
A Proof of Theorem 1

Proof. It is easy to see that by the end of the first iteration of Algorithm 1, ψ̃1 and ψ1 lie in the span
of {bi}ri=1, while φ̃1 and φ1 lie in the span of {ai}ri=1. And therefore they remain in these spaces
for all t ≥ 1.

Let us first focus on φt. For t ≥ 2, we observe that

φt = Tψt−1

�





φ̃t





 = TT⊤φt−2

�

�



φ̃t





 ·




ψ̃t−1







�

.

Since


φt−2



 = kφtk = 1, it is equivalent to using the following updates:

φt ← TT⊤φt−2, φt ← φt/ kφtk .

This indicates that, Algorithm 1 runs the standard power iterations on TT⊤ to generate the {φt}t≥1

sequence for every two steps.

(i) For t = 2, 4, . . . , we have φt =
(TT⊤)

t
2 φ0

�

�

�
(TT⊤)

t
2 φ0

�

�

�

. Let M = TT⊤, whose nonzero eigenvalues are

ρ21 ≥ ρ22 ≥ · · · ≥ ρ2r > 0, with corresponding eigenvectors a1, . . . ,ar. Then, for i = 1, . . . , r,

(a⊤i φt)
2 =

�

a⊤i M
t
2φ0

�2





M
t
2φ0







2 =

�

a⊤i M
t
2φ0

�2

φ⊤
0 M

tφ0

=

�

ρtia
⊤
i φ0

�2

Pr
j=1 ρ

2t
j (a⊤j φ0)

2
=

�

a⊤i φ0

�2

Pr
j=1

�

ρ2
j

ρ2
i

�t

(a⊤j φ0)
2

≤
�

a⊤i φ0

�2

�

ρ2
1

ρ2
i

�t

(a⊤1 φ0)
2

=

�

a⊤i φ0

�2

(a⊤1 φ0)
2

�

ρ2i
ρ21

�t

=

�

a⊤i φ0

�2

(a⊤1 φ0)
2

�

1− ρ21 − ρ2i
ρ21

�t

≤
�

a⊤i φ0

�2

(a⊤1 φ0)
2
exp

�

−ρ21 − ρ2i
ρ21

t

�

.

(ii) For t = 1, 3, . . . , we have φt =
(TT⊤)

t−1
2 Tψ0

�

�

�

�

(TT⊤)
t−1
2 Tψ0

�

�

�

�

. Let N = T⊤T, whose nonzero eigenvalues

are ρ21 ≥ ρ22 ≥ · · · ≥ ρ2r > 0, with corresponding eigenvectors b1, . . . ,br. Then, for i = 1, . . . , r,

(a⊤i φt)
2 =

�

a⊤i (TT⊤)
t−1
2 Tψ0

�2






(TT⊤)

t−1
2 Tψ0







2 =

�

(T⊤ai)⊤N
t−1
2 ψ0

�2

ψ⊤
0 N

tψ0

=

�

ρtib
⊤
i ψ0

�2

Pr
j=1 ρ

2t
j (b⊤

j ψ0)
2

≤
�

b⊤
i ψ0

�2

(b⊤
1 ψ0)

2
exp

�

−ρ21 − ρ2i
ρ21

t

�

.

Given δ ∈ (0, 1), define S(δ) = {i : ρ2i > (1− δ)ρ21}. For δ1, δ2 ∈ (0, 1), define

T (δ1, δ2) := ⌈ 1

δ1
log

�

1

µδ2

�

⌉.

For all i 6∈ S(δ1), when t > T (δ1, δ2), it holds that (a⊤i φt)
2 ≤ δ2(a

⊤
i φ0)

2 if t is even, and
(a⊤i φt)

2 ≤ δ2(b
⊤
i ψ0)

2 if t is odd. In both cases, we have
P

i∈S(δ1)
(a⊤i φt)

2 ≥ 1− δ2.

When there exists a postive singular value gap, i.e., ρ1 − ρ2 > 0, set δ1 = (ρ21 − ρ22)/ρ
2
1 and thus

S(δ1) = 1. Futhermore, set δ2 = η and we obtain (a⊤1 φt)
2 ≥ 1− η.
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The proof for ψt is completely analogous. To obtain the bound on the objective, we have

u⊤
t Σxyvt = φ⊤

t Tψt = ρ1(φ
⊤
t a1)(ψ

⊤
t b1) +

r
X

i=2

ρi(φ
⊤
t ai)(ψ

⊤
t bi)

≥ ρ1(φ
⊤
t a1)(ψ

⊤
t b1)− ρ1

r
X

i=2

�

�

�
φ⊤

t ai

�

�

�

�

�

�
ψ⊤

t bi

�

�

�

≥ ρ1(1− η)− ρ1

v

u

u

t

r
X

i=2

�

φ⊤
t ai

�2

v

u

u

t

r
X

i=2

�

ψ⊤
t bi

�2

≥ ρ1(1− η)− ρ1η = ρ1(1− 2η),

where we have used the Cauchy-Schwarz inequality in the second inequality.

B Proof of Theorem 2

From now on, we distinguish the iterates of our stochastic algorithm (Algorithm 2) from the iterates
of the exact power iterations (Algorithm 1) and denote the latter with asterisks, i.e., ũ∗

t and ṽ∗
t for

the unnormalized iterates and u∗
t and v∗

t for the normalized iterates. We denote the exact optimum
of ft(u) and gt(v) by ūt and v̄t respectively.

The following lemma bounds the distance between the iterates of inexact and exact power iterations.
Lemma 6. Assume that Algorithm 1 and Algorithm 2 start with the same initialization, i.e., ũ0 = ũ∗

0
and ṽ0 = ṽ∗

0 . Then, for t ≥ 1, the unnormalized iterates of Algorithm 2 satisfy

max
�



Σ
1
2
xxũt −Σ

1
2
xxũ

∗
t





 ,




Σ
1
2
yyṽt −Σ

1
2
yyṽ

∗
t







�

≤ S̃t,

where

S̃t :=
√
2ǫ

(2ρ1/ρr)
t − 1

(2ρ1/ρr)− 1
.

Furthermore, for t ≥ 1, the normalized iterates of Algorithm 2 satisfy

max
�



Σ
1
2
xxut −Σ

1
2
xxu

∗
t





 ,




Σ
1
2
yyvt −Σ

1
2
yyv

∗
t







�

≤ St :=
2S̃t

ρr
.

Proof. We focus on the {ũt}t≥0 and {ut}t≥0 sequences below; the proof for {ṽt}t≥0 and {vt}t≥0

is completely analogous.

We prove the bound for unnormalized iterates by induction. First, the case for t = 1 holds trivially.
For t ≥ 2, we can bound the error of the unnormalized iterates using the exact solution to ft(u):






Σ

1
2
xxũt −Σ

1
2
xxũ

∗
t






≤






Σ

1
2
xxũt −Σ

1
2
xxūt






+





Σ

1
2
xxūt −Σ

1
2
xxũ

∗
t






. (14)

For the first term of (14), notice ft(u) is a quadratic function with minimum achieved at ūt =
Σ−1

xxΣxyvt−1. For the approximate solution ũt, we have

ft(ũt)− ft(ūt) =
1

2
(ũt − ūt)

⊤Σxx(ũt − ūt) =
1

2





Σ
1
2
xxũt −Σ

1
2
xxūt







2

≤ ǫ.

It then follows that




Σ
1
2
xxũt −Σ

1
2
xxūt





 ≤
√
2ǫ.

The second term of (14) is concerned with the error due to inexact target in the least squares problem
ft(u) as vt−1 is different from v∗

t−1. We can bound it as





Σ

1
2
xxūt −Σ

1
2
xxũ

∗
t






=






Σ

1
2
xxΣ

−1
xxΣxyvt−1 −Σ

1
2
xxΣ

−1
xxΣxyv

∗
t−1







=






�

Σ
− 1

2
xx ΣxyΣ

− 1
2

yy

��

Σ
1
2
yy(vt−1 − v∗

t−1)
�





≤ kTk





Σ

1
2
yyvt−1 −Σ

1
2
yyv

∗
t−1






= ρ1






Σ

1
2
yyvt−1 −Σ

1
2
yyv

∗
t−1






. (15)
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In view of the update rule of our algorithm and the triangle inequality, we have




Σ
1
2
yyvt−1 −Σ

1
2
yyv

∗
t−1







≤













Σ
1
2
yyṽt−1





Σ
1
2
yyṽt−1







− Σ
1
2
yyṽt−1





Σ
1
2
yyṽ

∗
t−1



















+













Σ
1
2
yyṽt−1





Σ
1
2
yyṽ

∗
t−1







− Σ
1
2
yyṽ

∗
t−1





Σ
1
2
yyṽ

∗
t−1



















=





Σ

1
2
yyṽt−1







�

�

�

�

�

�

1




Σ
1
2
yyṽt−1







− 1




Σ
1
2
yyṽ

∗
t−1







�

�

�

�

�

�

+
1





Σ
1
2
yyṽ

∗
t−1












Σ

1
2
yyṽt−1 −Σ

1
2
yyṽ

∗
t−1







=
1





Σ
1
2
yyṽ

∗
t−1







�

�

�






Σ

1
2
yyṽ

∗
t−1






−






Σ

1
2
yyṽt−1







�

�

�
+

1




Σ
1
2
yyṽ

∗
t−1












Σ

1
2
yyṽt−1 −Σ

1
2
yyṽ

∗
t−1







≤ 2





Σ

1
2
yyṽ

∗
t−1











Σ
1
2
yyṽt−1 −Σ

1
2
yyṽ

∗
t−1





 ≤ 2S̃t−1





Σ

1
2
yyṽ

∗
t−1







. (16)

We now bound





Σ

1
2
yyṽ

∗
t−1






from below. Since t ≥ 2, we have

Σ
1
2
yyṽ

∗
t−1 = Σ

1
2
yyΣ

−1
yy Σ

⊤
xyu

∗
t−2 =

�

Σ
− 1

2
yy Σ⊤

xyΣ
− 1

2
xx

��

Σ
1
2
xxu

∗
t−2

�

= T⊤
�

Σ
1
2
xxu

∗
t−2

�

.

Now, Σ
1
2
xxu

∗
t−2 corresponds to φt−2 in Algorithm 1, which has unit length and lies in the span of

{a1, . . . ,ar}, so we have




Σ
1
2
yyṽ

∗
t−1





 =


T⊤φt−2



 ≥ ρr.

Combining (14), (15) and (16) gives





Σ

1
2
xxũt −Σ

1
2
xxũ

∗
t






≤

√
2ǫ+

2ρ1
ρr

· S̃t−1 =
√
2ǫ+

2ρ1
ρr

·
√
2ǫ

(2ρ1/ρr)
t−1 − 1

(2ρ1/ρr)− 1

=
√
2ǫ

(2ρ1/ρr)
t − 1

(2ρ1/ρr)− 1
= S̃t.

The bound for normalized iterates follows from (16).

Proof of Theorem 2. We prove the theorem by relating the iterates of inexact power iterations to
those of exact power iterations.

Assume the same initialization as in Lemma 6. First observe that

(u⊤
t Σxxu

∗)2 =
�

(u∗
t )

⊤
Σxxu

∗ + (ut − u∗
t )

⊤
Σxxu

∗
�2

≥
�

(u∗
t )

⊤
Σxxu

∗
�2

+ 2
�

(u∗
t )

⊤
Σxxu

∗
��

(ut − u∗
t )

⊤
Σxxu

∗
�

≥
�

(u∗
t )

⊤
Σxxu

∗
�2

− 2

�

�

�

�

�

Σ
1
2
xx (ut − u∗

t )
�⊤ �

Σ
1
2
xxu

∗
�

�

�

�

�

≥
�

(u∗
t )

⊤
Σxxu

∗
�2

− 2





Σ

1
2
xxut −Σ

1
2
xxu

∗
t






(17)

where we have used the fact that




Σ
1
2
xxut





 =




Σ
1
2
xxu

∗
t





 =




Σ
1
2
xxu

∗




 = 1 and the Cauchy-Schwarz

inequality in the last two steps.

Applying Theorem 1 with T ≥ ⌈ ρ2
1

ρ2
1−ρ2

2
log

�

2
µη

�

⌉, we have that
�

(u∗
T )

⊤
Σxxu

∗
�2

≥ 1 − η/2.

On the other hand, in view of Lemma 6, we have for the specified ǫ value in Algorithm 2 that




Σ
1
2
xxuT −Σ

1
2
xxu

∗
T





 ≤ ST = η/4. Plugging these two bounds into (17) gives the desired result.

The proof for vT is completely analogous.
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C SVRG for minimizing f(u)

We provide the pseudo-code of SVRG for solving the least squares problem (6) below.

SVRG for minu f(u) := 1
N

PN
i=1

�

1
2

�

�u⊤xi − v⊤yi

�

�

2
+ γx

2 kuk2
�

.

Input: Stepsize ξ.
Initialize u(0) ∈ R

dx .
for j = 1, 2, . . . ,M do

w0 ← u(j−1)

Evaluate the batch gradient ∇f(w0) = X(X⊤w0 −Y⊤v)/N + γxw0

for t = 1, 2, . . . ,m do
Randomly pick it from {1, . . . , N}
wt ← wt−1 − ξ

�

(xitx
⊤
it
+ γxI)(wt−1 −w0) +∇f(w0)

�

end for
u(j) ← wt for randomly chosen t ∈ {1, . . . ,m}.

end for
Output: u(M) is the approximate solution.

D Initial suboptimality of warm-starts in Algorithm 2

At time step t, we initialize the least squares problem ft(u) with the unnormalized iterate ũt−1

from the previous time step. We now bound the suboptimality of this initialization. Observe that the
minimum of ft(u) is achieved by ūt = Σ−1

xxΣxyvt−1, and that

ft(ũt−1)− ft(ūt) =
1

2
(ũt−1 − ūt)

⊤Σxx(ũt−1 − ūt) =
1

2





Σ
1
2
xxũt−1 −Σ

1
2
xxūt







2

.

Applying the triangle inequality, we have for t = 1 that





Σ

1
2
xxũ0 −Σ

1
2
xxū1






≤






Σ

1
2
xxũ0






+





Σ

1
2
xxū1






≤ 1 +






Σ

1
2
xxΣ

−1
xxΣxyv0







= 1 +




TΣ
1
2
yyv0





 ≤ 1 + kTk




Σ
1
2
yyv0





 = 1 + ρ1 ≤ 2

where we have used facts that





Σ

1
2
yyũ0






=






Σ

1
2
yyv0






= 1 due to the initial normalizations.

And we have for t ≥ 2 that




Σ
1
2
xxũt−1 −Σ

1
2
xxūt





 ≤




Σ
1
2
xxũt−1 −Σ

1
2
xxūt−1





+




Σ
1
2
xxūt−1 −Σ

1
2
xxūt







≤
√
2ǫ+






Σ

1
2
xxΣ

−1
xxΣxyvt−2 −Σ

1
2
xxΣ

−1
xxΣxyvt−1







=
√
2ǫ+





T
�

Σ
1
2
yyvt−2 −Σ

1
2
yyvt−1

�





≤
√
2ǫ+ kTk






Σ

1
2
yyvt−2 −Σ

1
2
yyvt−1







≤
√
2ǫ+ 2ρ1 ≤

√
2ǫ+ 2

where we have used the fact that





Σ

1
2
yyvt−2






=






Σ

1
2
yyvt−1






= 1 in the last inequality.

Therefore, for all t ≥ 1, the ration between initial suboptimality and required accuracy is

ft(ũt−1)− ft(ūt)

ǫ
∼ 2

ǫ
.
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E The shift-and-invert preconditioning (SI) algorithm for CCA

Our shift-and-invert preconditioning (SI) meta-algorithm is detailed in Algorithm 3.

Algorithm 3 The shift-and-invert preconditioning meta-algorithm for CCA.

Input: Data matrices X, Y, regularization parameters (γx, γy), an estimate Δ̃ for Δ = ρ1 − ρ2.
Initialize ũ0 ∈ R

dx , ṽ0 ∈ R
dy

u0 ← ũ0

�
p

ũ⊤
0 Σxxũ0, v0 ← ṽ0

�

q

ṽ⊤
0 Σyyṽ0

// Phase I: shift-and-invert preconditioning for eigenvectors of Mλ

s ← 0, λ(0) ← 1 + Δ̃
repeat

s ← s+ 1
for t = (s− 1)m1 + 1, . . . , sm1 do

Optimize the least squares problem

min
u,v

ht(u,v) :=
1

2

�

u⊤v⊤�
�

λ(s−1)Σxx −Σxy

−Σ⊤
xy λ(s−1)Σyy

� �

u
v

�

− u⊤Σxxut−1 − v⊤Σyyvt−1

and output an approximate solution (ũt, ṽt) satisfying ht(ũt, ṽt) ≤ minu,v ht(u,v) + ǫ̃.

Normalization:

�

ut

vt

�

←
√
2

�

ũt

ṽt

��

q

ũ⊤
t Σxxũt + ṽ⊤

t Σyyṽt

end for
Optimize the least squares problem

min
w

ls(w) :=
1

2
w⊤

�

λ(s−1)Σxx −Σxy

−Σ⊤
xy λ(s−1)Σyy

�

w −w⊤
�

Σxxusm1

Σyyvsm1

�

and output an approximate solution ws satisfying ls(ws) ≤ minw ls(w) + ǫ̃.
Δs ← 1

2 · 1

1
2 [u⊤

sm1
v⊤
sm1

]

�

Σxx

Σyy

�

ws−2
√

ǫ̃/Δ̃

, λ(s) ← λ(s−1) − Δs

2

until Δ(s) ≤ Δ̃
λ(f) ← λ(s)

for t = sm1 + 1, sm1 + 2, . . . , sm1 +m2 do
Optimize the least squares problem

min
u,v

ht(u,v) :=
1

2

�

u⊤v⊤�
�

λ(f)Σxx −Σxy

−Σ⊤
xy λ(f)Σyy

� �

u
v

�

− u⊤Σxxut−1 − v⊤Σyyvt−1

and output an approximate solution (ũt, ṽt) satisfying ht(ũt, ṽt) ≤ minu,v ht(u,v) + ǫ̃.

Normalization:

�

ut

vt

�

←
√
2

�

ũt

ṽt

��

q

ũ⊤
t Σxxũt + ṽ⊤

t Σyyṽt

end for
// Phase II: Final normalization

T ← sm1 +m2, û ← uT /
q

u⊤
TΣxxuT , v̂ ← vT /

q

v⊤
T ΣyyvT

Output: (û, v̂) is the approximate solution to CCA.

F Proof of Theorem 4

The proof of Theorem 4 closely follows that of [16, Theorem 4.2]. And we will need a few lemmas
on the convergence of inexact power iterations.
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F.1 Auxiliary lemmas

Define the condition number of Mλ as

κλ :=
σ1(Mλ)

σd(Mλ)
=

1
λ−ρ1

1
λ+ρ1

=
λ+ ρ1
λ− ρ1

,

and the inverse relative spectral gap of Mλ as

δλ :=
σ1(Mλ)

σ1(Mλ)− σ2(Mλ)
=

1
λ−ρ1

1
λ−ρ1

− 1
λ−ρ2

=
λ− ρ2
ρ1 − ρ2

.

The first lemma states the convergence of exact power iterations, paralleling [16, Theorem A.1].
Lemma 7 (Convergence of exact power iterations). Fix α > 0. For the exact power iterations on
Mλ where

�

ũ∗
t

ṽ∗
t

�

←
�

λΣxx −Σxy

−Σ⊤
xy λΣyy

�−1 �
Σxx

Σyy

� �

u∗
t−1

v∗
t−1

�

,

�

u∗
t

v∗
t

�

←
√
2

�

ũ∗
t

ṽ∗
t

��

q

(ũ∗
t )

⊤Σxxũ
∗
t + (ṽ∗

t )
⊤Σyyṽ

∗
t , for t = 1, . . . ,m,

and µ′ := 1
4

�

(u∗
0)

⊤Σxxu
∗ + (v∗

0)
⊤Σyyv

∗�2 > 0, we have

• (crude regime)

1

2

h

(u∗
t )

⊤Σ
1
2
xx, (v

∗
t )

⊤Σ
1
2
yy

i

Mλ

"

Σ
1
2
xxu

∗
t

Σ
1
2
yyv

∗
t

#

≥ (1− α) · σ1(Mλ)

for t ≥ ⌈ 1
α log

�

2
µ′α

�

⌉,

• (accurate regime)

1

4

�

(u∗
t )

⊤Σxxu
∗ + (v∗

t )
⊤Σyyv

∗�2 ≥ 1− α

for t ≥ ⌈ δλ
2 log

�

1
µ′α

�

⌉.

The second lemma bounds the distances between the iterates of inexact and exact power itera-
tions, paralleling [16, Lemma 4.1]. Recall that the (ũt, ṽt) in Algorithm 3 satisfies ht(ũt, ṽt) ≤
minu,v ht(u,v) + ǫ̃. Let (ūt, v̄t) be the exact minimum of ht. Then we have

ht(ũt, ṽt)− ht(ūt, v̄t)

=
1

2

�

(ũt − ūt)
⊤ (ṽt − v̄t)

⊤�
�

λΣxx −Σxy

−Σ⊤
xy λΣyy

� �

ũt − ūt

ṽt − v̄t

�

=
1

2

�

(ũt − ūt)
⊤ (ṽt − v̄t)

⊤�
�

λΣxx −Σxy

−Σ⊤
xy λΣyy

� �

ũt − ūt

ṽt − v̄t

�

=
1

2

h

(ũt − ūt)
⊤Σ

1
2
xx (ṽt − v̄t)

⊤Σ
1
2
yy

i

�

λI −T

−T⊤ λI

�

"

Σ
1
2
xx(ũt − ūt)

Σ
1
2
yy(ṽt − v̄t)

#

=
1

2

h

(ũt − ūt)
⊤Σ

1
2
xx (ṽt − v̄t)

⊤Σ
1
2
yy

i

M−1
λ

"

Σ
1
2
xx(ũt − ūt)

Σ
1
2
yy(ṽt − v̄t)

#

≤ ǫ̃. (18)

Lemma 8 (Power iterations with inexact matrix-vector multiplications). Consider the inexact power
iterations on Mλ where

(ũt, ṽt) satisfies (18),
�

ut

vt

�

←
√
2

�

ũt

ṽt

��

q

ũ⊤
t Σxxũt + ṽ⊤

t Σyyṽt, for t = 1, . . . ,m.

15



Compare these iterates with those of the exact power iterations described in Lemma 7 using the
same initialization ũ0 = ũ∗

0, ṽ0 = ṽ∗
0 . Then, for t ≥ 0, the unnormalized iterates satisfy











1√
2

"

Σ
1
2
xxũt

Σ
1
2
yyṽt

#

− 1√
2

"

Σ
1
2
xxũ

∗
t

Σ
1
2
yyṽ

∗
t

#









≤ R̃t

where

R̃t :=
p

σ1(Mλ) · ǫ̃ ·
(2κλ)

t − 1

2κλ − 1
,

while the normalized iterates satisfy










1√
2

"

Σ
1
2
xxut

Σ
1
2
yyvt

#

− 1√
2

"

Σ
1
2
xxu

∗
t

Σ
1
2
yyv

∗
t

#









≤ Rt :=
2R̃t

σd(Mλ)
.

The third lemma states the convergence of inexact power iterations, paralleling [16, Theorem 4.1].
Lemma 9 (Convergence of inexact power iterations). Fix α > 0. Consider the inexact power
iterations described in Lemma 8.

• (crude regime) Let t1 = ⌈ 2
α log

�

4
µ′α

�

⌉. Fix T ≥ t1, and set ǫ̃(T ) =

α2·σd(Mλ)
64κλ

�

2κλ−1
(2κλ)

T−1

�2

. Then we have

1

2

h

u⊤
TΣ

1
2
xx, v

⊤
T Σ

1
2
yy

i

Mλ

"

Σ
1
2
xxuT

Σ
1
2
yyvT

#

≥ (1− α) · σ1(Mλ).

• (accurate regime) Let t2 = ⌈ δ(Mλ)
2 log

�

2
µ′α

�

⌉. Fix T ≥ t2, and set ǫ̃(T ) =

α2·σd(Mλ)
64κλ

�

2κλ−1
(2κλ)

T−1

�2

. Then we have

1

4

�

u⊤
TΣxxu

∗ + v⊤
T Σyyv

∗�2 ≥ 1− α.

For brevity, let us define the following short-hands:

r̃t =
1√
2

"

Σ
1
2
xxũt

Σ
1
2
yyṽt

#

, rt =
1√
2

"

Σ
1
2
xxut

Σ
1
2
yyvt

#

, r̄t =
1√
2

"

Σ
1
2
xxūt

Σ
1
2
yyv̄t

#

,

r̃∗t =
1√
2

"

Σ
1
2
xxũ

∗
t

Σ
1
2
yyṽ

∗
t

#

, r∗t =
1√
2

"

Σ
1
2
xxu

∗
t

Σ
1
2
yyv

∗
t

#

, r∗ =
1√
2

"

Σ
1
2
xxu

∗

Σ
1
2
yyv

∗

#

.

All these vectors are in R
d and have length 1.

Observe that the matrix-vector multiplication (8) is equivalent to
"

Σ
1
2
xxũt

Σ
1
2
yyṽt

#

←
"

Σ
1
2
xx

Σ
1
2
yy

#

�

λΣxx −Σxy

−Σ⊤
xy λΣyy

�−1
"

Σ
1
2
xx

Σ
1
2
yy

#"

Σ
1
2
xxut−1

Σ
1
2
yyvt−1

#

,

and
"

Σ
1
2
xx

Σ
1
2
yy

#

�

λΣxx −Σxy

−Σ⊤
xy λΣyy

�−1
"

Σ
1
2
xx

Σ
1
2
yy

#

=

"

Σ
− 1

2
xx

Σ
− 1

2
yy

#−1
�

λΣxx −Σxy

−Σ⊤
xy λΣyy

�−1
"

Σ
− 1

2
xx

Σ
− 1

2
yy

#−1

=

 "

Σ
− 1

2
xx

Σ
− 1

2
yy

#

�

λΣxx −Σxy

−Σ⊤
xy λΣyy

�

"

Σ
− 1

2
xx

Σ
− 1

2
yy

#!−1

=

"

λI −Σ
− 1

2
xx ΣxyΣ

− 1
2

yy

−Σ
− 1

2
yy Σ⊤

xyΣ
− 1

2
xx λI

#−1

=Mλ.
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Then the updates for exact power iterations can be written as

r̃∗t ← Mλr
∗
t−1, r∗t ← r̃∗t / kr̃∗t k , t = 1, . . . ,

and the updates for inexact power iterations can be written as

r̃t ≈ Mλrt−1, rt ← r̃t/ kr̃tk , t = 1, . . . .

Note we have according to (18) that

ǫ̃ ≥ (r̃t − r̄t)
⊤M−1

λ (r̃t − r̄t) ≥ σd(M
−1
λ ) · kr̃t − r̄tk2 =

1

σ1(Mλ)
· kr̃t − r̄tk2

or equivalently

kr̃t − r̄tk ≤
p

σ1(Mλ) · ǫ. (19)

Proof of Lemma 7. Recall that the eigenvectors of Mλ are:

λ1 :=
1

λ− ρ1
> λ2 :=

1

λ− ρ2
≥ · · · ≥ λd−1 :=

1

λ+ ρ2
≥ λd :=

1

λ+ ρ1
,

with corresponding eigenvectors

e1 = r∗ =
1√
2

�

a1
b1

�

, e2 =
1√
2

�

a2
b2

�

, . . . , ed−1 =
1√
2

�

a2
−b2

�

, ed =
1√
2

�

a1
−b1

�

.

By the update rule of exact power iterations, it holds that for i = 1, . . . , d that

(e⊤i r
∗
t )

2 =

�

e⊤i M
t
λr

∗
0

�2

kMt
λr

∗
0k

2 =

�

e⊤i M
t
λr0

�2

(r∗0)
⊤M2t

λ r∗0
=

�

λt
ie

⊤
i r

∗
0

�2

Pd
j=1 λ

2t
j

�

e⊤j r
∗
0

�2 =

�

e⊤i r
∗
0

�2

Pd
j=1

�

λj

λi

�2t
�

e⊤j r
∗
0

�2

≤
�

e⊤i r
∗
0

�2

�

λ1

λi

�2t
�

e⊤1 r
∗
0

�2
=

�

e⊤i r
∗
0

�2

�

e⊤1 r
∗
0

�2

�

λi

λ1

�2t

=

�

e⊤i r
∗
0

�2

µ̃

�

1− λ1 − λi

λ1

�2t

≤
�

e⊤i r
∗
0

�2

µ̃
· exp

�

−2
λ1 − λi

λ1
t

�

.

Given δ ∈ (0, 1), define S(δ) = {i : λi > (1− δ)λ1}. For δ1, δ2 ∈ (0, 1), define

T (δ1, δ2) := ⌈ 1

2δ1
log

�

1

µ̃δ2

�

⌉.

For all i 6∈ S(δ1), when t > T (δ1, δ2), it holds that (e⊤i r
∗
t )

2 ≤ δ2(e
⊤
i r

∗
0)

2, and thus in particular
P

i∈S(α/2)

�

e⊤i r
∗
t

�2 ≥ 1− δ2.

Part one (crude regime) of the lemma now follows by noticing that, by setting δ1 = δ2 = α
2 we have

that for t ≥ T
�

α
2 ,

α
2

�

, it holds that

(r∗t )
⊤Mλr

∗
t =

d
X

i=1

λi

�

e⊤i r
∗
t

�2 ≥
X

i∈S(α/2)

�

1− α

2

�

λ1

�

e⊤i r
∗
t

�2 ≥
�

1− α

2

�2

λ1 ≥ (1− α)λ1.

For the second part (accurate regime) of the lemma, note that S
�

λ1−λ2

λ1

�

= {1}. Thus for all

t ≥ T
�

λ1−λ2

λ1
,α

�

, it holds that (e⊤1 r
∗
t )

2 ≥ 1− α.
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Proof of Lemma 8. We prove the bound for unnormalized iterates by induction. The case for t = 1
holds trivially. For t ≥ 2, we can bound the error of the unnormalized iterates using the exact
solution to h̃t:

kr̃t − r̃∗t k ≤ kr̃t − r̄tk+ kr̄t − r̃∗t k . (20)

The second term of (20) is concerned with the error due to inexact target in the least squares problem

ht(u,v) as

�

ut−1

vt−1

�

is different from

�

u∗
t−1

v∗
t−1

�

. We can bound this term as

kr̄t − r̃∗t k =


Mλrt−1 −Mλr
∗
t−1



 ≤ kMλk ·


rt−1 − r∗t−1





= σ1(Mλ) ·


rt−1 − r∗t−1



 . (21)

In view of the update rule of our algorithm and the triangle inequality, we have


rt−1 − r∗t−1





≤










r̃t−1

kr̃t−1k
− r̃t−1



r̃∗t−1















+











r̃t−1


r̃∗t−1





− r̃∗t−1


r̃∗t−1















= kr̃t−1k
�

�

�

�

�

1

kr̃t−1k
− 1



r̃∗t−1





�

�

�

�

�

+
1



r̃∗t−1







r̃t−1 − r̃∗t−1





=
1



r̃∗t−1





�

�



r̃∗t−1



− kr̃t−1k
�

�+
1



r̃∗t−1







r̃t−1 − r̃∗t−1





≤ 2


r̃∗t−1







r̃t−1 − r̃∗t−1



 ≤ 2R̃t−1


r̃∗t−1





. (22)

For t ≥ 2, we have r̃∗t−1 = Mλr
∗
t−2 and



r∗t−2



 = 1, and thus


r̃∗t−1



 ≥ σd(Mλ).

Combining (20), (21) and (22) gives

kr̃t − r̃∗t k ≤
p

σ1(Mλ) · ǫ+ 2κλR̃t−1 = R̃t.

The bound for normalized iterates follows from (22).

Proof of Lemma 9. For the first item (crude regime), observe that

r⊤t Mλrt = (r∗t )
⊤Mλr

∗
t +

�

(r∗t )
⊤Mλr

∗
t − r⊤t Mλrt

�

, (23)
and that

�

�(r∗t )
⊤Mλ(r

∗
t )− r⊤t Mλrt

�

� =

�

�

�

�

�

M
1
2

λ r
∗
t +M

1
2

λ rt

�⊤ �

M
1
2

λ r
∗
t −M

1
2

λ rt

�

�

�

�

�

≤




M
1
2

λ r
∗
t +M

1
2

λ rt











M
1
2

λ r
∗
t −M

1
2

λ rt







≤




M
1
2

λ





 kr∗t + rtk




M
1
2

λ





 kr∗t − rtk
≤ kMλk (kr∗t k+ krtk) kr∗t − rtk
= 2σ1(Mλ) · kr∗t − rtk .

Our choices of T and ǫ̃ make sure that (r∗T )
⊤Mλr

∗
T ≥ (1 − α

2 ) · σ1(Mλ) by Lemma 7 and that
kr∗T − rT k ≤ RT = α/4 by Lemma 8. Continuing from (23), we have

r⊤TMλrT ≥
�

1− α

2

�

· σ1(Mλ)−
α

2
· σ1(Mλ) = (1− α) · σ1(Mλ).

For the second item (accurate regime), observe that

(r⊤t r
∗)2 =

�

(r∗t )
⊤r∗ + (rt − r∗t )

⊤r∗
�2 ≥

�

(r∗t )
⊤r∗

�2 − 2 krt − r∗t k . (24)

Our choices of T and ǫ̃ make sure that
�

(r∗T )
⊤r∗

�2 ≥ 1 − α
2 by Lemma 7 and that kr∗T − rT k ≤

RT = α/4 by Lemma 8. Continuing from (24), we have

(r⊤T r
∗)2 ≥ 1− α

2
− α

2
= 1− α.
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F.2 Iteration complexity of Algorithm 3

Observe that, the for loops within the repeat-until loop, as well as the final for loop in Algorithm 3
are running inexact power iterations on Mλ(s)

and Mλ(f)
for m1 and m2 inexact matrix-vector mul-

tiplication respectively. And the convergence of inexact power iterations is provided by Lemma 8.

For each iteration of the repeat-until loop, we work in the crude regime and only require rsm1
to

give a constant multiple estimate of Mλ(s)
. The lemma below shows an important property of Δs

which is used to locate λ(f), and the number of iterations needed to reach λ(f).

Lemma 10 (Iteration complexity of the repeat-until loop in Algorithm 3). Suppose that Δ̃ ∈
[c1Δ, c2Δ] where c2 ≤ 1. Set m1 = ⌈8 log

�

16
µ′

�

⌉ and ǫ̃ ≤ 1
3084

�

Δ̃
18

�m1−1

in Algorithm 3.

Then for all s ≥ 1 it holds that

1

2
(λ(s−1) − ρ1) ≤ Δs ≤ λ(s−1) − ρ1,

upon exiting this loop, the λ(f) satisfies

ρ1 +
Δ̃

4
≤ λ(f) ≤ ρ1 +

3Δ̃

2
, (25)

and the number of iterations run by the repeat-until loop is log
�

1
Δ̃

�

.

Proof. Let σ be an upper bound of all σ1(Mλ(s)
) used in the repeat-until loop, i.e.,

σ ≥ σ1(Mλ(s)
), s = 1, 2, . . . .

And suppose for now that throughout the loop, ǫ̃ satisfies

√
σǫ̃ ≤

σ1

�

Mλ(s−1)

�

8
. (26)

Set α = 1
4 in Lemma 8 (crude regime), and with our choice of m1 and

ǫ̃ ≤
σd(Mλ(s)

)

1024κλ(s)

 

2κλ(s)
− 1

�

2κλ(s)

�m1 − 1

!2

, (27)

we have

r⊤sm1
Mλ(s−1)

rsm1
≥ 3

4
σ1(Mλ(s−1)

). (28)

In view of the definition of the vector ws in Algorithm 3, and following the same argument in (18),
we have









zs√
2
−Mλ(s−1)

rsm1









≤
q

σ1(Mλ(s−1)
) · ǫ̃

where zs =

"

Σ
1
2
xx

Σ
1
2
yy

#

ws.

Then for every iteration of the repeat-until loop, it holds that

1

2

�

u⊤
sm1

v⊤
sm1

�

�

Σxx

Σyy

�

ws

= r⊤sm1

�

zs√
2

�

= r⊤sm1
Mλ(s−1)

rsm1
+ r⊤sm1

�

zs√
2
−Mλ(s−1)

rsm1

�

∈
h

r⊤sm1
Mλ(s−1)

rsm1
−
q

σ1(Mλ(s−1)
) · ǫ̃, r⊤sm1

Mλ(s−1)
rsm1

+
q

σ1(Mλ(s−1)
) · ǫ̃
i

∈
h

r⊤sm1
Mλ(s−1)

rsm1
−
√
σǫ̃, r⊤sm1

Mλ(s−1)
rsm1

+
√
σǫ̃
i

,
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where we have used the Cauchy-Schwarz inequality in the second step.

In view of (26) and (28), it follows that

1

2

�

u⊤
sm1

v⊤
sm1

�

�

Σxx

Σyy

�

ws −
√
σǫ̃

∈
h

r⊤sm1
Mλ(s−1)

rsm1
− 2

√
σǫ̃, r⊤sm1

Mλ(s−1)
rsm1

i

∈
�

1

2
σ1(Mλ(s−1)

), σ1(Mλ(s−1)
)

�

.

By the definition of Δs in Algorithm 3 and the fact that σ1(Mλ(s−1)
) = 1

λ(s−1)−ρ1
, we have

Δs =
1

2
· 1

1
2

�

u⊤
sm1

v⊤
sm1

�

�

Σxx

Σyy

�

ws −
√
σǫ̃

∈
�

1

2

�

λ(s−1) − ρ1
�

, λ(s−1) − ρ1

�

. (29)

And as a result,

λ(s) = λ(s−1) −
Δs

2
≥ λ(s−1) −

1

2

�

λ(s−1) − ρ1
�

=
λ(s−1) + ρ1

2
,

and thus by induction (note λ(0) ≥ ρ1) we have λ(s) ≥ ρ1 throughout the repeat-until loop.

From (29) we also obtain

λ(s) − ρ1 = λ(s−1) − ρ1 −
Δs

2
≤ λ(s−1) − ρ1 −

1

4

�

λ(s−1) − ρ1
�

=
3

4

�

λ(s−1) − ρ1
�

.

To sum up, λ(s) approaches ρ1 from above and the gap between λ(s) and ρ1 reduces at the geometric

rate of 3
4 . Thus after at most t3 = ⌈log3/4

�

Δ̃
λ(0)−ρ1

�

⌉ ∼ O
�

log
�

1
Δ̃

��

iterations, we reach a λ(t3)

such that λ(t3) − ρ1 ≤ δ̃. And in view of (29), the repeat-until loop exits in the next iteration.

Hence, the overall number of iterations is at most t3 + 1 = O
�

1
Δ̃

�

.

We now analyze λ(f) and derive the interval it lies in. Note that Δf ≤ Δ̃ and Δf−1 > Δ̃ by the
exiting condition. In view of (29), we have

λ(f) − ρ1 = λ(f−1) − ρ1 −
Δf

2
≤ 2Δf − Δf

2
=

3Δf

2
≤ 3Δ̃

2
.

On the other hand,

λ(f) − ρ1 = λ(f−1) − ρ1 −
Δf

2
≥ λ(f−1) − ρ1 −

1

2

�

λ(f−1) − ρ1
�

=
1

2

�

λ(f−1) − ρ1
�

. (30)

If f = 1, then by our choice of λ(0) we have that λ(f) − ρ1 ≥ Δ̃. Otherwise, by unfolding (30) one
more time, we have that

λ(f) − ρ1 ≥ 1

4

�

λ(f−2) − ρ1
�

≥ Δf−1

4
≥ Δ̃

4
.

Thus in both case, we have that λ(f) − ρ1 ≥ Δ̃
4 holds.

It remains to give an explicit bound on ǫ̃ based on the two requirements (26) and (27). Since the λ(s)

values are monotonically non-increasing and lower-bounded by ρ1 +
Δ̃
4 , we have

max
s

σ1(Mλ(s)
) = σ1(Mλ(f)

) =
1

λ(f) − ρ1
≤ 4

Δ̃
=: σ,

and

min
s

σ1(Mλ(s)
) = σ1(Mλ(0)

) =
1

λ(0) − ρ1
=

1

1 + Δ̃− ρ1

≥ 1

1 + c2Δ−Δ
≥ 1 + (1− c2)Δ ≥ 1 +

1− c2
c2

Δ̃ := σ,
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where the first inequality holds since by definition of Δ it follows that ρ1 = ρ2 +Δ ≥ Δ.

Therefore, for the assumption (26) to hold, we just need

�

σ

8
√
σ

�2

=

�

1 + 1−c2
c2

Δ̃
�2

64 · 4
Δ̃

≥ 1

64 · 4
Δ̃

=
Δ̃

256
≥ ǫ̃. (31)

We now derive a lower bound of the right hand side of (27). Notice

κλ(s)
=

λ(s) + ρ1

λ(s) − ρ1
= 1 +

2ρ1
λ(s) − ρ1

≤ 1 + 2ρ1σ ≤ 1 + 2σ ≤ 9

Δ̃
. (32)

On the other hand,

σd(Mλ(s)
) ≥ σd(Mλ(0)

) =
1

λ(0) + ρ1
=

1

1 + Δ̃+ ρ1
≥ 1

3
.

As a result, we have

σd(Mλ(s)
)

1024κλ(s)

 

2κλ(s)
− 1

�

2κλ(s)

�m1 − 1

!2

≥ 1

3084 · 9
Δ̃





2 9
Δ̃
− 1

�

2 9
Δ̃

�m1

− 1





2

≥

�

17
Δ̃

�2

3084 · 9
Δ̃
·
�

18
Δ̃

�m1

≥ 1

3084

 

Δ̃

18

!m1−1

. (33)

Our final bound on ǫ̃ chooses the smaller of (31) and (33).

For the final for loop of Algorithm 3, we work in the accurate regime of power iterations.
Lemma 11 (Iteration complexity of the final for loop in Algorithm 3). Suppose that Δ̃ ∈ [c1Δ, c2Δ]

where c2 ≤ 1. Set m2 = ⌈ 5
4 log

�

128
µ̃η2

�

⌉ and ǫ̃ ≤ η4

410

�

Δ̃
18

�m2−1

in Algorithm 3. Then the (uT ,vT )

output by Phase I satisfies

1

4
(u⊤

TΣxxu
∗ + v⊤

T Σyyv
∗)2 ≥ 1− η2

64
. (34)

Proof. Notice when λ = ρ1 + c(ρ1 − ρ2), we have

δ(Mλ) =
σ1(Mλ)

σ1(Mλ)− σ2(Mλ)
=

1
λ−ρ1

1
λ−ρ1

− 1
λ−ρ2

=
λ− ρ2
ρ1 − ρ2

=
ρ1 + c(ρ1 − ρ2)− ρ2

ρ1 − ρ2
= c+ 1.

In view of (25), λ(f) − ρ1 ≤ 3
2Δ̃ ≤ 3c2

2 Δ ≤ 3
2Δ, and thus δ(Mλ(f)

) ≤ 5
2 .

Set α = η2

64 in Lemma 8 (accurate regime), and with our choice of m2 and

ǫ̃ ≤
η4 · σd(Mλ(f)

)

643 · κλ(f)

 

2κλ(f)
− 1

�

2κλ(f)

�m2 − 1

!2

, (35)

we are guaranteed to obtained the desired alignment.

We now give a lower bound of the right hand side of (35). First,

σd(Mλ(f)
) =

1

λ(f) + ρ1
≥ 1

ρ1 +
3
2Δ+ ρ1

≥ 1

4
.

Recall that we have proved in (32) that κλ(f)
≤ 9

Δ̃
. Following a derivation similar to that of (33),

we have

η4 · σd(Mλ(f)
)

643 · κλ(f)

 

2κλ(f)
− 1

�

2κλ(f)

�m2 − 1

!2

≥ η4

410

 

Δ̃

18

!m2−1

, (36)

and this explains the ǫ we set in the lemma.
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Proof of Theorem 4. As shown in Lemma 11, the repeat-until loop runs O
�

log
�

1
Δ̃

��

∼
O
�

log
�

1
Δ

��

iterations, and inside each iteration, we run m1 approximate matrix-vector multipli-
cations. On the other hand, the final for loop runs m2 approximate matrix-vector multiplications.
By the definitions of m1 and m2, the total number of invocations of approximate matrix-vector
multiplications/least squares problems is

m1 · log
�

1

Δ

�

+m2 ∼ O
�

log

�

1

µ̃

�

log

�

1

Δ

�

+ log

�

1

µ̃η2

��

∼ Õ(1).

G Proof of Theorem 5

Proof. Notice that the eigenvectors of Mλ form an orthonormal bases of Rdx+dy . Thus when (34)

holds, i.e., the alignment between

"

Σ
1
2
xxũT

Σ
1
2
yyṽT

#

and

"

Σ
1
2
xxu

∗

Σ
1
2
yyv

∗

#

is large, the alignments be-

tween

"

Σ
1
2
xxũT

Σ
1
2
yyṽT

#

and other eigenvectors have to be small. In particular, the alignment bewteen

"

Σ
1
2
xxũT

Σ
1
2
yyṽT

#

and the tailing eigenvector

"

Σ
1
2
xxu

∗

−Σ
1
2
yyv

∗

#

has to be small:

(u⊤
TΣxxu

∗ − v⊤
T Σyyv

∗)2 ≤ η2

16
. (37)

From (37) and (34), we have respectively

−η

4
≤

�

�u⊤
TΣxxu

∗�
�−

�

�v⊤
T Σyyv

∗�
� ≤ η

4
,

�

�u⊤
TΣxxu

∗�
�+

�

�v⊤
T Σyyv

∗�
� ≥ 2

r

1− η2

64
≥ 2

�

1− η

8

�

where we have used the fact that
√
1− x ≥ 1−√

x for x ∈ [0, 1] in the second inequality.

Averaging the above two inequalities gives
�

�u⊤
TΣxxu

∗�
� ≥ 1− η

4
,

�

�v⊤
T Σyyv

∗�
� ≥ 1− η

4
.

Finally,

(û⊤Σxxu
∗)2 + (v̂⊤Σyyv

∗)2 =
(u⊤

TΣxxu
∗)2

u⊤
TΣxxuT

+
(v⊤

T Σyyv
∗)2

v⊤
T ΣyyvT

≥ (1− η

4
)2

�

1

u⊤
TΣxxuT

+
1

v⊤
T ΣyyvT

�

≥
�

1− η

4

�2 4

u⊤
TΣxxuT + v⊤

T ΣyyvT

≥ 2
�

1− η

2

�

= 2− η

where we have used the fact that 1
x+

1
y ≥ 4

x+y in the first inequality, and (10) in the second inequality.

Then the theorem follows from the fact that (û⊤Σxxu
∗)2 and (v̂⊤Σyyv

∗)2 can be at most 1.

H Condition number of ht for SVRG

Lemma 12. Throughout Algorithm 3, the condition number of ht for SVRG is at most 9/c
Δ κ̃, where

κ̃ :=
max

i
max

�

kxik2 , kyik2
�

min (σmin(Σxx),σmin(Σyy))
.
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Proof. The gradient Lipschitz constant of hi
t(u,v) is bounded by the largest eigenvalue (in absolute

value) of its Hessian8

Qi
λ =

�

λxix
⊤
i −xiy

⊤
i

−yix
⊤
i λyiy

⊤
i

�

,

and the largest eigenvalue is defined as

max
gx∈Rdx ,gyR

dy

β :=

�

�

�

�

[g⊤
x ,g

⊤
y ]Q

i
λ

�

gx

gy

��

�

�

�

s.t. kgxk2 + kgyk2 = 1.

We have

β =
�

�λ(g⊤
x xi)

2 + λ(g⊤
y yi)

2 − 2(g⊤
x xi)(g

⊤
y yi)

�

�

≤ λ(g⊤
x xi)

2 + λ(g⊤
y yi)

2 + 2
�

�g⊤
x xi

�

�

�

�g⊤
y yi

�

�

≤ λ(g⊤
x xi)

2 + λ(g⊤
y yi)

2 + (g⊤
x xi)

2 + (g⊤
y yi)

2

= (λ+ 1)
�

(g⊤
x xi)

2 + (g⊤
y yi)

�

≤ (λ+ 1)
�

kgxk2 kxik2 + kgyk2 kyik2)
�

≤ (λ+ 1)max
�

kxik2 , kyik2
�

where we have used the Cauchy-Schwarz inequality and the constraint in the third and the last
inequality respectively.

It only remains to bound λ+1
λ−ρ . Note that we have shown in Lemma 10 that λ ≥ ρ1 +

Δ̃
4 throughout

Algorithm 3, and thus

λ+ 1

λ− ρ
= 1 +

1 + ρ

λ− ρ
≤ 1 +

2

λ− ρ
≤ 1 + 2

4

Δ̃
≤ 9

Δ̃
≤ 9/c1

Δ
.

I More details of the experiments

The statistics of these datasets are summaized in Table 2. These datasets have also been used by [3, 4]
for demonstrating their stochastic CCA algorithms.

Table 2: Brief summary of datasets.
Datasets Description dx dy N

Mediamill Image and its labels 100 120 30,000
JW11 Acoustic and articulation measurements 273 112 30,000

MNIST Left and right halves of images 392 392 60,000

We now provide additional details for the experiments. For s-AppGrad, both gradient and normal-
ization steps are estimated with mini-batchs of 100 samples (the authors of [3] suggest that the
mini-batch size shall be at least the same magnitude as the dimensionality of the CCA projection).
For SI-VR and SI-AVR, within the repeat-until loop, we apply SVRG with M = 2 epochs to ap-
proximately find the top eigenvector ws, and SVRG with M = 2 epochs to approximately calculate
its top eigenvalue of Mλ(s)

as wT
s Mλ(s)

ws. We exit the repeat-until loop when Δs ≤ 0.06. After-
wards, for the fixed λ(f), we apply SVRG to solve every least squares problems with M = 4 epochs.
Each epoch of SVRG includes a batch gradient evaluation and m = N stochastic gradient steps.
We set the step size according to the smoothness for each least squares solver, i.e., 1

σmax(Σxx)
for

GD/AGD in AppGrad/s-AppGrad/CCALin, and 1
maxikxik2 for SVRG/ASVRG in our algorithms.

8We omit the regularization terms, which are typically very small, to have concise expressions.
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J Other related work

Recent years have witnessed continuous efforts to scale up fundamental methods such as principal
component analysis (PCA) and partial least squares with stochastic/online updates [22, 23, 24, 25,
5, 16, 17]. But as pointed out by [23], the CCA objective is more challenging due to the constraints.

[26] proposed an adaptive CCA algorithm with efficient online updates based on matrix manifolds
defined by the constraints. However, the goal of their algorithm is anomaly detection for streaming
data with a varying distribution, rather than to optimize the CCA objective on a given dataset. Similar
to our algorithms, the stochastic CCA algorithms of [3, 4] are motivated by the ALS formulation.
[5] proposed a stochastic algorithm based on the Lagrangian formulation of the objective (1). None
of these online/stochastic algorithms have rigorous global convergence guarantee.
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