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1 Proof of Variance Bound

Theorem 2. (Variance Bound) Ifp,q € H*' for some s' > s, then

R 4s+D C
v [5,] <201 2 (1)
where C' and Co are the constants (in n)
2PT (45 + 1)
C = m”?“m“qnm

and Cy = (|lplla- + llallae) lpllwsallllwees + llplE- lallE--

Proof: We will use the Efron-Stein inequality [Efron and Stein,|1981]] to bound the variance of Sn.

To do this, suppose we were to draw n additional IID samples X7, ..., X/ ~ p, and define, for all
jed{l,...,n},
o _ | Xj ifj={
X = { X, else
Let

Ly Yy e nm

|21<Z,  j=1k=1

denote our estimate when we replace X, by X ;. Noting the symmetry of S, in p and ¢, the Efron-Stein

inequality tells us that
W%SZH
=1

where the expectation above (and elsewhere in this section) is taken over all 3n samples
X1,y Xon, X1,y X5,, Y1, ..., Y,. Expanding the difference in , note that any terms with
j # ¢ cancel, so that|'}

Sn = 84!

2
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Su— 80 = LS B3 S ()8 () — v (X )i (V)

and so

g — ggz)‘z

't is useful here to note that 1), () = 1b_, () and that ¥y, = ty ..
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= Y WX — (XD (X0) — Yoo (X)) (Z m(m)) <Z wz(m) :

lyl,|2|<Zn k=1

Since X, and X, are IID,

16 (X0) 4, (X)) = 0N =2 (B 0,001 = B [4(0] B [0-.(0)])

and, since Y7, ...,Y,, are IID,

(Z w_y(Yk)> (Z w(n))
k=1 k=1

E =nkE, [y V)] +1(n=1) E [y(Y)] E [2(Y)]

Y ~q Y ~q

=ng(z —y) +n(n - 1)a(-y)q(2).

In view of these two equalities, taking the expectation of (3) and using the fact that X, and X are
independent of X,,41,..., Xon, @) reduces:

5[5, -89 = 5 % 0o 6l —2) - B2 @~ ) + (0 - DT-0)7(2)
lyl,121<Zn
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== Y 2)* (ly—2)dz —y) —p)P(—2)d(z — y)
lyl,|2|<Zn
+(n = 1)ply — 2)q(=y)q(z) — (n — D)p(y)p(—2)q(—y)q(2)) - )
We now need to bound following terms in magnitude:

> w2)*Bly - 2)i(z - y), (5)

lyl|z1<Zn
Y. WA)PBly - 2)a—y)alz), (6)

lyl1zI<Zn
and Y (y2)*PW)P(—2)d(—y)q(2) (7)

lyl|zI<Zn

(the second term in (@) is bounded identically to the third term).
To bound (5), we perform a change of variables, replacing y by k = y — z:

D min{vakj"FZn}

S @)y -2iz—y) = > Blk)a-k)> > ((k—2)2)* (8)

lyl,1z1<Z, |k|<2Z, J=1zj=max{—Z, ,k;—Zn}
2PT(4s+1) , o~
< 2P Y Bk)a(—k) 9)
F(45+D+ 1) k<22,
<L ZptP, (10)

where C is the constant (in n and Z,,)

20T (4s 4+ 1)
= 2 S\ . .
Ch I'(4s+ D +1) pll2lqll2 (11

(8) and (@) follow from observing that

min{Z, ,kj+Zn}

D
> > ((kj = 2)2)* = (f * [) (),

J=1zj=max{—Z, ,k;—Zn}



where f(z) := 2%1y,/<z,1,Vz € Z and * denotes convolution (over Z”). This convolution is
clearly maximized when k = 0, in which case

2PT(4s+1) _,eip
(f* f)(k) = 24 < / Mdy | = 7D
|z|§Zu Boo(07Zn) F(4S —+ D —+ 1)
where we upper bounded the series by an integral over

BOO(O,Zn) = {Z € RD : ||Z||OO = max{|z1|,..., |ZD|} S Z’rL}'
(T0) then follows via Cauchy-Schwarz.

Bounding (6) for general s is more involved and requires rigorously defining more elaborate notions
from the theory distributions, but the basic idea is as follows:

Y w)ply—2d(—v)dz) = D va-y) Y 2Py —2)d(2)

lul.|=1< 2, V<2, |21<Zx
= > y25§(—y)(p55)qr(f))(y)
lyl,12|1<Zn
—_ 2
—\2
< 0D vl > v ((p(3>q(5))(y))
ly|<Zn ly|<Zn
= llallez= 12505 e < llallze pallw2eallgnllwzes.  (12)

Here, pgf) and qgf) denote s-order fractional derivatives of p,, and g, respectively, and W24 is
a Sobolev space (with associated pseudonorm || - ||y1-2s.4), which can be informally thought of as

W24 = {ée L?: (p(s))2 eH s}. The equality between the first and second lines follows from

Proposition 6] and both inequalities are simply applications of Cauchy-Schwarz. For sake of intuition,
it can be noted that the above steps are relatively elementary when s = 0. Now, it suffices to note

that, by the Rellich-Kondrachov embedding theorem [Rellich, |1930, |[Evans| [2010], W24t C H S/,
and hence ||p,, ||z < ||p||w2sa < 00, aslong as s” > 25 + 2.

Bounding (7) is a simple application of Cauchy-Schwarz:

> wWPPWB(—2)a(—y)az) = | D v*pwal-v) | | D p(—2)d2)

Y1, J2[<Zn lyI<Zn |21<Zn
2 2
~ 2 ~ 2
< Z 2% |p(2)] Z 2% |g(2)|
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Plugging (10), (T2), and (T3) into @) gives

“|

where C denotes the constant (in n and Z,,)

2 4s+D
:l S 201 Zn 3 + %7
n n
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Plugging this into the Efron-Stein inequality (2) gives, by symmetry of S, in X 1y ey X

|allwzea + IpllE-

Co = (lpllas + llgllms) [Plw2es

v (5] <20 §2D+%.




2 Proofs of Asymptotic Distributions

Theorem 4. (Asymptotic Normality) Suppose that, for some s’ > 25+ %, p,q € H ' and suppose

1 ~
Zynic=3") — oo and Z,n~ D — 0 asn — oo. Then, S,, is asymptotically normal with mean
(p, q). In particular, for j € {1, ... ,n}, define the following quantities:

r ZseiZan 7] B ZseiZan ]
ei:Xj ei.yj . 1 n - 1 n .
WiV | | W w Ve Sy ew,
Jj=1 j=1
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v n;( J )(W; )", an v n;(] )(V; )T €
Then, for
6_2 _ V ’ ZI/V 0 1%
" w 0 EV Wi’
we have

Proof: Let

~p(_Zn) R ﬁ(_Zn)
p(_Zn + 1) p(_Zn + 1)
ﬁZ—m - 5 ﬁZn = 5
ﬁ(gn - 1) ﬁ(AZn - 1)
P(Zn) p(Zn)
" E]V(_Zn) R (j(_Zn)
Q(_Zn + 1) Q(_Zn + 1)
aZn - : 5 and q = :
Q(Zn) Q(Zn)
Also let
- o~ by 0 -~
J?L = (Vh (pZna QZn))/ r (Vh (pvaan)) )
0 X
where, h : R2Zn+1 x R2Zn+1 4 R is defined by h(x,y) = ZZ;ZTL 2%%x,y_ .. By the bias bound
and the assumption Zf{(s_s,)n — 00, it suffices to show
S, —E {Sn} .
vn| ——= | S N(0,1) as n— . (15)
On

Since pyz, and gz, are empirical means of bounded random vectors with means pz, and gz, ,
respectively, by the central limit theorem, as n — oo,

Vi (pz, —bz,) BNO,%,) and Vi (iz, —dz,) 2 N(0,5,),

where
(Ep)w PR )C(g}/) (ww(X)a "/JZ(X)) and (Eq)w,z = )C(g\; (ww(X)vwz(X)) .

follows by the delta method. ]

)



Theorem 5. (Asymptotic Null Distribution) Suppose that, for some s’ > 2s + % p,q € H s and
suppose Znn4<5i5’> — 00 and Znpn” D — 0 asn — 0o. Forj € {1,...,n}, define

A (eytznxj _ eiznyj> T

i X j 1Y
et — et 27,
Wj = e—iXs _ g—iY; € R,

zs (e—iZnX_; _ e—iznyj)

Let

o 1 n 1 n J— =T
W':ﬁ;wj and E.ZEZ(Wj_W)(WJ_W)

j=1
denote the empirical mean and covariance of W, and define T := nWTEAW. Then, if p = q, then
Qy2(22,)(T) K Uniform([0,1]) as n — oo,

where Qy2(2z,) : [0,00) — [0, 1] denotes the quantile function (inverse CDF) of the x? distribution
x2(2Z,,) with 2Z,, degrees of freedom.

Proof: Since, as shown in the proof of the previous theorem, the distance estimate is a sum of squared
asymptotically normal, zero-mean random variables, this is a standard result in multivariate statistics.
See, for example, Theorem 5.2.3 of |/Anderson| [2003]. [ |

3 Generalizations: Weak and Fractional Derivatives

As mentioned in the main text, our estimator and analysis can be generalized nicely to non-integer s
using an appropriate notion of fractional derivative.

For non-negative integers s, let §(*) denote the measure underlying of the s-order derivative operator
at 0; that is, 8() is the distribution such that

| 1@5 @ e = 190,
R
for all test functions f € H®. Then, for all z € R, the Fourier transform of §(*) is
5(z) = / e 750 (1) de = (—iz)°.
R

Thus, we can naturally generalize the derivative operator §(*) to general s € [0, 00) as the inverse
Fourier transform of the function z — (—iz)°. Generalization to differentiation at an arbitrary y € R
follows from translation properties of the Fourier transform, and, in multiple dimensions, for s € RPD,

. . . D . e
we can consider the inverse Fourier transform of z € R? s [] = (i)

With this definition in place, we can prove the following the Convolution Theorem, which equates a
particular weighted convolution of Fourier transforms and a product of particular fractional derivatives.

Note that we will only need this result in the case that f is a trigonometric polynomial (i.e., fhas
finite support), because we apply it only to p,, and ¢,,. Hence, the sum below has only finitely many
non-zero terms and commutes freely with integrals.

Proposition 6. Suppose p,q € L? are trigonometric polynomials. Then, Vs € [0, ), and y € 7.7,

Z 2y — 2)q(2) = (pg®) (y).

2€7ZP




Proof: By linearity of the integral,

Z 225p(y — 2)q(2) Z 2’25/ p(xl)e_“y_z’“)dacl/ q(z9)e " =%2) 4y
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z€ZP ZELP

— [ plenaaae e 3 A day oy
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- /D /D p(z1)q(w2)e” ™60 (@) — 29) dwy das
R R

= /R P @) (@) do = (p)g)) (y).

4 Additional Experimental Results

Figure [I] presents results of one additional experiment showing the effect of increasing s on the
convergence rate. In all four cases, we estimate squared distance of the density p(z) = 1 4 cos (27z)
from the uniform density (both on the interval [0, 1]), but we vary s, such that the distance is computed
according to different metrics. As s increases, the bias of the estimator increases, due to greater
weight on higher frequencies of the density that are omitted by the truncated estimator.
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Figure 1: Estimated and true s-order Sobolev distances between the density p(x) = 1 + cos(27z)
and the uniform density, for s € {0, 1,2, 3}.
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