Extracting the marginal probabilities and posterior mean took 0.0012s per latent variable.

5 Conclusion

We have presented techniques for exact inference in countably infinite latent variable models using
probability generating functions. Although many aspects of the methodology are general, the current
method is limited to HMMs with Poisson latent variables, for which we can represent and manipulate
PGFs efficiently (cf. Theorems 1 and 3). Future work will focus on extending the methods to
graphical models with more complex structures and to support a larger set of distributions, for
example, including the negative binomial, geometric, and others. One path toward these goals is to
find a broader parametric representation for PGFs that can be manipulated efficiently.

Acknowledgments. This material is based upon work supported by the National Science Founda-
tion under Grant No. 1617533.
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