
Clustering with Same-Cluster Queries

A Relationships Between Query Models

Proposition 1. Any clustering algorithm that uses only q same-cluster queries can be adjusted to use
2q cluster-assignment queries (and no same-cluster queries) with the same order of time complexity.

Proof. We can replace each same-cluster query with two cluster-assignment queries as in
Q(x1, x2) = 1{Q(x1) = Q(x2))}.

Proposition 2. Any algorithm that uses only q cluster-assignment queries can be adjusted to use
kq same-cluster queries (and no cluster-assignment queries) with at most a factor k increase in
computational complexity, where k is the number of clusters.

Proof. If the clustering algorithm has access to an instance from each of k clusters (say xi ∈ Xi),
then it can simply simulate the cluster-assignment query by making k same-cluster queries (Q(x) =
argmaxi 1{Q(x, xi)}). Otherwise, assume that at the time of querying Q(x) it has only instances
from k′ < k clusters. In this case, the algorithm can do the same with the k′ instances and if it does
not find the cluster, assign x to a new cluster index. This will work, because in the clustering task the
output of the algorithm is a partition of the elements, and therefore the indices of the clusters do not
matter.

B Comparison of γ-Margin and α-Center Proximity

In this paper, we introduced the notion of γ-margin niceness property. We further showed upper and
lower bounds on the computational complexity of clustering under this assumption. It is therefore
important to compare this notion with other previously-studied clusterability notions.

An important notion of niceness of data for clustering is α-center proximity property.
Definition 3 (α-center proximity [ABS12]). Let (X , d) be a clustering instance in some metric space
M , and let k be the number of clusters. We say that a center-based clustering CX = {C1, . . . , Ck}
induced by centers c1, . . . , ck ∈M satisfies the α-center proximity property (with respect to X and
k) if the following holds

∀x ∈ Ci, i 6= j, αd(x, ci) < d(x, cj)

This property has been considered in the past in various studies [BL12, ABS12]. In this appendix we
will show some connections between γ-margin and α-center proximity properties.

It is important to note that throughout this paper we considered clustering in Euclidean spaces.
Furthermore, the centers were not restricted to be selected from the data points. However, this is not
necessarily the case in other studies.

An overview of the known results under α-center proximity is provided in Table 1. The results are
provided for the case that the centers are restricted to be selected from the training set, and also the
unrestricted case (where the centers can be arbitrary points from the metric space). Note that any
upper bound that works for general metric spaces also works for the Euclidean space.

We will show that using the same techniques one can prove upper and lower bounds for γ-margin
property. It is important to note that for γ-margin property, in some cases the upper and lower bounds
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Table 1: Known results for α-center proximity

Euclidean General Metric
Centers
from data

Upper bound :
√
2 + 1 [BL12]

Lower bound : ?
Upper bound :

√
2 + 1 [BL12]

Lower bound : 2 [BDR14]
Unrestricted
Centers

Upper bound : 2 +
√
3 [ABS12]

Lower bound : ?
Upper bound : 2 +

√
3 [ABS12]

Lower bound : 3 [ABS12]

Table 2: Results for γ-margin

Euclidean General Metric
Centers
from data

Upper bound : 2 (Thm. 4)
Lower bound : ?

Upper bound : 2 (Thm. 4)
Lower bound : 2 (Thm. 5)

Unrestricted
Centers

Upper bound : 3 (Thm. 6)
Lower bound : 1.84 (Thm. 10)

Upper bound : 3 (Thm. 6)
Lower bound : 3 (Thm. 7)
Awasthi

match. Hence, there is no hope to further improve those bounds unless P=NP. A summary of our
results is provided in 2.

B.1 Centers from data

Theorem 4. Let (X, d) be a clustering instance and γ ≥ 2. Then, Algorithm 1 in [BL12] outputs a
tree T with the following property:

Any k-clustering C∗ = {C∗1 , . . . , C∗k} which satisfies the γ-margin property and its cluster centers
µ1, . . . , µk are in X , is a pruning of the tree T . In other words, for every 1 ≤ i ≤ k, there exists a
node Ni in the tree T such that C∗i = Ni.

Proof. Let p, p′ ∈ C∗i and q ∈ C∗j . [BL12] prove the correctness of their algorithm for α >
√
2 + 1.

Their proof relies only on the following three properties which are implied when α >
√
2 + 1. We

will show that these properties are implied by γ > 2 instances as well.

• d(p, µi) < d(p, q)
γd(p, µi) < d(q, µi) < d(p, q) + d(p, µi) =⇒ d(p, µi) <

1
γ−1d(p, q).

• d(p, µi) < d(q, µi)
This is trivially true since γ > 2.
• d(p, µi) < d(p′, q)

Let r = maxx∈C∗i d(x, µi). Observe that d(p, µi) < r. Also, d(p′, q) > d(q, µi) −
d(p′, µi) > γr − r = (γ − 1)r.

Theorem 5. Let (X , d) be a clustering instance and k be the number of clusters. For γ < 2, finding
a k-clustering of X which satisfies the γ-margin property and where the corresponding centers
µ1, . . . , µk belong to X is NP-Hard.

Proof. For α < 2, [BDR14] proved that in general metric spaces, finding a clustering which satisfies
the α-center proximity and where the centers µ1, . . . , µk ∈ X is NP-Hard. Note that the reduced
instance in their proof, also satisfies γ-margin for γ < 2.

B.2 Centers from metric space

Theorem 6. Let (X, d) be a clustering instance and γ ≥ 3. Then, the standard single-linkage
algorithm outputs a tree T with the following property:

Any k-clustering C∗ = {C∗1 , . . . , C∗k} which satisfies the γ-margin property is a pruning of T . In
other words, for every 1 ≤ i ≤ k, there exists a node Ni in the tree T such that C∗i = Ni.
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Proof. [BBV08] showed that if a clustering C∗ has the strong stability property, then single-linkage
outputs a tree with the required property. It is simple to see that if γ > 3 then instances have
strong-stability and the claim follows.

Theorem 7. Let (X , d) be a clustering instance and γ < 3. Then, finding a k-clustering of X which
satisfies the γ-margin is NP-Hard.

Proof. [ABS12] proved the above claim but for α < 3 instances. Note however that the construction
in their proof satisfies γ-margin for γ < 3.

C Proofs of Lemmas 12 and 13

In Section 4 we proved Theorem 10 based on two technical results (i.e., lemma 12 and 13). In this
appendix we provide the proofs for these lemmas. In order to start, we first need to establish some
properties about the Euclidean embedding of X proposed in Section 4.
Definition 8 (A- and B-Clustering of Ri). An A-Clustering of row Ri is a clustering in the form of
{{si}, {ri,1, ri,2}, {ri,3, ri,4}, . . . , {ri,6m−1, ri,6m}, {ri,6m+1, fi}}. A B-Clustering of row Ri is a
clustering in the form of {{si, ri,1}, {ri,2, ri,3}, {ri,4, ri,5}, . . . , {ri,6m, ri,6m+1}, {fi}}.
Definition 9 (Good point for a cluster). A cluster C is good for a point z 6∈ C if adding z to C
increases cost by exactly 2w

3 h
2

Given the above definition, the following simple observations can be made.

• The clusters {ri,2j−1, ri,2j}, {ri,2j , ri,2j+1} and {gi,j} are good for xi,j and yi−1,j .
• The clusters {ri,2j , ri,2j+1} and {gi,j} are good for x′i,j and y′i−1,j .

Definition 10 (Nice Clustering). A k-clusteirng is nice if every gi,j is a singleton cluster, each Ri is
grouped in the form of either an A-clustering or a B-clustering, and each point in Zi is added to a
cluster which is good for it.

It is straightforward to see that a row grouped in a A-clustering costs (6m+ 3)w − α while a row in
B-clustering costs (6m+ 3)w. Hence, a nice clustering of Hl,m ∪ Z costs at most L1 + L2. More
specifically, if t rows are group in a A-clustering, the nice-clustering costs L1 + L2 − tα. Also,
observe that any nice clustering of X has only the following four different types of clusters.

(1) Type E - {ri,2j−1, ri,2j+1}
The cost of this cluster is 2w and the contribution of each location to the cost (i.e., cost

#locations ) is
2w
2 = w.

(2) Type F - {ri,2j−1, ri,2j , xi,j} or {ri,2j−1, ri,2j , yi−1,j} or {ri,2j , ri,2j+1, x
′
i,j} or

{ri,2j , ri,2j+1, y
′
i−1,j}

The cost of any cluster of this type is 2w(1 + h2

3 ) and the contribution of each location to the
cost is at most 2w

9 (h2 + 3). This is equal to 16
9 w because we had set h =

√
5.

(3) Type I - {gi,j , xi,j} or {gi,j , x′i,j} or {gi,j , yi,j} or {gi,j , y′i,j}
The cost of any cluster of this type is 2

3wh
2 and the contribution to the cost of each location is

w
3 h

2. For our choice of h, the contribution is 5
3w.

(4) Type J - {si, ri,1} or {ri,6m+1, fi}
The cost of this cluster is 3w (or 3w − α) and the contribution of each location to the cost is at
most 1.5w.

Hence, observe that in a nice-clustering, any location contributes at most≤ 16
9 w to the total clustering

cost. This observation will be useful in the proof of the lemma below.
Lemma 11. For large enough w = poly(l,m), any non-nice clustering of X = Hl,m ∪ Z costs at
least L+ w

3 .

Proof. We will show that any non-nice clustering C of X costs at least w
3 more than any nice

clustering. This will prove our result. The following cases are possible.

• C contains a cluster Ci of cardinality t > 6 (i.e., contains t weighted points)
Observe that any x ∈ Ci has at least t−5 locations at a distance greater than 4 to it, and 4 locations
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at a distance at least 2 to it. Hence, the cost of Ci is at least w2t (4
2(t − 5) + 224)t = 8w(t − 4).

Ci allows us to use at most t− 2 singletons. This is because a nice clustering of these t+ (t− 2)
points uses at most t− 1 clusters and the clustering C uses 1 + (t− 2) clusters for these points.
The cost of the nice cluster on these points is ≤ 16w

9 2(t− 1). While the non-nice clustering costs
at least 8w(t − 4). For t ≥ 6.4 =⇒ 8(t − 4) > 32

9 (t − 1) and the claim follows. Note that in
this case the difference in cost is at least 8w

3 .
• Contains a cluster of cardinality t = 6

Simple arguments show that amongst all clusters of cardinality 6, the following has the minimum
cost. Ci = {ri,2j−1, ri,2j , xi,j , yi−1,j , ri,2j+1, r2j+2}. The cost of this cluster is 176w

6 . Arguing
as before, this allows us to use 4 singletons. Hence, a nice cluster on these 10 points costs at most
160w
9 . The difference of cost is at least 34w.

• Contains a cluster of cardinality t = 5
Simple arguments show that amongst all clusters of cardinality 5, the following has the minimum
cost. Ci = {ri,2j−1, ri,2j , xi,j , yi−1,j , ri,2j+1}. The cost of this cluster is 16w. Arguing as before,
this allows us to use 3 singletons. Hence, a nice cluster on these 8 points costs at most 16w 8

9 . The
difference of cost is at least 16w

9 .
• Contains a cluster of cardinality t = 4

It is easy to see that amongst all clusters of cardinality 4, the following has the minimum cost.
Ci = {ri,2j−1, ri,2j , xi,j , ri,2j+1}. The cost of this cluster is 11w. Arguing as before, this allows
us to use 2 singletons. Hence, a nice cluster on these 6 points costs at most 32w

3 . The difference of
cost is at least w3 .

• All the clusters have cardinality ≤ 3
Observe that amongst all non-nice clusters of cardinality 3, the following has the minimum cost.
Ci = {ri,2j−1, ri,2j , ri,2j+1}. The cost of this cluster is 8w. Arguing as before, this allows us
to use at most 1 more singleton. Hence, a nice cluster on these 4 points costs at most 64w

9 . The
difference of cost is at least 8w

9 .
It is also simple to see that any non-nice clustering of size 2 causes an increase in cost of at least w.

Proof of lemma 12. The proof is identical to the proof of Lemma 11 in [Vat09]. Note that the
parameters that we use are different with those utilized by [Vat09]; however, this is not an issue,
because we can invoke our lemma 11 instead of the analogous result in Vattani (i.e., lemma 10 in
Vattani’s paper). The sketch of the proof is that based on lemma 11, only nice clusterings of X cost
≤ L. On the other hand, a nice clustering corresponds to an exact 3-set cover. Therefore, if there
exists a clustering of X of cost ≤ L, then there is an exact 3-set cover. The other way is simpler
to proof; assume that there exists an exact 3-set cover. Then, the corresponding construction of X
makes sure that it will be clustered nicely, and therefore will cost ≤ L.

Proof of lemma 13. As argued before, any nice clustering has four different types of clusters. We
will calculate the minimum ratio ai =

d(y,µ)
d(x,µ) for each of these clusters Ci (where x ∈ Ci, y 6∈ Ci

and µ is mean of all the points in Ci.) Then, the minimum ai will give the desired γ.

(1) For Type E clusters ai = h/1 =
√
5.

(2) For Type F clusters. ai =
√

4+16(h2−1)
3

2h/3 =
√

17
5 ≈ 1.84.

(3) For Type I clusters, standard calculation show that ai > 2.

(4) For Type J clusters ai =
2+
√

6
2√
6

2

> 2.

Furthurmore, |X | = (12lm+ 3l − 6m)w and k = 6lm+ 2l − 3m. Hence for w =poly(l,m) our
hardness result holds for k = |X |ε for any 0 < ε < 1.

Lemmas 12 and 13 complete the proof of the main result (Thm. 10).
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D Concentration inequalities

Theorem 12 (Generalized Hoeffding’s Inequality (e.g., [AG15])). Let X1, . . . .Xn be i.i.d random
vectors in some Hilbert space such that for all i, ‖Xi‖2 ≤ R and E[Xi] = µ. If n > c log(1/δ)ε2 , then
with probability atleast 1− δ, we have that∥∥∥µ− 1

n

∑
Xi

∥∥∥2
2
≤ R2ε
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