
A Proof of Lemma 1

Let X be an extreme point of R and rank(X) = r. We prove by contradiction, and suppose (21)
does not hold. Then 1

2r(r + 1) > m. Write the eigen-decomposition of X as X = QΛQ′, where
Q′Q = I and Λ ∈ Rr×r is positive definite and diagonal. By (20), tr(AiX) = tr(AiQΛQ′) =

tr(ΛQ′AiQ) S bi.

Let Sr be the set of symmetric r-by-r matrices. It is a subspace with dimension 1
2r(r + 1). Since

m < 1
2r(r + 1) and Q′AiQ ∈ Sr, there must exist a nonzero ∆ ∈ Sr such that tr(∆Q′AiQ) = 0

for all i. In addition, as Λ is positive definite, there exists ε > 0 such that Λ± ε∆ are both positive
semi-definite. Now consider two matrices X+ = Q(Λ + ε∆)Q′ and X− = Q(Λ− ε∆)Q′. Clearly
X+, X,X− are distinct because Q∆Q′ = 0 if, and only if, ∆ = 0. Furthermore X+ and X− are
both in R because i) X+ � 0 and X− � 0, and ii) tr(AiX+) = tr(AiX−) = tr(AiX). Now the
fact that X = (X+ +X−)/2 contradicts with the assumption that X is an extreme point ofR.

B Chain model with sets of output bases

Finally to reconstruct the image for each letter, we assume that they are the convex combination of p
bases (or principal components) that are specific to each letter. Suppose for letter j, the bases are the
columns of Rj ∈ Rm×p. Denote the combination weights for the i-th letter in a word as Qi ∈ Rp×h+ ,
where the j-th column corresponds to the case where the letter is j. We postulate that Qi is related
to Wi in the sense that its j-th column is nonzero only if Wi represents letter j: Q′i1 = Wi1. As
a result, the expected reconstruction is

∑h
j=1RjQi(:, j) where Qi(:, j) is the j-th column of Qi.

Enforcing this constraint with a Lagrange multiplier αi, we finally obtain our objective

min
‖U‖≤λ1

min
‖R‖≤λ2

E
(x,z)∼p̃

[
max

αi≥0,Π
max

(Θ,γ)∈C
max
v

min
W

min
Qi∈[0,1]p×h

(31)

∑
i

(vi − zi)
′
∑
j

RjQi(:, j)−G∗(vi) +
σ′

2
‖Qi‖2

+ tr(Π′W )− σS(Π) (32)

+
∑
i

tr((Uvxi1
′ + Ue + σWi)

′(γWi −Θi)) +
∑
i

α′i(Q
′
i1−Wi1)

]
. (33)

Here we added an extra small L2 penalty on Qi and its weight σ′ is a small positive number. Then
we proceed by

min
‖U‖≤λ1

min
‖R‖≤λ2

E
(x,z)∼p̃

[
max

Π
max

(Θ,γ)∈C
max
v
−σS(Π)−

∑
i

(G∗(vi) + tr(Θ′i(Uvxi1
′ + Ue)) (34)

− 1

4σγ

∑
i

‖γUvxi1′ + γUe + Πi − σΘi −αi1
′‖2 (35)

+
∑
i

min
Qi∈[0,1]p×h

σ′2 ‖Qi‖2 + (vi − zi)
′
∑
j

RjQi(:, j) + α′iQ
′
i1


]
. (36)

The last term is minimizing a quadratic form of Qi over [0, 1] constraints. This is exactly the same as
we discussed in Section C. So following the same derivations there we get an SDP relaxation again.

An even more careful look reveals that the terms related to U are only in (34) and (35), while the
terms related to R are only in (36). The absence of cross terms allows us to carry out SDP for U and
R separately by considering matrices(

I
U ′

)
(I, U) =

(
I U
U ′ U ′U

)
and

(
I
R′

)
(I,R) =

(
I R
R′ R′R

)
. (37)

Note the technique of decoupling the hidden variables can also be applied to the more general
framework in (12). The trade-off is delicate between the size of SDP size and the complexity of
solving inner maximization given M . We conjecture that the SDP relaxation over U and R separately
may lead to tighter approximation and higher sample efficiency. We leave the investigation for future
work.
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C Simplification via Partial Lagrangian Formulation

In many applications, the dimensionality of w is much higher than the number of non-box constraints.
For example, in the homogeneous linear chain model, there are O(C2) variables (hence that number
of [0, 1] box constraints), while the number of non-box constraints is O(C). So a partial Lagrangian
approach turns out more effective by retaining the box constraints in the optimization of w in (12),
while the non-box constraints are enforced by Lagrange multipliers. This leads to the following
objective that replaces the expression inside the expectation operator of (12):

max
β≥0

max
(θ,γ)∈N

max
v

min
w∈[0,1]h

−z′R′w + v′R′w −G∗(v) + β′(Aw − c) + (Ux + σw)′(γw − θ)

= max
β≥0

max
(θ,γ)∈N

max
v
−G∗(v)− β′c− θ′Ux− 2γσg

(
R(v − z) + γUx +A′β − σθ

−2γσ

)
, (38)

where g(s) =
1

2
‖s‖2 − 1

2

∥∥∥[∣∣s− 1
21
∣∣− 1

21
]
+

∥∥∥2

. (39)

Here [x]+ = max{0, x}, and is taken elementwise along with absolute value. The expression of g is
derived from the fact that minw∈[0,1]

1
2w

2 − sw = 1
2 (d2 − 2sd), where d is the median of {s, 0, 1}.

Compared with (12) and (14), the β used here has much lower dimension than π. In addition,
g(s) is convex and therefore given (U,R), the optimal (β,θ, γ,v) can be solved efficiently. More
interestingly, thanks to the expression of g(s) in (39), which is a quadratic minus a convex function
in s, our SDP relaxation can be easily extended to this partial Lagrangian framework. In fact, just
replace ‖s‖2 by using an affine function of M , and then we obtain a convex objective in (U,R).

Although the derivation of (38) is based on the generic form in (12), it is straightforward to apply the
same technique to specialized formulations in §4.1 and 4.2.

D Projection toM1

The projection toM1 means solving for a given M̂ :

min
M

1
2 ||M − M̂ ||

2, s.t. M � 0, M1 = I, tr(Mu,u) ≤ 1, tr(Mr,r) ≤ 1. (40)

To solve it efficiently, we resort to a partial Lagrangian approach with the last three constraints
enforced by Lagrange multipliers Λ ∈ Rh×h, α ≥ 0, and β ≥ 0, keeping the M � 0 in closed form:

max
α≥0,β≥0,Λ∈Rh×h

min
M�0

1
2 ||M − M̂ ||

2 − tr(Λ′(M1 − I)) + α(tr(Mu,u)− 1) + β(tr(Mr,r)− 1).

Given (Λ, α, β), the optimal M has a closed form solution via eigenvalue thresholding.
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