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1 Proof of Variance Bound

Theorem 2. (Variance Bound) If p, q ∈ Hs′ for some s′ > s, then

V
[
Ŝn

]
≤ 2C1

Z4s+D
n

n2
+
C2

n
, (1)

where C1 and C2 are the constants (in n)

C1 :=
2DΓ(4s+ 1)

Γ(4s+D + 1)
‖p‖L2‖q‖L2

and C2 := (‖p‖Hs + ‖q‖Hs) ‖p‖W 2s,4‖q‖W 2s,4 + ‖p‖4Hs‖q‖4Hs .

Proof: We will use the Efron-Stein inequality [Efron and Stein, 1981] to bound the variance of Ŝn.
To do this, suppose we were to draw n additional IID samples X ′1, . . . , X

′
n ∼ p, and define, for all

`, j ∈ {1, . . . , n},

X
(`)
j =

{
X ′j if j = `
Xj else .

Let

Ŝ(`)
n :=

1

n2

∑
|z|≤Zn

z2s
n∑
j=1

n∑
k=1

ψz(X
(`)
j )ψz(Yk)

denote our estimate when we replaceX` byX ′`. Noting the symmetry of Ŝn in p and q, the Efron-Stein
inequality tells us that

V
[
Ŝn

]
≤

n∑
`=1

E
[∣∣∣Ŝn − Ŝ(`)

n

∣∣∣2] , (2)

where the expectation above (and elsewhere in this section) is taken over all 3n samples
X1, . . . , X2n, X

′
1, . . . , X

′
2n, Y1, . . . , Yn. Expanding the difference in (2), note that any terms with

j 6= ` cancel, so that 1

Ŝn − Ŝ(`)
n =

1

n2

∑
|z|≤Zn

z2s
n∑
j=1

n∑
k=1

ψz(Xj)ψz(Yk)− ψz(X(`)
j )ψz(Yk)

=
1

n2

∑
|z|≤Zn

z2s(ψz(X`)− ψz(X ′`))
n∑
k=1

ψ−z(Yk),

and so∣∣∣Ŝn − Ŝ(`)
n

∣∣∣2
1It is useful here to note that ψz(x) = ψ−z(x) and that ψyψz = ψy+z .
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=
1

n4

∑
|y|,|z|≤Zn

(yz)2s(ψy(X`)− ψy(X ′`))(ψ−z(X`)− ψ−z(X ′`))

(
n∑
k=1

ψ−y(Yk)

)(
n∑
k=1

ψz(Yk)

)
.

(3)

Since X` and X ′` are IID,

E [(ψy(X`)− ψy(X ′`))(ψ−z(X`)− ψ−z(X ′`))] = 2

(
E

X∼p
[ψy−z(X)]− E

X∼p
[ψy(X)] E

X∼p
[ψ−z(X)]

)
= 2 (p̃(y − z)− p̃(y)p̃(−z)) ,

and, since Y1, . . . , Yn are IID,

E

[(
n∑
k=1

ψ−y(Yk)

)(
n∑
k=1

ψz(Yk)

)]
= n E

Y∼q
[ψz−y(Y )] + n(n− 1) E

Y∼q
[ψ−y(Y )] E

Y∼q
[ψz(Y )]

= nq̃(z − y) + n(n− 1)q̃(−y)q̃(z).

In view of these two equalities, taking the expectation of (3) and using the fact that X` and X ′` are
independent of Xn+1, . . . , X2n, (3) reduces:

E
[∣∣∣Ŝn − Ŝ(`)

n

∣∣∣2] =
2

n3

∑
|y|,|z|≤Zn

(yz)2s (p̃(y − z)− p̃(y)p̃(−z)) (q̃(z − y) + (n− 1)q̃(−y)q̃(z))

=
2

n3

∑
|y|,|z|≤Zn

(yz)2s (p̃(y − z)q̃(z − y)− p̃(y)p̃(−z)q̃(z − y)

+(n− 1)p̃(y − z)q̃(−y)q̃(z)− (n− 1)p̃(y)p̃(−z)q̃(−y)q̃(z)) . (4)

We now need to bound following terms in magnitude:∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(z − y), (5)

∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(−y)q̃(z), (6)

and
∑

|y|,|z|≤Zn

(yz)2sp̃(y)p̃(−z)q̃(−y)q̃(z) (7)

(the second term in (4) is bounded identically to the third term).

To bound (5), we perform a change of variables, replacing y by k = y − z:

∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(z − y) =
∑
|k|≤2Zn

p̃(k)q̃(−k)

D∑
j=1

min{Zn,kj+Zn}∑
zj=max{−Zn,kj−Zn}

((k − z)z)2s (8)

≤ 2DΓ(4s+ 1)

Γ(4s+D + 1)
Z4s+D
n

∑
|k|≤2Zn

p̃(k)q̃(−k) (9)

≤ C1Z
4s+D
n , (10)

where C1 is the constant (in n and Zn)

C1 :=
2DΓ(4s+ 1)

Γ(4s+D + 1)
‖p‖2‖q‖2. (11)

(8) and (9) follow from observing that

D∑
j=1

min{Zn,kj+Zn}∑
zj=max{−Zn,kj−Zn}

((kj − zj)zj)2s = (f ∗ f)(kj),
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where f(z) := z2s1{|z|≤Zn},∀z ∈ ZD and ∗ denotes convolution (over ZD). This convolution is
clearly maximized when k = 0, in which case

(f ∗ f)(k) =
∑
|z|≤Zn

z4s ≤

(∫
B∞(0,Zn)

z4s dz

)
=

2DΓ(4s+ 1)

Γ(4s+D + 1)
Z4s+D
n ,

where we upper bounded the series by an integral over

B∞(0, Zn) := {z ∈ RD : ‖z‖∞ = max{|z1|, ..., |zD|} ≤ Zn}.

(10) then follows via Cauchy-Schwarz.

Bounding (6) for general s is more involved and requires rigorously defining more elaborate notions
from the theory distributions, but the basic idea is as follows:∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(−y)q̃(z) =
∑
|y|≤Zn

y2sq̃(−y)
∑
|z|≤Zn

z2sp̃(y − z)q̃(z)

=
∑

|y|,|z|≤Zn

y2sq̃(−y)
˜(
p
(s)
n q

(s)
n

)
(y)

≤

√√√√ ∑
|y|≤Zn

y2s |q̃(y)|2
∑
|y|≤Zn

y2s
(

˜(p(s)q(s))(y)

)2

= ‖q‖Hs‖p(s)n q(s)n ‖Hs ≤ ‖q‖Hs‖pn‖W 2s,4‖qn‖W 2s,4 . (12)

Here, p(s)n and q(s)n denote s-order fractional derivatives of pn and qn, respectively, and W 2s,4 is
a Sobolev space (with associated pseudonorm ‖ · ‖W 2s,4), which can be informally thought of as
W 2s,4 :=

{
p ∈ L2 :

(
p(s)
)2 ∈ Hs

}
. The equality between the first and second lines follows from

Proposition 6, and both inequalities are simply applications of Cauchy-Schwarz. For sake of intuition,
it can be noted that the above steps are relatively elementary when s = 0. Now, it suffices to note
that, by the Rellich-Kondrachov embedding theorem [Rellich, 1930, Evans, 2010], W 2s,4 ⊆ Hs′ ,
and hence ‖pn‖W 2s,4 ≤ ‖p‖W 2s,4 <∞, as long as s′ ≥ 2s+ D

4 .

Bounding (7) is a simple application of Cauchy-Schwarz:

∑
|y|,|z|≤Zn

(yz)2sp̃(y)p̃(−z)q̃(−y)q̃(z) =

 ∑
|y|≤Zn

y2sp̃(y)q̃(−y)

 ∑
|z|≤Zn

z2sp̃(−z)q̃(z)


≤

 ∑
|z|≤Zn

z2s |p̃(z)|2
2 ∑

|z|≤Zn

z2s |q̃(z)|2
2

= ‖p‖4Hs‖q‖4Hs (13)

Plugging (10), (12), and (13) into (4) gives

E
[∣∣∣Ŝn − Ŝ(`)

n

∣∣∣2] ≤ 2C1
Z4s+D
n

n3
+
C2

n2
,

where C2 denotes the constant (in n and Zn)

C2 := (‖p‖Hs + ‖q‖Hs) ‖p‖W 2s,4‖q‖W 2s,4 + ‖p‖4Hs‖q‖4Hs . (14)

Plugging this into the Efron-Stein inequality (2) gives, by symmetry of Ŝn in X1, ..., Xn,

V
[
Ŝn

]
≤ 2C1

Z4s+D
n

n2
+
C2

n
.
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2 Proofs of Asymptotic Distributions

Theorem 4. (Asymptotic Normality) Suppose that, for some s′ > 2s+ D
4 , p, q ∈ Hs′ , and suppose

Znn
1

4(s−s′) → ∞ and Znn−
1

4s+D → 0 as n → ∞. Then, Ŝn is asymptotically normal with mean
〈p, q〉. In particular, for j ∈ {1, . . . , n}, define the following quantities:

Wj :=



Zsne
iZnXj

...
eiXj

eiXj

...
Zsne

−iZnXj


, Vj :=



Zsne
iZnYj

...
eiYj

eiYj

...
Zsne

−iZnYj


, W :=

1

n

n∑
j=1

Wj , V :=
1

n

n∑
j=1

Vj ∈ R2Zn ,

ΣW :=
1

n

n∑
j=1

(Wj −W )(Wj −W )T , and ΣV :=
1

n

n∑
j=1

(Vj − V )(Vj − V )T ∈ R2Zn×2Zn .

Then, for

σ̂2
n :=

[
V
W

]T [
ΣW 0

0 ΣV

] [
V
W

]
,

we have
√
n

(
Ŝn − 〈p, q〉Hs

σ̂n

)
D→ N (0, 1).

Proof: Let

p̃Zn
:=


p̃(−Zn)

p̃(−Zn + 1)
...

p̃(Zn − 1)
p̃(Zn)

 , p̂Zn
:=


p̂(−Zn)

p̂(−Zn + 1)
...

p̂(Zn − 1)
p̂(Zn)

 ,

q̃Zn :=


q̃(−Zn)

q̃(−Zn + 1)
...

q̃(Zn − 1)
q̃(Zn)

 , and q̂ :=


q̂(−Zn)

q̂(−Zn + 1)
...

q̂(Zn − 1)
q̂(Zn)

 .
Also let

σ2
n := (∇h (p̃Zn , q̃Zn))

′
[
Σp 0
0 Σq

]
(∇h (p̃Zn , q̃Zn)) ,

where, h : R2Zn+1 × R2Zn+1 → R is defined by h(x, y) =
∑Zn

z=−Zn
z2sxzy−z . By the bias bound

and the assumption Z4(s−s′)
n n→∞, it suffices to show

√
n

 Ŝn − E
[
Ŝn

]
σn

 D→ N (0, 1) as n→∞. (15)

Since p̂Zn
and q̂Zn

are empirical means of bounded random vectors with means p̃Zn
and q̃Zn

,
respectively, by the central limit theorem, as n→∞,

√
n (p̂Zn

− p̃Zn
)
D→ N (0,Σp) and

√
n (q̂Zn

− q̃Zn
)
D→ N (0,Σq),

where

(Σp)w,z := Cov
X∼p

(ψw(X), ψz(X)) and (Σq)w,z := Cov
X∼q

(ψw(X), ψz(X)) .

(15) follows by the delta method.
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Theorem 5. (Asymptotic Null Distribution) Suppose that, for some s′ > 2s+ D
4 , p, q ∈ Hs′ , and

suppose Znn
1

4(s−s′) →∞ and Znn−
1

4s+D → 0 as n→∞. For j ∈ {1, . . . , n}, define

Wj :=



Zsn
(
eiZnXj − eiZnYj

)
...

eiXj − eiYj

e−iXj − e−iYj

...
Zsn
(
e−iZnXj − e−iZnYj

)


∈ R2Zn .

Let

W :=
1

n

n∑
j=1

Wj and Σ :=
1

n

n∑
j=1

(
Wj −W

) (
Wj −W

)T
denote the empirical mean and covariance of W , and define T := nW

T
Σ−1W . Then, if p = q, then

Qχ2(2Zn)(T )
D→ Uniform([0, 1]) as n→∞,

where Qχ2(2Zn) : [0,∞)→ [0, 1] denotes the quantile function (inverse CDF) of the χ2 distribution
χ2(2Zn) with 2Zn degrees of freedom.

Proof: Since, as shown in the proof of the previous theorem, the distance estimate is a sum of squared
asymptotically normal, zero-mean random variables, this is a standard result in multivariate statistics.
See, for example, Theorem 5.2.3 of Anderson [2003].

3 Generalizations: Weak and Fractional Derivatives

As mentioned in the main text, our estimator and analysis can be generalized nicely to non-integer s
using an appropriate notion of fractional derivative.

For non-negative integers s, let δ(s) denote the measure underlying of the s-order derivative operator
at 0; that is, δ(s) is the distribution such that∫

R
f(x)δ(s)(x) dx = f (s)(0),

for all test functions f ∈ Hs. Then, for all z ∈ R, the Fourier transform of δ(s) is

δ̃(z) =

∫
R
e−izxδ(s)(x) dx = (−iz)s.

Thus, we can naturally generalize the derivative operator δ(s) to general s ∈ [0,∞) as the inverse
Fourier transform of the function z 7→ (−iz)s. Generalization to differentiation at an arbitrary y ∈ R
follows from translation properties of the Fourier transform, and, in multiple dimensions, for s ∈ RD,
we can consider the inverse Fourier transform of z ∈ RD 7→

∏D
j=1(izj)

sj .

With this definition in place, we can prove the following the Convolution Theorem, which equates a
particular weighted convolution of Fourier transforms and a product of particular fractional derivatives.
Note that we will only need this result in the case that f is a trigonometric polynomial (i.e., f̃ has
finite support), because we apply it only to pn and qn. Hence, the sum below has only finitely many
non-zero terms and commutes freely with integrals.

Proposition 6. Suppose p, q ∈ L2 are trigonometric polynomials. Then, ∀s ∈ [0,∞), and y ∈ ZD,∑
z∈ZD

z2sp̃(y − z)q̃(z) = ˜(p(s)q(s))(y).
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Proof: By linearity of the integral,∑
z∈ZD

z2sp̃(y − z)q̃(z) =
∑
z∈ZD

z2s
∫
RD

p(x1)e−i〈y−z,x1〉 dx1

∫
RD

q(x2)e−i〈z,x2〉 dx2

=

∫
RD

∫
RD

p(x1)q(x2)e−i〈y,x1〉
∑
z∈ZD

z2sei〈z,x1−x2〉 dx1 dx2

=

∫
RD

∫
RD

p(x1)q(x2)e−i〈y,x1〉δ(s)(x1 − x2) dx1 dx2

=

∫
RD

p(s)(x)q(s)(x)e−i〈y,x〉 dx = ˜(p(s)q(s))(y).

4 Additional Experimental Results

Figure 1 presents results of one additional experiment showing the effect of increasing s on the
convergence rate. In all four cases, we estimate squared distance of the density p(x) = 1 + cos (2πx)
from the uniform density (both on the interval [0, 1]), but we vary s, such that the distance is computed
according to different metrics. As s increases, the bias of the estimator increases, due to greater
weight on higher frequencies of the density that are omitted by the truncated estimator.
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(a) s = 0
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(b) s = 1
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(c) s = 2
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(d) s = 3

Figure 1: Estimated and true s-order Sobolev distances between the density p(x) = 1 + cos(2πx)
and the uniform density, for s ∈ {0, 1, 2, 3}.

References
TW Anderson. An introduction to multivariate statistical analysis. Wiley, 2003.

Bradley Efron and Charles Stein. The jackknife estimate of variance. The Annals of Statistics, pages 586–596,
1981.

Lawrence C Evans. Partial differential equations. American Mathematical Society, 2010.

Franz Rellich. Ein satz über mittlere konvergenz. Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Physikalische Klasse, 1930:30–35, 1930.

6


	Proof of Variance Bound
	Proofs of Asymptotic Distributions
	Generalizations: Weak and Fractional Derivatives
	Additional Experimental Results

