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Abstract

Spreading processes are often modelled as a stochastic dynamics occurring on top
of a given network with edge weights corresponding to the transmission probabili-
ties. Knowledge of veracious transmission probabilities is essential for prediction,
optimization, and control of diffusion dynamics. Unfortunately, in most cases the
transmission rates are unknown and need to be reconstructed from the spreading
data. Moreover, in realistic settings it is impossible to monitor the state of each
node at every time, and thus the data is highly incomplete. We introduce an efficient
dynamic message-passing algorithm, which is able to reconstruct parameters of the
spreading model given only partial information on the activation times of nodes in
the network. The method is generalizable to a large class of dynamic models, as
well to the case of temporal graphs.

1 Introduction

Knowledge of the underlying parameters of the spreading model is crucial for understanding the
global properties of the dynamics and for development of effective control strategies for an opti-
mal dissemination or mitigation of diffusion [1, 2]. However, in many realistic settings effective
transmission probabilities are not known a priori and need to be recovered from a limited number of
realizations of the process. Examples of such situations include spreading of a disease [3], propagation
of information and opinions in a social network [4], correlated infrastructure failures [5], or activation
cascades in biological and neural networks [6]: precise model and parameters, as well as propagation
paths are often unknown, and one is left at most with several observed diffusion traces. It can be
argued that for many interesting systems, even the functional form of the dynamic model is uncertain.
Nevertheless, the reconstruction problem still makes sense in this case: the common approach is to
assume some simple and reasonable form of the dynamics, and recover the parameters of the model
which explain the data in the most accurate and minimalistic way; this is crucial for understanding
the basic mechanisms of the spreading process, as well as for making further predictions without
overfitting. For example, if only a small number of samples is available, a few-parameter model
should be used.

In practice, it is very costly or even impossible to record the state of each node at every time step of
the dynamics: we might only have access to a subset of nodes, or monitor the state of the system
at particular times. For instance, surveys may give some information on the health or awareness of
certain individuals, but there is no way to get a detailed account for the whole population; neural
avalanches are usually recorded in cortical slices, representing only a small part of the brain; it is
costly to deploy measurement devices on each unit of a complex infrastructure system; finally, hidden
nodes play an important role in the artificial learning architectures. This is precisely the setting
that we address in this article: reconstruction of parameters of a propagation model in the presence
of nodes with hidden information, and/or partial information in time. It is not surprising that this
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challenging problem turns out to be notably harder then its detailed counterpart and requires new
algorithms which would be robust with respect to missing observations.

Related work. The inverse problem of network and couplings reconstruction in the dynamic setting
has attracted a considerable attention in the past several years. However, most of the existing works
are focused on learning the propagation networks under the assumption of availability of full diffusion
information. The papers [7, 8, 9, 10] developed inference methods based on the maximization of
the likelihood of the observed cascades, leading to distributed and convex optimization algorithms
in the case of continuous and discrete dynamics, principally for the variants of the independent
cascade (IC) model [11]. These algorithms have been further improved under the sparse recovery
framework [12, 13], particularly efficient for structure learning of treelike networks. A careful
rigorous analysis of these likelihood-based and alternative [14, 15] reconstruction algorithms give
an estimation of the number of observed cascades required for an exact network recovery with high
probability. Precise conditions for the parameters recovery at a given accuracy are still lacking. The
fact that the aforementioned algorithms rely on the fully observed spreading history represents an
important limitation in the case of incomplete information. The case of missing time information has
been addressed in two recent papers: focusing primarily on tree graphs, [16] studied the structure
learning problem in which only initial and final spreading states are observed; [17] addressed the
network reconstruction problem in the case of partial time snapshots of the network, using relaxation
optimization techniques and assuming that full probabilistic trace for each node in the network is
available. A standard technique for dealing with incomplete data involves maximizing the likelihood
marginalized over the hidden information; for example, this approach has been used in [18] for
identifying the diffusion source. In what follows, we use this method for benchmarking our results.

Overview of results. In this article, we propose a different algorithm, based on recently introduced
dynamic message-passing (DMP) equations for cascading processes [19, 20], which will be referred
to as DMPREC (DMP-reconstruction) throughout the text. Making use of all available information,
it yields significantly more accurate reconstruction results, outperforming the likelihood method
and having a substantially lower algorithmic complexity, independent on the number of nodes with
unobserved information. More generally, the DMPREC framework can be easily adapted to allow
reconstruction of heterogeneous transmission probabilities in a large class of cascading processes,
including the IC and threshold models, SIR and other epidemiological models, rumor spreading
dynamics, etc., as well as for the processes occurring on dynamically-changing networks.

2 Problem formulation

Model. For the sake of simplicity and definiteness, we assume that cascades follow the dynamics of
stochastic susceptible-infected (SI) model in discrete time, defined on a network G = (V,E) with set
of nodes denoted by V and set of directed edges E [3]. Each node i ∈ V at times t = 1, 2, . . . , T
can be in either of two states: susceptible (S) or infected (I). At each time step, node i in the I state
can activate one of its susceptible neighbors j with probability αij1 . The dynamics is non-recurrent:
once the node is activated (infected), it can never change its state back to susceptible. In what follows,
the network G is supposed to be known.

Incomplete observations and inference problem. We assume that the input is formed from M
independent cascades, where a cascade Σc is defined as a collection of activation times of nodes in
the network {τ ci }i∈V . Each cascade is observed up to the final observation time T . Notice that T is
an important parameter: intuitively, the larger is T , the more information is contained in cascades,
and the less samples are needed. We assume that T is given and fixed, being related to the availability
of the finite-time observation window. If node i in cascade c does not get activated at a certain time
prior to the horizon T , we put by definition τ ci = T ; hence, τ ci = T means that node i changes its
state at time T or later. The full information on the cascades Σ = ∪cΣc is divided into the observed
part, ΣO, and the hidden part ΣH. Thus, in general ΣO contains only a subset of activation times
in T ∈ [0, T ] for a part of observed nodes in the network O ∈ V . The task is to reconstruct the

1We chose this two-state model since it has slightly more general dynamic rules compared to the popular IC
model [11] with an additional restriction: a node infected at time t has a single chance to activate its susceptible
neighbors at time step t+1, while further infection attempts in subsequent rounds are not allowed. The DMPREC
method presented below can be easily applied to the case of IC model by noticing that it corresponds to the SIR
model with a recovery probability equal to one, for which the DMP equations are known [20].
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couplings {α∗ij}(ij)∈E ≡ Gα∗ , where Gα∗ with a star denotes the original transmission probabilities
that have been used to generate the data.

Maximization of the likelihood. Similarly to the formulations considered in [7, 8, 10], it is possible
to explicitly write the expression for the likelihood of the discrete-time SI model in the case of fully
available information ΣO = Σ under the assumption that the data has been generated using the
couplings Gα:

P (Σ | Gα) =
∏
i∈V

∏
1≤c≤M

Pi(τ
c
i | Σc, Gα), (1)

with

Pi(τ
c
i | Σc, Gα) =

τci −2∏
t′=0

∏
k∈∂i

(1− αki1τck≤t′)

[1−

(∏
k∈∂i

(1− αki1τck≤τci −1)

)
1τci <T

]
, (2)

where ∂i denotes the set of neighbors of node i in the graph G, and 1 is the indicator function. The
expression (2) has the following meaning: the probability that node i has been activated at time τi
given the activation times of its neighbors is equal to the probability that the activation signal has
not been transmitted by any infected neighbor of i until the time τi − 2 (first term in the product),
and that at least one of the active neighbors actually transmitted the infection at time τi − 1 (second
term). A straightforward adaptation of the NETRATE algorithm, suggested in [8], to the present
setting implies that the estimation of the transmission probabilities Ĝα∗ is obtained as a solution of
the convex optimization problem

Ĝα∗ = arg min (− lnP (Σ | Gα)) , (3)
which can be solved locally for each node i and its neighborhood due to the factorization of the
likelihood (1) under assumption of asymmetry of the couplings. In the case of partial observations,
the optimization problem (3) is not well defined since it requires the full knowledge of activation
times for each node. A simple and natural extension of this scheme, which we will refer to as the
maximum likelihood estimator (MLE), is to consider the likelihood function marginalized over
unknown activation times:

P (ΣO | Gα) =
∑

{τch},h∈H

P (Σ | Gα). (4)

An exact evaluation of (4) is a computationally hard high-dimensional integration problem with
complexity proportional to TH in the presence of H nodes with hidden information. In order to
correct for this fact, we propose a heuristic scheme which we denote as the heuristic two-stage
(HTS) algorithm. The idea of HTS consists of completing the missing part {τ ch}h∈H of the cascades
at each step of the optimization process with the most probable values according to the current
estimation of the couplings Ĝα, Σ̂H = arg maxP (Σ | Ĝα), and solving the optimization problem
(3) using the full information on the cascades Σ = ΣO ∪ Σ̂H; these two alternating steps are iterated
until the global convergence of the algorithm. An exact (brute-force) estimation of Σ̂H requires an
exponential number of operations TH , as the original MLE formulation. However, we found that
in practice the computational time can be significantly reduced with the use of the Monte Carlo
sampling. The corresponding approximation is based on the observation that the likelihood (1) is
non-zero only for {τ ci }i∈V forming possible (realizable) cascades. Hence, for each c, we sample
LH,T auxiliary cascades, and choose the set of {τ ch}h∈H maximizing (1). LH,T is typically a large
sampling parameter, growing with T and H to ensure a proper convergence. This procedure leads
to an algorithm with a complexity O(NM |E|2LH,T ) at each step of the optimization, where |E|
denotes the number of edges; see the journal version of the paper [21] for a more in-depth discussion.

Hence, both MLE and HTS algorithms are practically intractable; the remaining part of the paper
is devoted to the development of an accurate algorithm with a polynomial-time computational
complexity for this hard problem. The next section introduces dynamic message-passing equations
which serve as a basis for such algorithm.

3 Dynamic message-passing equations.

The dynamic message-passing equations for the SI model in continuous [19] and discrete [20] settings
allow to compute marginal probabilities that node i is in the state S at time t:

P iS(t) = P iS(0)
∏
k∈∂i

θk→i(t) (5)
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for t > 0 and a given initial condition P iS(0). The variables θk→i(t) represent the probability that
node k did not pass the activation signal to the node i until time t. The intuition behind the key
Equation (5) is that the probability of node i to be susceptible at time t is equal to the probability of
being in the S state at initial time times the probability that neither of its neighbors infected it until
time t. The quantities θk→i(t) can be computed iteratively using the following expressions:

θk→i(t) = θk→i(t− 1)− αkiφk→i(t− 1), (6)

φk→i(t) = (1− αki)φk→i(t− 1) + P kS (0)

 ∏
l∈∂k\i

θl→k(t− 1)−
∏

l∈∂k\i

θl→k(t)

 , (7)

where ∂k\i denotes the set of neighbors of k excluding i. The Equation (6) translates the fact that
θk→i(t) can only decrease if the infection is actually transmitted along the directed link (ki) ∈ E;
this happens with probability αki times φk→i(t− 1) which denotes the probability that node k is in
the state I at time t, but has not transmitted the infection to node i until time t− 1. The Equation
(7), which allows to close the system of dynamic equations, describes the evolution of probability
φk→i(t): at time t− 1, it decreases if the infection is transmitted (first term in the sum), and increases
if node k goes from the state S to the state I (difference of terms 2 and 3). Note that node i is
excluded from the corresponding products over θ-variables because this equation is conditioned on
the fact that i is in the state S, and therefore can not infect k. The Equations (6) and (7) are iterated
in time starting from initial conditions θi→j(0) = 1 and φi→j(0) = 1− P iS(0) which are consistent
with the definitions above. The name “DMP equations” comes from the fact the whole scheme can
be interpreted as the procedure of passing “messages” along the edges of the network.
Theorem 1. DMP equations for the SI model, defined by Equations (5)-(7), yield exact marginal
probabilities on tree networks. On general networks, the quantities P iS(t) give lower bound on values
of marginal probabilities.

Proof Sketch. The exactness of solution on tree graphs immediately follows from the fact that the
DMP equations can be derived from belief propagation equations on time trajectories [20], which
provide exact marginals on trees. The fact that P iS(t) computed according to (5) represent a lower
bound on marginal probabilities in general networks can be derived from a counting argument,
considering multiple infection paths on a loopy graph which contribute to the computation of P iS(t),
effectively lowering its value through the Equation (5); the proof technique is borrowed from [19],
where similar dynamic equations in the continuous-time case have been considered. �

Using the definition (5) of P iS(t), it is convenient to define the marginal probabilitymi(t) of activation
of node i at time t:

mi(t) = P iS(0)

[∏
k∈∂i

θk→i(t− 1)−
∏
k∈∂i

θk→i(t)

]
. (8)

As it often happens with message-passing algorithms, although being exact only on tree networks,
DMP equations provide accurate results even on loopy networks. An example is provided in the
Figure 1, where the DMP-predicted marginals are compared with the values obtained from extensive
simulations of the dynamics on a network of retweets with N = 96 nodes [22]. This observation will
allow us to use DMP equations as a suitable approximation tool on general networks. In the next
section we describe an efficient reconstruction algorithm, DMPREC, which is based on the resolution
of the dynamics given by DMP equations and makes use of all available information.

4 Proposed algorithm: DMPREC

Probability of cascades and free energy. The marginalization over hidden nodes in (4) creates a
complex relation between couplings in the whole graph, resulting in a non-explicit expression. The
main idea behind the DMPREC algorithm is to approximate the likelihood of observed cascades (4)
through the marginal probability distributions (5) and (8):

P (ΣO | Gα) ≈
M∏
c=1

∏
i∈O

[
mi(τ ci | Gα)1τci ≤T + P iS(τ ci | Gα)1τci =T

]
. (9)

The expression (9) is at the core of the suggested algorithm. As there is no tractable way to compute
exactly the joint probability of partial observations, we approximate it using a mean-field-type
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Figure 1: Illustration of the accuracy of DMP equations on a network of retweets with N = 96 nodes [22].
(a) Comparison of DMP-predicted P i

S(t) with P i
S(t) estimated from 106 runs of Monte Carlo simulations with

t = 10 and one infected node at initial time. The couplings {αij} have been generated uniformly at random in
the range [0, 1]. (b) Visualization of the network topology created with the Gephi software.

approach as a product of marginal probabilities provided by the dynamic message-passing equations.
The reasoning behind this approach is that each marginal is expressed through an average of all
possible realizations of dynamics with a given initial condition; this is in contrast with the likelihood
function which considers only particular instance realized in the given cascade. Therefore, equation
(9) summarizes the effect of different propagation paths, and the maximization of this probability
function will yield the most likely consensus between the ensemble of couplings in the network.
Precisely this key property makes the reconstruction possible in the case involving nodes with
hidden information via maximization of the objective (9) which can be interpreted as a cost function
representing the product of individual probabilities of activation taken precisely at the value of the
observed infection times. Starting from this expression, one can define the associated “free energy”:

fDMP = − lnP (ΣO | Gα) =
∑
i∈O

f iDMP, (10)

where f iDMP = −
∑
c ln
[
mi(τ ci )1τci ≤T−1 + P iS(T − 1)1τci =T

]
. In the last expression for f iDMP we

used the fact that mi(T ) + P iS(T ) = P iS(T − 1). Our goal is to minimize the free energy (10)
with respect to {αij}(ij)∈E . A similar approach has been previously outlined by [23] as a way to
learn homogeneous couplings in the spreading source inference algorithm. In order to carry out this
optimization task, we need to develop an efficient way of gradient evaluation.

Computation of the gradient. The gradient of the free energy reads (note that the indicator functions
point to disjoint events):

∂f iDMP

∂αrs
= −

∑
c

[∂mi(τ ci | Gα)/∂αrs
mi(τ ci | Gα)

1τci ≤T−1 +
∂P iS(T − 1 | Gα)/∂αrs

P iS(T − 1 | Gα)
1τci =T

]
, (11)

where the derivatives of the marginal probabilities can be computed explicitly by taking the derivative
of the DMP equations (5)-(8). Let us denote ∂θk→i(t)/∂αrs ≡ pk→irs (t) and ∂φk→i(t)/∂αrs ≡
qk→irs (t). Since the dynamic messages at initial time {θi→j(0)} and {φi→j(0)} are independent
on the couplings, we have pk→irs (0) = qk→irs (0) = 0 for all k, i, r, s, and these quantities can be
computed iteratively using the analogues of the Equations (6) and (7):

pk→irs (t) = pk→irs (t− 1)− αkiqk→irs (t− 1)− φk→i(t− 1)1k=r,i=s, (12)

qk→irs (t) = (1− αki)qk→irs (t− 1)− φk→i(t− 1)1k=r,i=s

+ P kS (0)
∑
l∈∂k\i

pl→krs (t− 1)
∏

n∈∂k\{i,l}

θn→k(t− 1)− P kS (0)
∑
l∈k\i

pl→krs (t)
∏

n∈∂k\{i,l}

θn→k(t). (13)

Using these quantities, the derivatives of the marginals entering in Equation (11) can be written as

∂P iS(t)

∂αrs
= P iS(0)

∑
k∈∂i

pk→irs (t)
∏

l∈∂i\k

θl→i(t),
∂mi(t)

∂αrs
=
∂P iS(t− 1)

∂αrs
− ∂P iS(t)

∂αrs
. (14)
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The following observation shows that at least on tree networks, corresponding to the regime in
which DMP equations have been derived, the values of the original transmission probabilities Gα∗
correspond to the point in which the gradient of the free energy takes zero value.
Claim 1. On a tree network, in the limit of large number of samples M →∞, the derivative of the
free energy is equal to zero at the values of couplings Gα∗ used for generating cascades.

Proof. Let us first look at samples originating from the same initial condition. According to Theorem
1, the DMP equations are exact on tree graphs, and hence it is easy to see that

lim
M→∞

f iDMP = −
∑

t≤T−1

mi(t | Gα∗) lnmi(t | Gα)− P iS(T − 1 | Gα∗) lnP iS(T − 1 | Gα). (15)

Therefore,

lim
M→∞

∂f iDMP

∂αrs
|Gα∗ = − ∂

∂αrs

[ ∑
t≤T−1

mi(t | Gα∗) + P iS(T − 1 | Gα∗)

]
= 0,

since the expression inside the brackets sums exactly to one. This result trivially holds by summing up
samples with different initial conditions. Combination of this result with the definition (10) completes
the proof.

The DMPREC algorithm consists of running the message-passing equations for the derivatives of the
dynamic variables (12), (13) in parallel with DMP equations (5)-(7), allowing for the computation
of the gradient of the free energy (11) through (14), which is used afterwards in the optimization
procedure. Let us analyse the computational complexity of each step of parameters update. The
number of runs is equal to the number of distinct initial conditions in the ensemble of observed
cascades, so if all M cascades start with distinct initial conditions, the complexity of the DMPREC
algorithm is equal to O(|E|2TM) for each step of the update of {αrs}(rs)∈E . Hence, in a typical
situation where each cascade is initiated at one particular node, the number of runs will be limited by
N , and the overall update-step complexity of DMPREC will be O(|E|2TN).

Missing information in time. On top of inaccessible nodes, the state of the network can be monitored
at a lower frequency compared to the natural time scale of the dynamics. It is easy to adapt the
algorithm to the case of observations at K time steps T ≡ {tk}k∈[1,K]. Since the activation time
τ ci of node i in cascade c is now known only up to the interval [tk

c
i + 1, tk

c
i+1] ≡ δkci , where

tk
c
i < τ ci ≤ tk

c
i+1, one should maximize

∑
t∈δkc

i

mi(t) = P iS(tk
c
i )− P iS(tk

c
i+1) ≡ ∆kci

P iS(t | Gα)

instead of mi(τ ci ) in this case. This leads to obvious modifications to the expressions (10) and (11),
using the differences of derivatives at corresponding times instead of one-step differences as in (14).
For instance, if the final time is not included in the observations, we have

f iDMP = −
∑
c

ln
[
∆kci

P iS(t | Gα)
]
,

∂f iDMP

∂αrs
= −

∑
c

[
∂∆kci

P iS(t | Gα)/∂αrs

∆kci
P iS(t | Gα)

]
.

5 Numerical results

We evaluate the performance of the DMPREC algorithm on synthetic and real-world networks under
assumption of partial observations. In numerical experiments, we focus primarily on the presence of
inaccessible nodes, which is a more computationally difficult case compared to the setting of missing
information in time. An example involving partial time observations is shown in section 5.1.

5.1 Tests with synthetic data

Experimental setup. In the tests described in this section, the couplings {αij} are sampled uniformly
in the range [0, 1], the final observation time is set to T = 10. Each cascade is generated using a
discrete-time SI model defined in section 2 from randomly selected sources. In the case of inaccessible
nodes, the activation times data is hidden in all the samples forH randomly selected nodes. We use the
likelihood methods for benchmarking the accuracy of our approach. The MLE algorithm introduced
above is not tractable even on small graphs, therefore we compare the results of DMPREC with
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the HTS algorithm outlined in the section 2. Still, HTS has a very high computational complexity,
and therefore we are bound to run comparative tests on small graphs: a connected component of an
artificially-generated network with N = 20, sampled using a power-law degree distribution, and a
real directed network of relationships in a New England monastery with N = 18 nodes [24]. Both
algorithms are initialized with αij = 0.5 for all (ij) ∈ E. The accuracy of reconstruction is assessed
using the `1 norm of the difference between reconstructed and original couplings, normalized over
the number of directed edges in the graph2 . Intuitively, this measure gives an average expected error
for each parameter αij .
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Figure 2: Tests for DMPREC and HTS on a small power-law network: (a) for fixed number of nodes with
unobserved information H = 5, (b) for fixed number of samples M = 6400. (c) Scatter plot of {αij} obtained
with DMPREC versus original parameters {α∗

ij} in the case of missing information in time with M = 6400,
T = 10; the state of the network is observed every other time step.
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Figure 3: Numerical results for the real-world Monastery network of [24]: (a) for fixed number of nodes with
unobserved information H = 4, (b) for fixed number of samples M = 6400. (c) The topology of the network
(thickness of edges proportional to {α∗

ij} used for generating cascades).

Results. In the Figure 2 we present results for a small power-law network with short loops, which
is not a favorable situation for DMP equations derived in the treelike approximation of the graph.
Figures 2 (a) and 2 (b) show the dependence of an average reconstruction error as a function of M
(for fixed H/N = 0.25) and H (for fixed M = 6400), respectively. DMPREC clearly outperforms
the HTS algorithm, yielding surprisingly accurate reconstruction of transmission probabilities even
in the case where a half of network nodes do not report any information. Most importantly, DMPREC
achieves reconstruction with a significantly lower computational time: for example, while it took
more than 24 hours to compute the point corresponding to H = 4 and M = 6400 with HTS (MLE
at this test point took several weeks to converge), the computation involving DMPREC converged to
the presented level of accuracy in less than 10 minutes on a standard laptop. These times illustrate
the hardness of the learning problem involving incomplete information.

We have also used this case study network to test the estimation of transmission probabilities with the
DMPREC algorithm when the state of the network is recorded only at a subset of times T ∈ [0, T ].
Results for the case where every other time stamp is missing are given in the Figure 2 (c): couplings
estimated with DMPREC are compared to the original values {α∗ij}; despite the fact that only 50% of
time stamps are available, the inferred couplings show an excellent agreement with the ground truth.

Equivalent results for the real-world relationship network extracted from the study [24] and containing
both directed and undirected links, are shown in the Figure 3; an ability of DMPREC to capture the
mutual dependencies of different couplings through dynamic correlations is even more pronounced in
this case, with almost perfect reconstruction of couplings for large M and a rather weak dependence

2Note that this measure excludes those few parameters which are impossible to reconstruct: e.g. no algorithm
can learn the coupling associated with the ingoing edge of the hidden node located at the leaf of a network.
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on the number of nodes with removed observations. We have run tests on larger synthetic networks
which show similar reconstruction results for DMPREC, but where comparisons with the likelihood
method could not be carried out. In the next section we focus on an application involving real-world
data which represents a more interesting and important case for the validation of the algorithm.

5.2 Test with a real-world data

As a proxy for the real statistics, we used the data provided by the Bureau of Transportation Statistics
[25], from which we reconstructed a part of the U.S. air transportation network, where airports are
the nodes, and directed links correspond to traffic between them. The reason behind this choice is
based on the fact that the majority of large-scale influenza pandemics over the past several decades
represented the air-traffic mediated epidemics. For illustration purposes, we selected top N = 30
airports ranked according to the total number of passenger enplanements and commonly classified as
large hubs, and extracted a sub-network of flights between them. The weight of each edge is defined
by the annual number of transported passengers, aggregated over multiple routes; we have pruned
links with a relatively low traffic – below 10% of the traffic level on the busiest routes, so that the
total number of remaining directed links is |E| = 210. The final weights are based on the assumption
that the probability of infection transmission is proportional to the flux; the weights have been
renormalized accordingly so that the busiest route received the coupling αij = 0.5. The resulting
network is depicted in the Figure 4 . We have generated M = 10, 000 independent cascades in this
network, and have hidden the information at H = 15 nodes (50% of airports) selected at random.
We observe that even with a significantly large portion of missing information, the reconstructed
parameters show a good agreement with the original ones.
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Figure 4: Left: Sub-network of flights between major U.S. hubs, where the thickness of edges is proportional to
the aggregated traffic between them; nodes which do not report information are indicated in red. Right: Scatter
plots of reconstructed {αij} versus original {α∗

ij} couplings for H = 0 and H = 15 and M = 10, 000.

6 Conclusions and path forward

From the algorithmic point of view, inference of spreading parameters in the presence of nodes with
incomplete information considerably complicates the problem because the reconstruction can no
longer be performed independently for each neighborhood. In this paper, it is shown how the dynamic
interdependence of parameters can be exploited in order to be able to recover the couplings in the
setting involving hidden information. Let us discuss several directions for future work. DMPREC
can be straightforwardly generalized to more complicated spreading models using a generic form
of DMP equations [20] and the key approximation ingredient (9), as well as adapted to the case
of temporal graphs by encoding network dynamics via time-dependent coefficients αij(t), which
might be more appropriate in certain real situations. It would also be useful to extend the present
framework to the case of continuous dynamics using the continuous-time version of DMP equations
of [19]. An important direction would be to generalize the learning problem beyond the assumption
of a known network, and formulate precise conditions for detection of hidden nodes and for a perfect
network recovery in this case. Finally, in the spirit of active learning, we anticipate that DMPREC
could be helpful for the problems involving an optimal placement of observes in the situations where
collection of full measurements is costly.
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