
6 Appendix

6.1 Derivation of the optimization problem in Eq.(6)

Let P (x1,...,T , v1,...,T |y1,...,T ) be the exact posterior. Our goal is to approximate this posterior by a
distribution Q(x1,...,T , v1,...,T ) in the exponential family that minimizes the KL divergence between
these two distributions:

KL(Q(x1,...,T , v1,...,T )|P (x1,...,T , v1,...,T |y1,...,T ))
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In the first step, we apply the definition of conditional probability and KL-divergence. In the second,
we omit P (y1,...,T ) because it is a constant in this optimization problem. In addition, we decompose
P (x1,...,T ,y1,...,T , v1,...,T ) =

Q
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We then define the approximate two-slice statistics ˆ⇠
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Both are in the exponential family. In this context, we have M individuals in the system and the
mean-field approximation can be shown as �̂
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approximate one-slice statistics for individual m. Given the observation that Q(x1,...,T , v1,...,T ) can
be expressed as a product of two-slice statistics divided by a product of one-slice statistics, then
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If we substitute Eq. (13) into Eq. (12), the objective function becomes the following:
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This objective function is subject to marginalization and normalization constraints:
X

v

t

,x

t�1,{xt

\x(m)
t

}

ˆ⇠
t

(x

t�1,xt

, v
t

) = �̂
(m)
t

(x
(m)
t

), for all t,m, x
(m)
t

,

X

v

t

,{x
t�1\x(m)

t�1},xt

ˆ⇠
t

(x

t�1,xt

, v
t

) = �̂
(m)
t�1(x

(m)
t�1), for all t,m, x

(m)
t�1,

X

x

(m)
t

�̂
(m)
t

(x
(m)
t

) = 1, for all t,m.

P
{x

t

\x(m)
t

} refers to the sum over all values of x
t

except x(m)
t

.

10



6.2 Derivation of the inference algorithm from Eq.(8) to Eq.(10)

The optimization problem derived from Eq. (14) along with the constraints can be shown as follows:
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We apply the method of Lagrange multipliers to solve this, which begins with forming the Lagrange
function to be optimized:
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We then set the partial derivatives of Eq. (16) over ˆ⇠
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As such, we see that ↵̂(m)
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The above is the same as in Eq. (7).
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6.3 Derivation of the parameter-learning algorithm

From Eq.(3), the log-likelihood of the entire sequence can be shown as this:

logP (x1,...,T ,y1,...,T , v1,...,T ) =
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The probabilities for state transition can be shown as the probabilities of a set of events. The expected
log likelihood over the posterior probability conditioned on the observations y1, . . . ,yT

takes the
following form:
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At a given time t, there are two possible cases: v
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t

= ;. The
derivatives with respect to c
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Because we assume that the auxiliary event dominates when the time step is small, we approximate 1�P
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