A Proof of Theorem 3.1

In order to prove Theorem 3.1, it suffices to show that for any k € [i,j — 1], P(ax|S) = e~ - P(ax+1]S).
Forafixed k, let A = {0 : ar o a;,Va; € S\{ax}} and B = {0 : ax41 >+ a;,Va; € S\{ar+1}}. Let
f + A — B be the function which switches the position of a;, and a1. Note that it is a bijection from A to B.
Consequently, we can write

79 d(o,w) e*&d(f(o'),w)

P(ax|S) = Z 00 and P(ar+1]S) = Z W

g€A c€eA

We next show that forall o € A, d(f(0), w) = d(o,w) + 1, which in turn implies the desired result. Because S
is a contiguous set, ar and a1 are consecutive items in w. This implies that in any fixed o, any disagreement
between ay, and some a; with a; # ar+1 will induce a disagreement between ax+1 and a; in f(co). Similarly,
any disagreement between a1 and some a; with a; # ax in o will induce a disagreement between ay and a;
in f(o). Consequently, the only additional disagreement in f (o) comes from the disagreement between aj, and
a1 after being switched. This implies that for all o € A, d(f(o), w) = d(o, w) + 1 and concludes the proof.

B Proof of Theorem 3.2 (continued)

—60.C3(o)

In this section, we prove that for a fixed R, > is equal to

oeh(R) €

o0 (h—1-52 1) ﬁ (|G, 0)
Tt e0USHEmo=1 1L 4(r,,,0) - (|Gl — 1, 0)

(G| = mo,0) - P(|S] + mo, 0) -

We use a similar approach than in the first part of the proof. Let T be the set of (G1,...,Gn) C (Gi,...,Gar)
such that |G, | = rp, forallm € [M]. Forall v = (G1,...,Gum) € T, let t(v) be the set of permutations o

which satisty the following two conditions:
e o € h(R).

e for all m € [M], the subset of products from G, which is preferred to ay, is exactly G,

With this notation, we can write
Z e~ 0:Calo) _ Z Z e~ 0" (P1(0)+D2(0)+ 5, e a) Da(o, m))
oc€h(R) yeT oet(y)

where,

e D (o) is the sum of disagreements £(o, 4, j) over pairs of products (7, j) such that either ¢ = k and
ak >o Gj O g o a; and ax >0 a;.

e Dy (o) is the sum of disagreements £(c, ¢, j) over pairs of products (¢, j) such that a; >, aj and
a; >o Qk.

e forall m € [M], Ds(o, m) is the sum of disagreements &(o, %, j) over pairs of products (7, ) such
that a; € Gy, and a; € G, \Gm

Using the definition of Di(c) and D2(o) together with Theorem 3.1, we have that
Eoét(’Y) e 0" (P1(@)FD2()+ e an P3 (@) ig equal to

l—
e—9<(k—1—2m:11 m)

m D3(o,m))
1+ .-+ e0(S[+mo—1) . Z e €[M]
aet(y)

(1G] =m0, 0) - (S| +mo, 0) -

To complete the proof, it remains to compute 37 1> ¢, e~ Xmenn P3(2m) Uging the definition of the
normalization constant, we have for all m € [M],

B(1Gon, 0) = (1, 0) - (|Gl — 7 0) - 37 3 7O Palom),
yel oet(y)
which implies that

M

—0- () Dalom) _ IGmI 0)
Z Z e em Ps H ,¢, — (‘Gml_rrmg)’

yel' oet(y)

and concludes the proof.
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C Proof of Theorem 5.1

Letz = (x1,...,%n) be a feasible binary vector to the IP and let S = {a; : z; = 1}. Note that there is a one to
one correspondence between feasible vector x to the IP and feasible assortment S such that a; € S and aq € S.
In particular, z; = 1 if ¢ € S and x; = 0 otherwise. Consequently, we can rewrite the IP as

max max Zri~7r(i,5,n)
scu

a;GS )8
sit. m(i,8,k+1) = (1 — wkt1,s) - m(i, 8, k) + Yi s, k1, Vi, s, Vk > 2
m(k+1,8,k+1) = 25 k41, Vs, Vk > 2
0 <wyisn < arsr ¢ S| Vey1,s-1 - 7w(i,s — 1,k —1), Vi, s, Vk > 2
n k—1
0< 2ok < Maksr €8] prars- Y Y w6k —1), Vs, Vk > 2
l=s i=1
r(1,1,1) =1

Note that it is always optimal to set y; s x and z, ; at their upper bound because all the coefficients in the
objective function are non-negative. The correctness of Algorithm 1 then shows that the IP is an equivalent
formulation of (2).
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