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Abstract

The goal of ordinal embedding is to represent items as points in a low-dimensional
Euclidean space given a set of constraints like “item i is closer to item j than
item k”. Ordinal constraints like this often come from human judgments. The
classic approach to solving this problem is known as non-metric multidimensional
scaling. To account for errors and variation in judgments, we consider the noisy
situation in which the given constraints are independently corrupted by reversing
the correct constraint with some probability. The ordinal embedding problem has
been studied for decades, but most past work pays little attention to the question
of whether accurate embedding is possible, apart from empirical studies. This
paper shows that under a generative data model it is possible to learn the correct
embedding from noisy distance comparisons. In establishing this fundamental
result, the paper makes several new contributions. First, we derive prediction error
bounds for embedding from noisy distance comparisons by exploiting the fact
that the rank of a distance matrix of points in Rd is at most d+ 2. These bounds
characterize how well a learned embedding predicts new comparative judgments.
Second, we show that the underlying embedding can be recovered by solving a
simple convex optimization. This result is highly non-trivial since we show that
the linear map corresponding to distance comparisons is non-invertible, but there
exists a nonlinear map that is invertible. Third, two new algorithms for ordinal
embedding are proposed and evaluated in experiments.

1 Ordinal Embedding

Ordinal embedding aims to represent items as points in Rd so that the distances between items agree
as well as possible with a given set of ordinal comparisons such as item i is closer to item j than
to item k. In other words, the goal is to find a geometric representation of data that is faithful to
comparative similarity judgments. This problem has been studied and applied for more than 50 years,
dating back to the classic non-metric multidimensional scaling (NMDS) [1, 2] approach, and it is
widely used to gauge and visualize how people perceive similarities.

Despite the widespread application of NMDS and recent algorithmic developments [3, 4, 5, 6, 7],
the fundamental question of whether an embedding can be learned from noisy distance/similarity
comparisons had not been answered. This paper shows that if the data are generated according to
a known probabilistic model, then accurate recovery of the underlying embedding is possible by
solving a simple convex optimization, settling this long-standing open question. In the process of
answering this question, the paper also characterizes how well a learned embedding predicts new
distance comparisons and presents two new computationally efficient algorithms for solving the
optimization problem.
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1.1 Related Work

The classic approach to ordinal embedding is NMDS [1, 2]. Recently, several authors have proposed
new approaches based on more modern techniques. Generalized NMDS [3] and Stochastic Triplet
Embedding (STE) [6] employ hinge or logistic loss measures and convex relaxations of the low-
dimensionality (i.e., rank) constraint based on the nuclear norm. These works are most closely related
to the theory and methods in this paper. The Linear partial order embedding (LPOE) method is
similar, but starts with a known Euclidean embedding and learns a kernel/metric in this space based
distance comparison data [7]. The Crowd Kernel [4] and t-STE [6] propose alternative non-convex
loss measures based on probabilistic generative models. The main contributions in these papers are
new optimization methods and experimental studies, but did not address the fundamental question
of whether an embedding can be recovered under an assumed generative model. Other recent work
has looked at the asymptotics of ordinal embedding, showing that embeddings can be learned as the
number of items grows and the items densely populate the embedding space [8, 9, 10]. In contrast,
this paper focuses on the practical setting involving a finite set items. Finally, it is known that at least
2dn log n distance comparisons are necessary to learn an embedding of n points in Rd [5].

1.2 Ordinal Embedding from Noisy Data

Consider n points x

1

,x
2

, . . . ,x
n

2 Rd. Let X = [x

1

· · ·x
n

] 2 Rd⇥n. The Euclidean distance
matrix D

? is defined to have elements D?

ij

= kx
i

� x

j

k2
2

. Ordinal embedding is the problem of
recovering X given ordinal constraints on distances. This paper focuses on “triplet” constraints of
the form D?

ij

< D?

ik

, where 1  i 6= j 6= k  n. Furthermore, we only observe noisy indications of
these constraints, as follows. Each triplet t = (i, j, k) has an associated probability p

t

satisfying

p
t

> 1/2 () kx
i

� x

j

k2 < kx
i

� x

k

k2 .

Let S denote a collection of triplets drawn independently and uniformly at random. And for
each t 2 S we observe an independent random variable y

t

= �1 with probability p
t

, and y
t

= 1

otherwise. The goal is to recover the embedding X from these data. Exact recovery of D? from such
data requires a known link between p

t

and D

?. To this end, our main focus is the following problem.

Ordinal Embedding from Noisy Data

Consider n points x
1

,x
2

· · · ,x
n

in d-dimensional Euclidean space. Let S denote a collection of
triplets and for each t 2 S observe an independent random variable

y
t

=

8
<

:

�1 w.p. f(D?

ij

�D?

ik

)

1 w.p. 1� f(D?

ij

�D?

ik

)

.

where the link function f : R ! [0, 1] is known. Estimate X from S , {y
t

}, and f .

For example, if f is the logistic function, then for triplet t = (i, j, k)

p
t

= P(y
t

= �1) = f(D?

ij

�D?

ik

) =

1

1 + exp(D?

ij

�D?

ik

)

, (1)

then D?

ij

� D?

ik

= log

�
1�pt

pt

�
. However, we stress that we only require the existence of a link

function for exact recovery of D?. Indeed, if one just wishes to predict the answers to unobserved
triplets, then the results of Section 2 hold for arbitrary p

t

probabilities. Aspects of the statistical
analysis are related to one-bit matrix completion and rank aggregation [11, 12, 13]. However, we
use novel methods for the recovery of the embedding based on geometric properties of Euclidean
distance matrices.

1.3 Organization of Paper

This paper takes the following approach to ordinal embedding.

1. Our samples are assumed to be independently generated according to a probabilistic model based
on an underlying low-rank distance matrix. We use relatively standard statistically learning theory
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techniques to analyze the minimizer of a bounded, Lipschitz loss with a nuclear norm constraint,
and show that an embedding can be learned from the data that predicts nearly as well as the true
embedding with O(dn log n) samples (Theorem 1).
2. Next, assuming the form of the probabilistic generative model is known (e.g., logistic), we show
that if the learned embedding is a good predictor of the ordinal comparisons, then it must also be a
good estimator of the true differences of distances between the embedding points (Theorem 2). This
result hinges on the fact that the (linear) observation model acts approximately like an isometry on
differences of distances.
3. While the true differences of distances can be estimated, the observation process is “blind” to the
mean distance between embedding points. Despite this, we show that the mean is determined by the
differences of distances, due to the special properties of Euclidean distance matrices. Specifically,
the second eigenvalue of the “mean-centered” distance matrix (well-estimated by the data from the
estimate of the differences of distances, Theorem 3) is proportional to the mean distance (Theorem 4).
This allows us to show that the minimizer of the loss with a nuclear norm constraint indeed recovers
an accurate estimate of the underlying true distance matrix.

1.4 Notation and Assumptions

We will use (D?,G?

) to denote the distance and Gram matrices of the latent embedding, and (D,G)

to denote an arbitrary distance matrix and its corresponding Gram matrix. The observations {y
t

} carry
information about D?, but distance matrices are invariant to rotation and translation, and therefore
it may only be possible to recover X up to a rigid transformation. Without loss of generality, we
assume assume the points x

1

, . . .x
n

2 Rd are centered at the origin (i.e.,
P

n

i=1

x

i

= 0).

Define the centering matrix V := I � 1

n

11T . If X is centered, XV = X . Note that D? is
determined by the Gram matrix G

?

= X

T

X . In addition, X can be determined from G

? up
to a unitary transformation. Note that if X is centered, the Gram matrix is “centered” so that
V G

?

V = G

?. It will be convenient in the paper to work with both the distance and Gram matrix
representations, and the following identities will be useful to keep in mind. For any distance matrix
D and its centered Gram matrix G

G = �1

2

V DV , (2)

D = diag(G)1T � 2G+ 1diag(G)

T , (3)

where diag(G) is the column vector composed of the diagonal of G. In particular this establishes a
bijection between centered Gram matrices and distance matrices. We refer the reader to [14] for an
insightful and thorough treatment of the properties of distance matrices. We also define the set of all
unique triplets

T :=

�
(i, j, k) : 1  i 6= j 6= k  n, j < k

 
.

Assumption 1. The observed triplets in S are drawn independently and unifomly from T .

2 Prediction Error Bounds

For t 2 T with t = (i, j, k) we define L
t

to be the linear operator satisfying L
t

(X

T

X) =

kx
i

� x

j

k2 � kx
i

� x

k

k2 for all t 2 T . In general, for any Gram matrix G

L
t

(G) := G
jj

� 2G
ij

�G
kk

+ 2G
ik

.

We can naturally view L
t

as a linear operator on Sn
+

, the space of n⇥n symmetric positive semidefinite
matrices. We can also represent L

t

as a symmetric n⇥ n matrix that is zero everywhere except on
the submatrix corresponding to i, j, k which has the form

"
0 �1 1

�1 1 0

1 0 �1

#

and so we will write
L
t

(G) := hL
t

,Gi
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where hA,Bi = vec(A)

T vec(B) for any compatible matrices A,B. Ordering the elements of T
lexicographically, we arrange all the L

t

(G) together to define the n
�
n�1

2

�
-dimensional vector

L(G) = [L
123

(G),L
124

(G), · · · ,L
ijk

(G), · · · ]T . (4)

Let `(y
t

hL
t

,Gi) denote a loss function. For example we can consider the 0� 1 loss `(y
t

hL
t

,Gi) =
1{sign{ythLt,Gi} 6=1}, the hinge-loss `(y

t

hL
t

,Gi) = max{0, 1� y
t

hL
t

,Gi}, or the logistic loss

`(y
t

hL
t

,Gi) = log(1 + exp(�y
t

hL
t

,Gi)). (5)

Let p
t

:= P(y
t

= �1) and take the expectation of the loss with respect to both the uniformly random
selection of the triple t and the observation y

t

, we have the risk of G

R(G) := E[`(y
t

hL
t

,Gi)] = 1

|T |
X

t2T
p
t

`(�hL
t

,Gi) + (1� p
t

)`(hL
t

,Gi).

Given a set of observations S under the model defined in the problem statement, the empirical risk is,

bRS(G) =

1

|S|
X

t2S
`(y

t

hL
t

,Gi) (6)

which is an unbiased estimator of the true risk: E[ bRS(G)] = R(G). For any G 2 Sn
+

, let kGk⇤
denote the nuclear norm and kGk1 := max

ij

|G
ij

|. Define the constraint set

G
�,�

:= {G 2 Sn
+

: kGk⇤  �, kGk1  �} . (7)

We estimate G

? by bG, the solution of the program,

b
G := argmin

G2G�,�

bRS(G) . (8)

Since G

? is positive semidefinite, we expect the diagonal entries of G? to bound the off-diagonal
entries. So an infinity norm constraint on the diagonal guarantees that the points x

1

, . . . ,x
n

corre-
sponding to G

? live inside a bounded `
2

ball. The `1 constraint in (7) plays two roles: 1) if our loss
function is Lipschitz, large magnitude values of hL

t

,Gi can lead to large deviations of bRS(G) from
R(G); bounding ||G||1 bounds |hL

t

,Gi|. 2) Later we will define ` in terms of the link function
f and as the magnitude of hL

t

,Gi increases the magnitude of the derivative of the link function f
typically becomes very small, making it difficult to “invert”; bounding ||G||1 tends to keep hL

t

,Gi
within an invertible regime of f .
Theorem 1. Fix �, � and assume G? 2 G

�,�

. If the loss function `(·) is L-Lipschitz (or | sup
y

`(y)| 
Lmax{1, 12�}) then with probability at least 1� �,

R(

b
G)�R(G

?

)  4L�

|S|

 r
18|S| log(n)

n
+

p
3

3

log n

!
+ L�

s
288 log 2/�

|S|

Proof. The proof follows from standard statistical learning theory techniques, see for instance [15].
By the bounded difference inequality, with probability 1� �

R(

b
G)�R(G

?

) = R(

b
G)� bRS(bG) +

bRS(bG)� bRS(G
?

) +

bRS(G
?

)�R(G

?

)

 2 sup

G2G�,�

| bRS(G)�R(G)|  2E[ sup

G2G�,�

| bRS(G)�R(G)|] +

s
2B2

log 2/�

|S|

where sup
G2G�,�

`(y
t

hL
t

,Gi)� `(y
t

0hL
t

0 ,Gi)  sup

G2G�,�
L|hy

t

L
t

� y
t

0L
t

0 ,Gi|  12L� =: B
using the facts that L

t

has 6 non-zeros of magnitude 1 and ||G||1  �.

Using standard symmetrization and contraction lemmas, we can introduce Rademacher random
variables ✏

t

2 {�1, 1} for all t 2 S so that

E sup

G2G�,�

| bRS(G)�R(G)|  E sup

G2G�,�

2L

|S|

�����
X

t2S
✏
t

hL
t

,Gi

����� .

4



The right hand side is just the Rademacher complexity of G
�,�

. By definition,

{G : kGk⇤  �} = � · conv({uuT

: |u| = 1}).
where conv(U) is the convex hull of a set U . Since the Rademacher complexity of a set is the same
as the Rademacher complexity of it’s closed convex hull,

E sup

G2G�,�

�����
X

t2S
✏
t

hL
t

,Gi

�����  �E sup

|u|=1

�����
X

t2S
✏
t

hL
t

, uuT i

����� = �E sup

|u|=1

�����u
T

 
X

t2S
✏
t

L
t

!
u

�����

which we recognize is just �Ek
P

t2S ✏
t

L
t

k. By [16, 6.6.1] we can bound the operator norm
k
P

t2S

✏
t

L
t

k in terms of the variance of
P

t2S L2

t

and the maximal eigenvalue of max

t

L
t

. These
are computed in Lemma 1 given in the supplemental materials. Combining these results gives,

2L�

|S| Ek
X

t2S
✏
t

L
t

k  2L�

|S|

 r
18|S| log(n)

n
+

p
3

3

log n

!
.

We remark that if G is a rank d < n matrix then

kGk⇤ 
p
dkGk

F


p
dnkGk1

so if G? is low rank, we really only need a bound on the infinity norm of our constraint set. Under
the assumption that G? is rank d with ||G?||1  � and we set � =

p
dn�, then Theorem 1 implies

that for |S| > n log n/161

R(

b
G)�R(G

?

)  8L�

s
18dn log(n)

|S| + L�

s
288 log 2/�

|S|

with probability at least 1� �. The above display says that |S| must scale like dn log(n) which is
consistent with known finite sample bounds [5].

3 Maximum Likelihood Embedding

We now turn our attention to recovering metric information about G?. Let S be a collection of
triplets sampled uniformly at random with replacement and let f : R ! (0, 1) be a known probability
function governing the observations. Any link function f induces a natural loss function `

f

, namely,
the negative log-likelihood of a solution G given an observation y

t

defined as

`
f

(y
t

hL
t

,Gi) = 1
yt=�1

log(

1

f(hLt,Gi) ) + 1
yt=1

log(

1

1�f(hLt,Gi) )

For example, the logistic link function of (1) induces the logistic loss of (5). Recalling that P(y
t

=

�1) = f(hL
t

,Gi) we have

E[`
f

(y
t

hL
t

,Gi)] = f(hL
t

,G?i) log( 1

f(hLt,Gi) ) + (1� f(hL
t

,G?i) log( 1

1�f(hLt,Gi) )

= H(f(hL
t

,G?i)) +KL(f(hL
t

,G?i)|f(hL
t

,Gi))

where H(p) = p log( 1
p

) + (1 � p) log( 1

1�p

) and KL(p, q) = p log(p
q

) + (1 � p) log( 1�p

1�q

) are the
entropy and KL divergence of Bernoulli RVs with means p, q. Recall that ||G||1  � controls the
magnitude of hL

t

,Gi so for the moment, assume this is small. Then by a Taylor series f(hL
t

,Gi) ⇡
1

2

+ f 0
(0)hL

t

,Gi using the fact that f(0) = 1

2

, and by another Taylor series we have

KL(f(hL
t

,G?i)|f(hL
t

,Gi)) ⇡ KL( 1
2

+ f 0
(0)hL

t

,G?i| 1
2

+ f 0
(0)hL

t

,Gi)
⇡ 2f 0

(0)

2

(hL
t

,G? �Gi)2.

Thus, recalling the definition of L(G) from (4) we conclude that if eG 2 argmin

G

R(G) with
R(G) =

1

|T |
P

t2T E[`
f

(y
t

hL
t

,Gi)] then one would expect L(eG) ⇡ L(G?

). Moreover, since
bRS(G) is an unbiased estimator of R(G), one expects L(bG) to approximate L(G?

). The next
theorem, combined with Theorem 1, formalizes this observation; its proof is found in the appendix.
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Theorem 2. Let C
f

= min

t2T inf

G2G�,� |f 0�hL
t

,Gi
�
| where f 0 denotes the derivative of f . Then

for any G

2C2

f

|T | kL(G)� L(G?

)k2
F

 R(G)�R(G

?

) .

Note that if f is the logistic link function of (1) then its straightforward to show that |f 0�hL
t

,Gi
�
| �

1

4

exp(�|hL
t

,Gi|) � 1

4

exp(�6||G||1) for any t, G so it suffices to take C
f

=

1

4

exp(�6�).

It remains to see that we can recover G? even given L(G?

), much less L(bG). To do this, it is more
convenient to work with distance matrices instead of Gram matrices. Analogous to the operators
L
t

(G) defined above, we define the operators �
t

for t 2 T satisfying,

�

t

(D) := D
ij

�D
ik

⌘ L
t

(G) .

We will view the �

t

as linear operators on the space of symmetric hollow n⇥ n matrices Sn
h

, which
includes distance matrices as special cases. As with L, we can arrange all the �

t

together, ordering
the t 2 T lexicographically, to define the n

�
n�1

2

�
-dimensional vector

�(D) = [D
12

�D
13

, · · · , D
ij

�D
ik

, · · · ]T .
We will use the fact that L(G) ⌘ �(D) heavily. Because �(D) consists of differences of matrix
entries, � has a non-trivial kernel. However, it is easy to see that D can be recovered given �(D) and
any one off-diagonal element of D, so the kernel is 1-dimensional. Also, the kernel is easy to identify
by example. Consider the regular simplex in d dimensions. The distances between all n = d + 1

vertices are equal and the distance matrix can easily be seen to be 11T � I. Thus �(D) = 0 in this
case. This gives us the following simple result.
Lemma 2. Let Sn

h

denote the space of symmetric hollow matrices, which includes all distance
matrices. For any D 2 Sn

h

, the set of linear functionals {�
t

(D), t 2 T } spans an
�
n

2

�
� 1

dimensional subspace of Sn
h

, and the 1-dimensional kernel is given by the span of 11T � I .

So we see that the operator � is not invertible on Sn
h

. Define J := 11T � I . For any D, let C, the
centered distance matrix, be the component of D orthogonal to the kernel of L (i.e., tr(CJ) = 0).
Then we have the orthogonal decomposition

D = C + �
D

J ,

where �
D

= trace(DJ)/kJk2
F

. Since G is assumed to be centered, the value of �
D

has a simple
interpretation:

�
D

=

1

2

�
n

2

�
X

1ijn

D
ij

=

2

n� 1

X

1in

hx
i

, x
i

i = 2kGk⇤
n� 1

, (9)

the average of the squared distances or alternatively a scaled version of the nuclear norm of G.

Let bD and bC be the corresponding distance and centered distance matrices corresponding to bG the
solution to 8. Though � is not invertible on all Sn

h

, it is invertible on the subspace orthogonal to
the kernel, namely J

?. So if �(

b
D) ⇡ �(D

?

), or equivalently L(bG) ⇡ L(G?

), we expect bC to be
close to C

?. The next theorem quantifies this.

Theorem 3. Consider the setting of Theorems 1 and 2 and let bC,C? be defined as above. Then

1

2

�
n

2

�kbC �C

?k2
F

 L�

4C2

f

|S|

 r
18|S| log(n)

n
+

p
3

3

log n

!
+

L�

4C2

f

s
288 log 2/�

|S|

Proof. By combining Theorem 2 with the prediction error bounds obtainined in 1 we see that

2C2

f

n
�
n�1

2

�kL(bG)� L(G?

)k2
F

 4L�

|S|

 r
18|S| log(n)

n
+

p
3

3

log n

!
+ L�

s
288 log 2/�

|S| .

Next we employ the following restricted isometry property of � on the subspace J

? whose proof is
in the supplementary materials.
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Lemma 3. Let D and D

0 be two different distance matrices of n points in Rd and Rd

0
. Let C and

C

0 be the components of D and D

0 orthogonal to J . Then

nkC �C

0k2
F

 k�(C)��(C

0
)k2 = k�(D)��(D

0
)k2  2(n� 1)kC �C

0k2
F

.

The result then follows.

This implies that by collecting enough samples, we can recover the centered distance matrix. By
applying the discussion following Theorem 1 when G

? is rank d, we can state an upperbound of
1

2

(

n
2)
kbC �C

?k2
F

 O
⇣

L�

C

2
f

q
dn log(n)+log(1/�)

|S|

⌘
. However, it is still not clear that this is enough to

recover D? or G?. Remarkably, despite this unknown component being in the kernel, we show next
that it can be recovered.
Theorem 4. Let D be a distance matrix of n points in Rd, let C be the component of D orthogonal
to the kernel of L, and let �

2

(C) denote the second largest eigenvalue of C. If n > d+ 2, then

D = C + �
2

(C)J . (10)

This shows that D is uniquely determined as a function of C. Therefore, since �(D) = �(C) and
because C is orthogonal to the kernel of �, the distance matrix D can be recovered from �(D),
even though the linear operator � is non-invertible.

We now provide a proof of Theorem 4 in the case where n > d + 3. The result is true in the case
when n > d+ 2 but requires a more detailed analysis. This includes the construction of a vector x
such that Dx = 1 and 1T

x � 0 for any distance matrix a result in [17].

Proof. To prove Theorem 4 we need the following lemma, proved in the supplementary materials.

Lemma 4. Let D be a Euclidean distance matrix on n points. Then D is negative semidefinite on
the subspace

1?
:= {x 2 Rn|1T

x = 0}.
Furthermore, ker(D) ⇢ 1?.

For any matrix M , let �
i

(M) denote its ith largest eigenvalue. Under the conditions of the theorem,
we show that for � > 0, �

2

(D � �J) = �. Since C = D � �
D

J , this proves the theorem.

Note that, �
i

(D � �J) = �
i

(D � �11T

) + � for 1  i  n and � arbitrary. So it suffices to show
that �

2

(D � �11T

) = 0.

By Weyl’s Theorem
�
2

(D � �11T

)  �
2

(D) + �
1

(��11T

) .

Since �
1

(��11T

) = 0, we have �
2

(D � �11T

)  �
2

(D) = 0. By the Courant-Fischer Theorem

�
2

(D) = min

U :dim(U)=n�1

max

x2U,x 6=0

x

T

Dx

x

T

x

 min

U=1?
max

x2U,x 6=0

x

T

Dx

x

T

x

 0

since D negative semidefinite on 1?. Now let v
i

denote the ith eigenvector of D with eigenvalue
�
i

= 0. Then
(D � �11T

)v

i

= Dv

i

= 0 ,

since v

T

i

1 = 0 by 4. So D � �11T has at least n� d� 2 zero eigenvalues, since rankD  d+ 2.
In particular, if n > d+ 3, then D � �11T must have at least two eigenvalues equal to 0. Therefore,
�
2

(D � �11T

) = 0.

The previous theorem along with Theorem 3 guarantees that we can recover G? as we increase
the number of triplets sampled. The final theorem, which follows directly from Theorems 3 and 4,
summarizes this.
Theorem 5. Assume n > d + 2 and consider the setting of Theorems 1 and 2. As |S| ! 1,
b
D ! D

⇤ where bD is the distance matrix corresponding to bG (the solution to 8).

Proof. Recall bD =

b
C + �

2

(

b
C)J , so as bC ! C

⇤, bD ! D

⇤.
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Figure 1: G? generated with n = 64 points in d = 2 and d = 8 dimensions on the left and right.

4 Experimental Study

The section empirically studies the properties of estimators suggested by our theory. It is not an
attempt to perform an exhaustive empirical evaluation of different embedding techniques; for that see
[18, 4, 6, 3]. In what follows each of the n points is generated randomly: x

i

⇠ N (0, 1

2d

I
d

) 2 Rd,
i = 1, . . . , n, motivated by the observation that

E[|hL
t

,G?i|] = E
⇥�� kx

i

� x

j

k2
2

� ||x
i

� x

k

||2
2

��⇤  E
⇥
kx

i

� x

j

k2
2

⇤
= 2E

⇥
kx

i

k2
2

⇤
= 1

for any triplet t = (i, j, k).We report the prediction error on a holdout set of 10, 000 triplets and
the error in Frobenius norm of the estimated Gram matrix over 36 random trials. We minimize the
logistic MLE objective bRS(G) =

1

|S|
P

t2S

log(1 + exp(�y
t

hL
t

,Gi)).

For each algorithm considered, the domain of the objective variable G is the space of symmetric
positive semi-definite matrices. None of the methods impose the constraint max

ij

|G
ij

|  � (as
done above), since this was used to simplify the analysis and does not have a large impact in practice.
Rank-d Projected Gradient Descent (PGD) performs gradient descent on the objective bRS(G) with
line search, projecting onto the subspace spanned by the top d eigenvalues at each step (i.e. setting the
smallest n�d eigenvalues to 0). Nuclear Norm PGD performs gradient descent on bRS(G) projecting
onto the nuclear norm ball with radius kG?k⇤, where G? is the Gram matrix of the latent embedding.
The nuclear norm projection can have the undesirable effect of shrinking the non-zero eigenvalues
toward the origin. To compensate for this potential bias, we employ Nuclear Norm PGD Debiased,
which takes the biased output of Nuclear Norm PGD, decomposes it into UEU

T where U 2 Rn⇥d

are the top d eigenvectors, and outputs Udiag(bs)UT where bs = argmin

s2Rd bRS(Udiag(s)UT

).
This last algorithm is motivated by the observation that methods for minimizing k · k

1

or k · k⇤ are
good at identifying the true support of a signal, but output biased magnitudes [19]. Rank-d PGD and
Nuclear Norm PGD Debiased are novel ordinal embedding algorithms.

Figure 1 presents how the algorithms behave for n = 64 and d = 2, 8. We observe that the unbiased
nuclear norm solution behaves near-identically to the rank-d solution and remark that this was
observed in all of our experiments (see the supplementary materials for other values of n, d, and
scalings of G?). A popular technique for recovering rank d embeddings is to perform (stochastic)
gradient descent on bRS(U

T

U) with objective variable U 2 Rn⇥d taken as the embedding [18, 4, 6].
In all of our experiments this method produced Gram matrices nearly identical to those produced by
our Rank-d-PGD method, but Rank-d-PGD was an order of magnitude faster in our implementation.
Also, in light of our isometry theorem, we can show that the Hessian of E[ bRS(G)] is nearly a scaled
identity, leading us to hypothesize that a globally optimal linear convergence result for this non-
convex optimization may be possible using the techniques of [20, 21]. Finally, we note that previous
literature has reported that nuclear norm optimizations like Nuclear Norm PGD tend to produce less
accurate embeddings than those of non-convex methods [4, 6]. The results imply that Nuclear Norm
PGD Debiased appears to close the performance gap between the convex and non-convex solutions.
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1447449, the NIH grant 1 U54 AI117924-01, the AFOSR grant FA9550-13-1-0138, and by ONR
awards N00014-15-1-2620, and N00014-13-1-0129. We would also like to thank Amazon Web
Services for providing the computational resources used for running our simulations.

8



References

[1] Roger N Shepard. The analysis of proximities: Multidimensional scaling with an unknown
distance function. i. Psychometrika, 27(2):125–140, 1962.

[2] Joseph B Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika,
29(2):115–129, 1964.

[3] Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David J Kriegman, and Serge
Belongie. Generalized non-metric multidimensional scaling. In International Conference on
Artificial Intelligence and Statistics, pages 11–18, 2007.

[4] Omer Tamuz, Ce Liu, Ohad Shamir, Adam Kalai, and Serge J Belongie. Adaptively learning
the crowd kernel. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 673–680, 2011.

[5] Kevin G Jamieson and Robert D Nowak. Low-dimensional embedding using adaptively selected
ordinal data. In Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton
Conference on, pages 1077–1084. IEEE, 2011.

[6] Laurens Van Der Maaten and Kilian Weinberger. Stochastic triplet embedding. In Machine
Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on, pages 1–6.
IEEE, 2012.

[7] Brian McFee and Gert Lanckriet. Learning multi-modal similarity. The Journal of Machine
Learning Research, 12:491–523, 2011.

[8] Matthäus Kleindessner and Ulrike von Luxburg. Uniqueness of ordinal embedding. In COLT,
pages 40–67, 2014.

[9] Yoshikazu Terada and Ulrike V Luxburg. Local ordinal embedding. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14), pages 847–855, 2014.

[10] Ery Arias-Castro. Some theory for ordinal embedding. arXiv preprint arXiv:1501.02861, 2015.
[11] Mark A Davenport, Yaniv Plan, Ewout van den Berg, and Mary Wootters. 1-bit matrix

completion. Information and Inference, 3(3), 2014.
[12] Yu Lu and Sahand N Negahban. Individualized rank aggregation using nuclear norm regulariza-

tion. In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1473–1479. IEEE, 2015.

[13] D. Park, J , Neeman, J. Zhang, S. Sanghavi, and I. Dhillon. Preference completion: Large-scale
collaborative ranking from pairwise comparisons. Proc. Int. Conf. Machine Learning (ICML),
2015.

[14] Jon Dattorro. Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA,
2011.

[15] Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey
of some recent advances. ESAIM: probability and statistics, 9:323–375, 2005.

[16] Joel A. Tropp. An introduction to matrix concentration inequalities, 2015.
[17] Pablo Tarazaga and Juan E. Gallardo. Euclidean distance matrices: new characterization and

boundary properties. Linear and Multilinear Algebra, 57(7):651–658, 2009.
[18] Kevin G Jamieson, Lalit Jain, Chris Fernandez, Nicholas J Glattard, and Rob Nowak. Next: A

system for real-world development, evaluation, and application of active learning. In Advances
in Neural Information Processing Systems, pages 2638–2646, 2015.

[19] Nikhil Rao, Parikshit Shah, and Stephen Wright. Conditional gradient with enhancement and
truncation for atomic norm regularization. In NIPS workshop on Greedy Algorithms, 2013.

[20] Samet Oymak, Benjamin Recht, and Mahdi Soltanolkotabi. Sharp time–data tradeoffs for linear
inverse problems. arXiv preprint arXiv:1507.04793, 2015.

[21] Jie Shen and Ping Li. A tight bound of hard thresholding. arXiv preprint arXiv:1605.01656,
2016.

9



5 Supplementary Materials for “Finite Sample Error Bounds for Ordinal
Embedding”

5.1 Proof of Lemma 1

Lemma 1. For all t 2 T ,
�
1

(L
t

) = kL
t

k =

p
3

in addition if n � 3

kE
t

[L2

t

]k =

6

n� 1

 9

n

Proof. Note that L3

t

� 3L
t

= 0 for all t 2 T . Thus by the Cayley-Hamilton theorem,
p
3 is the

largest eigenvalue of L
t

. A computation shows that the submatrix of L2

t

corresponding to i, j, k is
 

2 �1 �1

�1 2 �1

�1 �1 2

!

and every other element of L2

t

is zero. Summing over the t 2 T then gives,

E[L2

t

] =

1

n
�
n�1

2

�
X

t2T
L2

t

=

0

BBBB@

6

n

�6

n(n�1)

· · · �6

n(n�1)

�6

n(n�1)

6

n

. . . �6

n(n�1)

... . . . . . .
...

�6

n(n�1)

. . . �6

n(n�1)

6

n

1

CCCCA

This matrix can be rewritten as 6

n

I � 6

n(n�1)

J . The eigenvalues of J are �1 with multiplicity n� 1

and n� 1 with multiplicity 1. Hence the largest eigenvalue of E[L2

t

] is 6

n�1

.

5.2 Proof of Theorem 2

Proof. For y, z 2 (0, 1) let g(z) = z log z

y

+ (1� z) log 1�z

1�y

. Then g0(z) = log

z

1�z

� log

y

1�y

and
g00(z) = 1

z(1�z)

. By taking a Taylor series around y,

g(z) � (z � y)2/2

sup

x2[0,1]

x(1� x)
� 2(z � y)2.

Now applying this to z = f(hL
t

,G?i) and y = f(hL
t

,Gi) gives

f(hL
t

,G?i) log f(hLt,G
?i)

f(hLt,Gi) + (1� f(hL
t

,G?i)) log 1�f(hLt,G
?i)

1�f(hLt,Gi) � 2(f(hL
t

,G?i)� f(hL
t

,Gi))2

� 2C2

f

(hL
t

,G?i � hL
t

,Gi)2

where the last line comes from applying Taylor’s theorem to f , f(x)�f(y) � inf

z2[x,y]

f 0
(z)(x�y)

for any x, y. Thus

R(G)�R(G

?

) =

1

|T |
X

t2T
f(hL

t

,G?i) log f(hLt,G
?i)

f(hLt,Gi) + (1� f(hL
t

,G?i)) log 1�f(hLt,G
?i)

1�f(hLt,Gi)

�
2C2

f

|T |
X

t2T

(hL
t

,G?i � hL
t

,Gi)2

=

2C2

f

|T |
X

t2T

(hL
t

,G�G

?i)2 =

2C2

f

|T | kL(G)� L(G⇤
)k2

2

.

10



5.3 Proof of Lemma 3

Lemma 3. Let D and D

0 be two different distance matrices of n points in Rd and Rd

0
respectively.

Let C and C

0 be the components of D and D

0 orthogonal to J . Then

nkC �C

0k2
F

 k�(C)��(C

0
)k2 = k�(D)��(D

0
)k2  2(n� 1)kC �C

0k2
F

.

We can view the operator � defined above as acting on the space R(
n
2) where each symmetric hollow

matrix is identified with vectorization of it’s upper triangular component. With respect to this basis
� is an n

�
n�1

2

�
⇥
�
n

2

�
matrix, which we will denote by �. Since C and C

0 are orthogonal to the
kernel of �, the lemma follows immediately from the following characterization of the eigenvalues
of �T

�.

Lemma 6. �

T

� : Sn
h

! Sn
h

has the following eigenvalues and eigenspaces,

• Eigenvalue 0, with a one dimensional eigenspace.

• Eigenvalue n, with a n� 1 dimensional eigenspace.

• Eigenvalue 2(n� 1), with a
�
n

2

�
� n dimensional eigenspace.

Proof. The rows of � are indexed by triplets t 2 T and columns indexed by pairs i, j with 1  i <
j  n and vice-versa for �T . The row of �T corresponding to the pair i, j is supported on columns
corresponding to triplets t = (l,m, n) where m < n and l and one of m or n form the pair i, j or j, i.
Specifically, letting [�

T

]

(i,j),t

denote the entry of �T corresponding to row i, j and column t,

• if l = i,m = j then [�

T

]

(i,j),t

= 1

• if l = i, n = j then [�

T

]

(i,j),t

= �1

• if l = j,m = i then [�

T

]

(i,j),t

= 1

• if l = j, n = i then [�

T

]

(i,j),t

= �1

Using this one can easily check that

[�

T

�D]

i,j

=

X

(i,j,k)2T

D
ij

�D
ik

�
X

(i,k,j)2T

D
ik

�D
ij

+

X

(j,i,k)2T

D
ji

�D
jk

�
X

(j,k,i)2T

D
jk

�D
ji

= 2(n� 1)D
ij

�
X

n 6=i

D
in

�
X

n 6=j

D
jn

. (11)

This representation allows us to find the eigenspaces mentioned above very quickly.

Eigenvalue 0. From the above discussion, we know the kernel is generated by J = 11T � I .

Eigenvalue 2(n � 1). This eigenspace corresponds to all symmetric hollow matrices such that
D1 = 0. For such a matrix each row and column sum is zero and so in particular, the sums in (11)
are both zero. Hence for such a D,

[�

T

�D]

i,j

= 2(n� 1)D
ij

The dimension of this subspace is
�
n

2

�
� n, indeed there are

�
n

2

�
degree of freedom to choose the

elements of D and D1 = 0 adds n constraints.

Eigenvalue n. This eigenspace corresponds to the span of the matrices D(i) defined as,

D

(i)

= �n(e
i

1T

+ 1eT
i

� 2e

i

e

T

i

) + 2J

where e

i

is the standard basis vector with a 1 in the ith row and 0 elsewhere. As an example,

D

(1)

=

0

B@
0 �n+ 2 · · · �n+ 2

... 2 · · · 2

�n+ 2 2 · · · 0

1

CA .
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If i, j 6= m, then D(m)

ij

:= [D

(m)

]

ij

= 2, and we can compute the row and column sums
X

n 6=i

D(m)

in

=

X

n 6=j

D(m)

jn

= 2(n� 2)� n+ 2 = n� 2.

This implies that D(m)

ij

= n, and so by (11)

[�

T

�D

(m)

]

i,j

= 2(n� 1) · 2� (n� 2)� (n� 2) = 2n = nD(m)

ij

.

Otherwise, without loss of generality we can assume that i = m, j 6= m in which case, [D(m)

]

ij

=

�n+ 2, the row and columns sums can be computed as
X

n 6=i

D(m)

in

= (n� 1)(�n+ 2)

and X

n 6=j

D(m)

in

= n� 2.

Putting it all together,

[�

T

�D

(m)

]

m,j

= 2(n� 1) · (�n+ 2)� (n� 1)(�n+ 2)� (n� 2)

= (n� 1)(�n+ 2) + (�n+ 2)

= n(�n+ 2)

= nD(m)

m,j

and �

T

�D = nD. Note that the dimension of spanhD(i)i = n� 1 since
X

m

D

(m)

= 0.

5.4 Proof of Lemmas 4

Lemma 4. Let D be a Euclidean distance matrix on n points. Then D is negative semidefinite on
the subspace

1?
:= {x 2 Rn|1T

x = 0}.
Furthermore, ker(D) ⇢ 1?.

Proof. The associated Gram matrix G = � 1

2

V DV is a positive semidefinite matrix. For x 2 1?,
Jx = �x so

x

T

✓
�1

2

V DV

◆
x = �1

2

x

T

Dx  0

establishing the first part of the theorem. Now if x 2 kerD,

0  �1

2

x

T

V DV x = �1

2

x

T11T

D11T

x = �1

2

1T

D1(1T

x)

2  0 ,

where the last inequality follows from the fact that 1T

D1 > 0 since D is non-negative. Hence
1T

x = 0 and kerD ⇢ 1?.

6 Additional Empirical Results
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Figure 2: Varying dimension n = 64, d =

{1, 2, 4, 8} from top to bottom.
Figure 3: Varying Noise n = 64, d = 2, ↵M
for ↵ = {2, 1, 1

2

, 1

4

} from top to bottom.
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Figure 4: Varying # items n =

{16, 32, 64, 128}, d = 2 from top to bottom.
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