6 Appendix

6.1 Derivation of the optimization problem in Eq.(6)

Let P(XL“_,T, 017___7T|y1,_“7T) be the exact posterior. Our goal is to approximate this posterior by a
distribution Q(x1,... 7, v1,....7) in the exponential family that minimizes the KL divergence between
these two distributions:

KL(Q(x1,. .71, 7)|Px1,. . 7v1,. . 7lyi,..T))
- P
_ Z Q(X1,...,T,v1,...,T)10g[Q(X1""’T’U1""’T) (Y1,..,,T)

P(Xl,...,Tv}’l,.wTaUl,...,T)

= Z Q(XL...,T’UL..A,T) 10gQ(X1,4..,T,U1,...,T)

]

- Z Z Q(x1,...7,v1,.. 1) log P(X¢, ¥t, ve|Xe—1). (12)

In the first step, we apply the definition of conditional probability and KL-divergence. In the second,
we omit P(y; . ) because it is a constant in this optimization problem. In addition, we decompose

.....

P(x ,...,T7YI,...,T7'Ul,‘..,T) = HtT:1 P(x¢,y¢,v¢|%¢-1).

We then define the approximate two-slice statistics ft(xt,l, X¢, v¢) and one-slice statistics 4 (x;).
Both are in the exponential family. In this context, we have M individuals in the system and the

mean-field approximation can be shown as J;(x;) = HT]X 1 'yt( )( (m)) where A(m)( ,Em)) is the
approximate one-slice statistics for individual m. Given the observation that Q(x1,.. 7, v, 7) can

be expressed as a product of two-slice statistics divided by a product of one-slice statistics, then

T s T o
L &(xe—1, X, v & (X1, X, v
Q(Xl,...,Tyvl,“.,T) = Ht_l ?Eli ! : t) = gl_tfl 55\5 ! Al(,m)t (trzb) . (13)
[Ti= Ae(xe) =1 [t ¥ (@)

If we substitute Eq. (13) into Eq. (12), the objective function becomes the following:

Hf:l ét (thh Xt, Ut)
E Q(x1,...,7,v1,...1)log === ROV
..... T i1 L% ()

- Z Z Q(Xl,...,Tavl,...,T)IOgP(XtaYt;Ut|xt—1)

3 u(xim1, %, v
Z €t(Xt717Xt,’l}t)]ogPt( t—1, 8¢, t)
1, Xt —1,X¢,Vt (Xt7Yt7Ut|Xt_1)

ST logHw’”) ™). (14)

t,xr m
This objective function is subject to marginalization and normalization constraints:
th Xi—1,X¢, V) = ,yt(m)( Em)) for all t,m x(m),
Vit , Xt — 17{xr\$(m)}
s (m) ¢ (m) (m)
Zﬁt Xi—1,Xt, Ut) = F,_ 1(93 1), forall t,m, z; "7,

Ve {Xt— 1\£vt 1}7xt

Z A(M) (m) =1, for all ¢, m.
2(m)

(m)
> (xe\al™} refers to the sum over all values of x; except z; .
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6.2 Derivation of the inference algorithm from Eq.(8) to Eq.(10)

The optimization problem derived from Eq. (14) along with the constraints can be shown as follows:

s 3 X ,X,’U ~(m m ~(m m
S (1,1, 00) log L X0 U)o ) logH @™y as)

P(x vg|X
b1 X108 (e, ¥e, ve[xe—1)

t,x¢y m

subject to:
¢ _ am), (m) (m)
Z& Xi—1,Xt,0) =5, (ay ), forall t,m,x;" ",
Ve, Xt 1, {xt\x(m)}
_ 2(m), (m) f 1 (m)
th (%¢—1,X¢,0¢) = F4_1 (x; 1), forall t,m, ;" 7,
Ve {Xe— 1\’65mi} Xy

E v(m) (x,") = 1, for all t, m.
L0
f,

We apply the method of Lagrange multipliers to solve this, which begins with forming the Lagrange
function to be optimized:

£ g X ,X,U m m) m
LZth(Xt—l,Xtyvt)logPt( e ZH’Y( (@ logH% (™) (16)

X Ve |X
t,Xt—1,X¢,Vt ( 6 Yt t| = 1

+Z/\(m) Z 3" (™) — & (-1, %1, )

t,xy m

t,m mt vt ,thh{xt\ftm)}

+ Z ‘u(m) (m) Z 'A}/gml) (m) ff (Xf 1, Xt ’Uf)
t,m wt 1 Ut,{xt71\$§71 Xt

F el [ St 1
) o™

We then set the partial derivatives of Eq. (16) over fAt (X¢t—1, Xt, v¢) to 0, which results in the following:

oL ét(xt717 Xt vt) (m) (m) (m) set
9 g +1-%"2 0
5'§t(xt_1,xt,vt) P(Xt7Ytavt|Xt—1) %: K ZIJ’
= E (Xt—1,X¢,vt) < exp (Z M(m) o %)) P(x¢, yt, ve[x¢—1) exp (Z /\gm)(xer))) )

As such, we see that 6\ (2{™)) = exp (1™ (2{™))) is associated with the forward probabili-
ties and A (z{™) = exp(A"™ (z{™)) with the backward probabilities, with 7™ (z{"™) =
a{™ (2™ B (2™, We can determine the two-slice statistics for an individual m by marginaliz-
ing the other individuals m’ # m:

&™), 2™ v = &(xe-1,%s, 1)

T e

o<y Pl i) [[ ™ @) - T Paw™ ™) H/B(m)
(™) () m m

11’t

The above is the same as in Eq. (7).
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6.3 Derivation of the parameter-learning algorithm

From Eq.(3), the log-likelihood of the entire sequence can be shown as this:

t=1 t=1
ek gk (xe—1) - 0(%e — X1 = Ag) ifv, =k
P, veler) = {<1 S enge (i) - (%0 —xe 1 = 0) v =0

The probabilities for state transition can be shown as the probabilities of a set of events. The expected
log likelihood over the posterior probability conditioned on the observations y1, ...,y takes the
following form:

..... T|y1,...,T) (IOgP(Xl,...,T,Y1,...,T7U1,...,T)) (18)
:th(xt—laxtyvt) ~log (P(x¢, ve|xt—1) P(yt[x¢))

t,Xe—1,X¢,0t

:Zét(xtflyxhvt =) - log (P(x¢, v = v[x¢—1) P(y¢|x¢))

tXe—1,X¢
+ Zét(xt—l,xt,vt =0) - log (P (x¢,vs = (Z)‘Xt—l)P(Yt|Xt))
t,X¢—1,X¢
At a given time ¢, there are two possible cases: v; = v, where v € {1,--- ,V}, and v; = 0. The

derivatives with respect to c;, can be shown as follows:

Olog P(x¢,ve = klx¢—1) 1

8ck Ck
dlog P(x¢,vr = O|x¢—1) _ —gr(x¢-1)
dcy, 1=k crugr(xi—1)

Note that here we do not detail 0(x; — x;—1 = Ay) and §(x; — x;—1 = 0) explicitly, because when
calculating the derivatives of expected log likelihood in Eq.(18) these terms will be contained in

ét(xt_l, x¢, v = k) and ét(xt_l, x¢, vy = (0). Next we take the derivative of expected log likelihood
with respect to cy:

EP(X1,..,,T7U1 ,,,,, Tly1,...,T) (IOgP(Xl,,..,Tay1,...,T7U1,...,T))
8Ck

. 1 : -
=3l = )= Y e = )

Because we assume that the auxiliary event dominates when the time step is small, we approximate 1 —

>k Crgr(x) ~ land 30 & (%41, %X¢,v¢ = 0) ~ 441 (x¢—1). After applying this approximation
and setting the derivative to 0, the result is as follows:

B Dot Dwe s Er(xem1, %4, 0 = k)

- Dot Do (-1, %4, 01 = 0)gp(x1-1)
Dot Dk € (X1, X, v = k)

~ Dot Doy Vi—1(Xe—1) gk (Xe-1)

B Dot Dy e (o1, %4, 0 = k)

% I e A D™ @)

19)

t,Xt—1,X¢ t,Xt—1,X¢,

Ck

(20)
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