
Neurons Equipped with Intrinsic Plasticity
Learn Stimulus Intensity Statistics

Travis Monk
Cluster of Excellence Hearing4all

University of Oldenburg
26129 Oldenburg, Germany
travis.monk@uol.de

Cristina Savin
IST Austria

3400 Klosterneuburg
Austria

csavin@ist.ac.at

Jörg Lücke
Cluster of Excellence Hearing4all

University of Oldenburg
26129 Oldenburg, Germany
joerg.luecke@uol.de

Abstract

Experience constantly shapes neural circuits through a variety of plasticity mech-
anisms. While the functional roles of some plasticity mechanisms are well-
understood, it remains unclear how changes in neural excitability contribute to
learning. Here, we develop a normative interpretation of intrinsic plasticity (IP)
as a key component of unsupervised learning. We introduce a novel generative
mixture model that accounts for the class-specific statistics of stimulus intensities,
and we derive a neural circuit that learns the input classes and their intensities.
We will analytically show that inference and learning for our generative model
can be achieved by a neural circuit with intensity-sensitive neurons equipped with
a specific form of IP. Numerical experiments verify our analytical derivations and
show robust behavior for artificial and natural stimuli. Our results link IP to non-
trivial input statistics, in particular the statistics of stimulus intensities for classes
to which a neuron is sensitive. More generally, our work paves the way toward
new classification algorithms that are robust to intensity variations.

1 Introduction

Confronted with the continuous flow of experience, the brain takes amorphous sensory inputs and
translates them into coherent objects and scenes. This process requires neural circuits to extract key
regularities from their inputs and to use those regularities to interpret novel experiences. Such learn-
ing is enabled by a variety of plasticity mechanisms which allow neural networks to represent the
statistics of the world. The most well-studied plasticity mechanism is synaptic plasticity, where the
strength of connections between neurons changes as a function of their activity [1]. Other plasticity
mechanisms exist and operate in tandem. One example is intrinsic plasticity (IP), where a neuron’s
response to inputs changes as a function of its own past activity. It is a challenge for computational
neuroscience to understand how different plasticity rules jointly contribute to circuit computation.

While much is known about the contribution of Hebbian plasticity to different variants of unsuper-
vised learning, including linear and non-linear sparse coding [2–5], ICA [6], PCA [7] or cluster-
ing [8–12], other aspects of unsupervised learning remain unclear. First, on the computational side,
there are many situations in which the meaning of inputs should be invariant to its overall gain. For
example, a visual scene’s content does not depend on light intensity, and a word utterance should

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

be recognized irrespective of its volume. Current models do not explicitly take into account such
gain variations, and often eliminate them using an ad hoc preprocessing step that normalizes in-
puts [8, 9, 13]. Second, on the biological side, the roles of other plasticity mechanisms such as IP,
and their potential contributions to unsupervised learning, remain poorly understood.

IP changes the input-output function of a neuron depending on its past activity. Typically, IP is a
homeostatic negative feedback loop that preserves a neuron’s activation levels despite its changing
input [14, 15]. There is no consensus on which quantities IP regulates, e.g. a neuron’s firing rate, its
internal Ca concentration, its spiking threshold, etc. In modeling work, IP is usually implemented
as a simple threshold change that controls the mean firing rate, although some models propose
more sophisticated rules that also constrain higher order statistics of the neuron’s output [6, 16].
Functionally, while there have been suggestions that IP can play an important role in circuit function
[6, 10, 11, 17], its role in unsupervised learning is still not fully understood.

Here we show that a neural network that combines specific forms of Hebbian plasticity and IP
can learn the statistics of inputs with variable gain. We propose a novel generative model named
Product-Poisson-Gamma (PPG) that explicitly accounts for class-specific variation in input gain.
We then derive, from first principles, a neural circuit that implements inference and learning for this
model. Our derivation yields a novel IP rule as a required component of unsupervised learning given
gain variations. Our model is unique in that it directly links IP to the gain variations of the pattern to
which a neuron is sensitive, which may be tested experimentally. Beyond neurobiology, the models
provide a new class of efficient clustering algorithms that do not require data preprocessing. The
learned representations also permit efficient classification from very little labeled data.

2 The Product-Poisson-Gamma model

Intensity can vary drastically across images although the features present in it are the same.1 This
variability constitutes a challenge for learning and is typically eliminated through a preprocessing
stage in which the inputs are normalized [9]. While such preprocessing can make learning easier, ad
hoc normalizations may be suboptimal, or may require additional parameters to be set by hand. More
importantly, input normalization has the side-effect of losing information about intensity, which
might have helped identify the features themselves. For instance, in computer vision objects of the
same class are likely to have similar surface properties, resulting in a characteristic distribution of
light intensities. Light intensities can therefore aid classification. In the neural context, the overall
drive to neurons may vary, e.g. due to attentional gain modulation, despite the underlying encoded
features being the same.

A principled way to address intensity variations is to explicitly model them in a generative model
describing the data. Then we can use that generative model to derive optimal inference and learning
for such data and map them to a corresponding neural circuit implementation. Let us assume the
stimuli are drawn from one of C classes, and let us denote a stimulus by ~y. Given a stimulus /
data point ~y, we wish to infer the class c that generated it (see Figure 1). Let ~y depend not only on
the class c, but also on a continuous random variable z, representing the intensity of the stimulus,
that itself depends on c as well as some parameters θ. Given these dependencies Pr(~y|c, z, θ) and
Pr(z|c, θ), Bayes’ rule specifies how to infer the class c and hidden variable z given an observation
of ~y:

Pr(c, z|~y, θ) =
Pr(~y|c, z, θ) Pr(z|c, θ) Pr(c|θ)∑

c′

∫
Pr(~y|c′, z′, θ) Pr(z′|c′, θ) Pr(c′|θ)dz

. (1)

We can obtain neurally-implementable expressions for the posterior if our data generative model is
a mixture model with non-negative noise, e.g. a Poisson mixture model [9]. We extend the Poisson
mixture model by including an additional statistical description of stimulus intensity. The Gamma
distribution is a natural choice due to its conjugacy with the Poisson distribution. Let each of the D
elements in the vector ~y|z, c, θ (e.g. pixels in an image) be independent and Poisson-distributed, let
z|c, θ be Gamma-distributed, and let the prior of each class be uniform:

Pr(~y|c, z, θ) =

D∏
d=1

Pois(yd; zWcd); Pr(z|c, θ) = Gam(z;αc, βc); Pr(c|θ) =
1

C

1We use images as inputs and intensity as a measure of input gain as a running example. Our arguments
apply regardless of the type of sensory input, e.g. the volume of sound or the concentration of odor.

2

where all W , α, and β represent the parameters of the model. To avoid ambiguity in scales, we
constrain the weights of the model to sum to one,

∑
dWcd = 1. We call this generative model

a Product-Poisson-Gamma (PPG). While the multiplicative interaction between features and the
intensity or gain variable is reminiscent of the Gaussian Scale Mixture (GSM) generative model, note
that PPG has separate intensity distributions for each of the classes; each is a Gamma distribution
with a (possibly unique) shape parameter αc and rate parameter βc. Furthermore, the non-gaussian
observation noise is critical for deriving the circuit dynamics.

The model is general and flexible, yet it is sufficiently constrained to allow for closed-form joint
posteriors. As shown in Appendix A, the joint posterior of the class and intensity is:

Pr(c, z|~y, θ) =
NB(ŷ;αc,

1
βc+1) exp (

∑
d yd lnWcd)∑

c′ NB(ŷ;αc′ ,
1

βc′+1) exp (
∑
d yd lnWc′d)

Gam(z;αc + ŷ, βc + 1),

where ŷ =
∑
d yd, and NB represents the negative binomial distribution.

We also obtain a closed-form expression of the posterior marginalized over z, which takes the form
of a softmax function weighted by negative binomials:

Pr(c|~y, θ) =
NB(ŷ;αc,

1
βc+1) exp (

∑
d yd lnWcd)∑

c′ NB(ŷ;αc′ ,
1

βc′+1) exp (
∑
d′ yd′ lnWc′d′)

(2)

This is a straightforward generalization of the standard softmax, used for optimal learning in winner-
take-all (WTA) networks [2,8,9,11] and WTA-based microcircuits [18]. Note that Eqn. 2 represents
the optimal way to integrate evidence for class membership originating from stimulus intensity (pa-
rameterized by ~α and ~β) and pattern ‘shape’ (parameterized by W). If one of the two is not instruc-
tive, then the corresponding terms cancel out: if the patterns have identical shape (W with identical
rows), then the softmax drops out and only negative binomial terms remain, and if all pattern classes
have the same intensity distribution, then the posterior reduces to the standard softmax function as
in previous work [2, 8–11].

To facilitate the link to neural dynamics, Eqn. 2 can be simplified by approximating the negative
binomial distribution as Poisson. In the limit that αc → ∞ and the mean λc ≡ αc/βc = constant,
the negative binomial distribution is:

lim
αc→∞,αc/βc=const.

NB(ŷ;αc,
1

βc + 1
) = Pois(ŷ;

αc
βc

) ≡ Pois(ŷ;λc).

In this limit, Eqn. 2 becomes:

Pr(c|~y, θ) ≈
exp(

∑
d′ yd′ ln(Wcd′λc)− λc)∑

c′ exp(
∑
d′ yd′ ln(Wc′d′λc′)− λc′)

(3)

which can be evaluated by a neural network using soft-WTA dynamics [9].

3 Expectation-Maximization of PPG-generated data

As a starting point for deriving a biologically-plausible neural network for learning PPG-generated
data, let us first consider optimal learning derived from the Expectation-Maximization (EM) algo-
rithm [19]. Given a set of N data points ~y(n), we seek the parameters θ = {W,λ} that maximize
the data likelihood given the PPG-model defined above. We use the EM formulation introduced
in [20] and optimize the free-energy given by:

F(θt, θt-1) =
∑
n

∑
c′

Pr(c′|~y(n), θt-1)(ln Pr(~y(n)|c′, θt) + ln Pr(c′|θt)) +H(θt-1).

Here, H(θt-1) is the Shannon entropy of the posterior as a function of the previous parameter values.

We can find the M-step update rules for the parameters of the model λc andWcd by taking the partial
derivative of F(θt, θt-1) w.r.t. the desired parameter and setting it to zero. As shown in Appendix B,
the resultant update rule for λc,t is:

∂F(θt, θt-1)

∂λc,t
= 0⇒ λc,t =

∑
n Pr(c|~y(n), θt-1)ŷ(n)∑
n Pr(c|~y(n), θt-1)

(4)

3

The M-step update rules for the weightsWcd are found by setting the corresponding partial derivative
of F(θt, θt-1) to zero, under the constraint that

∑
dWcd = 1. Using Lagrange multipliers Λc yields

the following update rule (see Appendix B):

∂F(θt, θt-1)

∂Wcd,t
+

∂

∂Wcd,t

∑
c′

Λc′

(∑
d′

Wc′d′,t − 1

)
= 0

⇒Wcd,t =

∑
n yd Pr(c|~y(n), θt-1)∑

d

∑
n yd Pr(c|~y(n), θt-1)

. (5)

As numerical verification, Figure 1 illustrates the evolution of parameters λc and Wcd yielded by
the EM algorithm on artificial data. Our artificial data set consists of four classes of rectangles on
a grid of 10x10 pixels. Rectangles from different classes have different sizes and positions and are
represented by a generative vector W gen

c .

We generate a data set by drawing a large number N of observations of W gen
c , with each class

equiprobable. We then draw a random variable z from a Gamma distribution with parameters αc
and βc that depend on the class of each observation. Then, givenW gen

c and z, we create a data vector
~y(n) by adding Poisson noise to each pixel. With a set of N data vectors ~y(n), we then perform EM
to find the parameters Wcd and λc that maximize the likelihood of the data set (at least locally). The
E-step evaluates Equation 2 for each data vector, and the M-step evaluates Equations 4 and 5. Figure
1 shows that, after about five iterations, the EM algorithm returns the values ofWcd and λc that were
used to generate the data set, i.e. the parameter values that maximize the data likelihood.

Figure 1: The evolution of model parameters yielded by the EM algorithm on artificial data. A: Four classes of
rectangles represented by the vectorW gen

c , with the values of λc for each class displayed to the left. B: Evolution
of the parameters Wcd for successive iterations of the EM algorithm. C: Evolution of the parameters λc, with
dashed lines indicating the values from the generative model. The EM algorithm returns the values of Wcd and
λc that were used to generate the data set, i.e. the parameter values that maximize the data likelihood. For these
plots, we generated a data set of 2000 inputs. W gen

c = 100 for white pixels and 1 for black pixels. The shape
and rate parameters of the Gamma distributions, from the top class to the bottom, are α = [98, 112, 128, 144]
and β = [7, 7.5, 8, 8.5], giving λc = αc/βc = [14, 15, 16, 17].

4 Optimal neural learning for varying stimulus intensities

For PPG-generated data, the posterior distribution of the class given an observation is approximately
the softmax function (or soft-WTA, Eqn. 3). Neural networks that implement the softmax function,
usually via some form of lateral inhibition, have been extensively investigated [2, 8–11, 21]. Thus,
inference in our model reduces to well-understood neural circuit dynamics.

The key remaining challenge is to analytically relate optimal learning as derived by EM to circuit
plasticity. To map abstract random variables to neural counterparts, we consider a complete bipar-
tite neural network, with the input layer corresponding to the observables y and the hidden layer
representing the latent causes of the observables, i.e. classes.2 The network is feedforward; each

2The number of hidden neurons does not necessarily need to equal the number of classes; see Figure 3.

4

neuron in the input layer connects to each neuron in the hidden layer via synaptic weights Wcd,
where c ∈ [1, C] indexes the C hidden neurons and d ∈ [1, D] indexes the D input neurons.

Let each of the hidden neurons have a standard activity variable, sc, and additionally an intrinsic
parameter λc that represents its excitability. Let the activity of each hidden neuron be given by
Eqn. 2. The activity of each hidden neuron is then the posterior distribution for one particular class,
given the inputs it receives from the input layer, its synaptic weights, and its excitability:

sc =
exp(Ic)∑
c′ exp(Ic′)

; Ic =
∑
d′

yd′ ln(Wcd′λc)− λc.

The weights of the neural network Wcd are plastic and change according to a Hebbian learning rule
with synaptic scaling [22]:

∆Wcd = εW (scyd − scλcW̄cWcd), (6)

where εW is a small and positive learning rate, and W̄c =
∑
dWcd.

The intrinsic parameters λc are also plastic and change according to a similar learning rule:

∆λc = ελsc(
∑
d

yd − λc), (7)

where ελ is another small positive learning rate. This type of regulation of excitability is homeo-
static in form, but differs from standard implementations in that the excitability changes not only
depending on the neuron output, s, but also on the net input to the neuron (see also [17] for a formal
link between

∑
d yd and average incoming inputs).

Appendix C shows that these online update rules enforce the desired weight normalization, with W̄c

converging to one. Assuming weight convergence, and assuming a small learning rate and a large
set of data points, the weights and intrinsic parameters converge to (see [9] and Appendix C):

W conv
cd ≈

∑
n y

(n)
d sc∑

d′
∑
n y

(n)
d sc

; λconv
c =

∑
n scŷ

(n)∑
n sc

.

Comparing these convergence expressions with the EM updates (Eqns. 5 and 4) and inserting the
definition sc = Pr(c|~y, θ), we see that the neural dynamics given in Eqns. 6 and 7 have the same
fixed points as optimal EM learning. The network can therefore find the parameter values that op-
timize the data likelihood using compact and neurally-plausible learning rules. Eqn. 6 is a standard
form of Hebbian plasticity with synaptic scaling, while Eqn. 7 states how the excitability of hidden
neurons should be governed by the gain of the inputs and the current to the neuron.

5 Numerical Experiments

To verify our analytical results, we first investigated learning in the derived neural network using
data generated according to the PPG model. Figure 2 illustrates the evolution of parameters λc and
Wcd yielded by the neural network on artificial data (the same as used for Figure 1). The neural
network learns the synaptic weights and intrinsic parameters that were used to generate the data set,
i.e. the parameter values that maximize the data likelihood.

Since our artificial data was PPG-generated, one can expect the neural network to learn the classes
and intensities quickly and accurately. To test the neural network on more realistic data, we followed
a number of related studies [8–12] and used the MNIST as a standard dataset containing different
stimulus classes. The input to the network was 28x28 pixel images (converted to vectors) from
the MNIST dataset. We present our results for the digits 0-3 for visual ease and simulation speed;
our results on the full dataset are qualitatively similar. We added an offset of 1 to all pixels and
rescaled them so that no pixel was greater than 1. The λc were initialized to be the mean intensity
of all digit classes as calculated from our modified MNIST training set. Each Wcd was initialized
as Wcd ∼ Pois(Wcd;µd) + 1, where µd is the mean of each pixel over all classes and is calculated
from our modified MNIST training set.

Figure 3 shows an example run using C = 16 hidden neurons. It shows the change in both neural
weights and intrisic excitabilities λc during learning. We observe that the weights change to repre-
sent the digit classes and converge relatively quickly (panels A, B). We verified that they sum to 1

5

Figure 2: The evolution of model parameters yielded by the neural network on artificial data generated from
the same model as that used in Figure 1. A: Four classes of rectangles with the values of λc for each class
displayed to the left. B: Evolution of the synaptic weights Wcd that feed each hidden unit after 0, 20, 40,
. . . , 120 time steps, respectively. C: Evolution of the intrinsic parameters λc over 4000 time steps, with dashed
lines indicating the values from the generative model. The neural network returns the values ofWcd and λc that
were used to generate the data set, i.e. the parameter values that maximize the data likelihood. For these plots,
εW = ελ = .005, D = 100 (for a 10x10 pixel grid), C = 4, initialized weights were uniformly-distributed
between .01 and .06, and initialized intrinsic parameters were uniformly-distributed between 10 and 20.

Figure 3: The neural network’s performance on a reduced MNIST dataset (the digits 0 to 3). A: Representa-
tives of the input digits. B: The network’s synaptic weights during training. Each square represents the weights
feeding one hidden neuron. Each box of 16 squares represents the weights feeding each of the C = 16 hidden
neurons after initialization, and after subsequent iterations over the training set. The network learns different
writing styles for different digits. C: The network learns the average intensities, i.e. the sum of the pixels in
an image, of each class of digit in MNIST. Algorithms that impose ad hoc intensity normalization in their pre-
processing cannot learn these intensities. The horizontal dashed lines are the average intensities of each digit,
with 1 having the lowest overall luminance and 0 the largest. The average λc for all hidden units representing
a given digit converge to those ground truth values. D: The network’s learned intensity differences improve
classification performance. The percentage of correct digit classifications by a network with IP (solid lines) is
higher than that by a network without IP (dashed lines). This result is robust to the number of iterations over
the dataset and the number of labels used to calculate the Bayesian classifier used in [9].

6

for each class at convergence (not shown). We also observe that the network’s IP dynamics allow it
to learn the average intensities of each class of digit (panel C). The thin horizontal dashed lines are
the true values for λc as calculated from the MNIST test set using its ground-truth label information.
IP modifies the network’s excitability parameters λ to converge to their true values. Our network is
not only robust to variations in intensity, but learns their class-specific values.

A network that learns the excitability parameters λ exhibits a higher classification rate than a network
without IP (panel D). We computed the performance of the network derived in Sec. 4 on unnormal-
ized data in comparison with a network without IP (all else being equal). As a performance measure
we used the classification error (computed using the same Bayesian classifier as used in [9]). Clas-
sification success rates were calculated with very few labels, using 0.5% (thin lines) and 5% (thick
lines) of labels in the training set (both settings for both networks). The classification performance
of the network with IP outperforms that of the network without it. This result suggests that the
differences in intensities in MNIST, albeit visually small, are sufficient to aid classification.

Finally, Figure 4 shows that the neural network can learn classes that differ only in their intensities.
The dataset used for Figure 4 comprises 40000 images of two types of sphere: dull and shiny. The
spheres were identical in shape and position, and we generated data points (i.e. images) under a
variety of lighting conditions. On average, the shiny spheres were brighter (λshiny ≈ 720) than
the dull spheres (λdull ≈ 620). The network represents the two classes in its learned weights and
intensities. Algorithms that utilize ad hoc normalization preprocessing schemes would have serious
difficulties learning input statistics for datasets of this kind.

Figure 4: The neural network can learn classes that differ only in their intensities. The dataset consisted of
either dull or shiny spheres. The network had C = 2 hidden neurons. A: Three pairs of squares represent
the weights feeding each hidden neuron after initialization (leftmost pair), 10 iterations (center pair), and 200
iterations (rightmost pair) over the training set. Note the rightmost pair, particularly how the right sphere
appears brighter than the left sphere. The right sphere corresponds to the shiny class and the left sphere to
the dull class. B: Learned mean intensities as a function of iterations over the training set. The dull spheres
have an average intensity of 620, and the shiny spheres 720. The network learns the classes and their average
intensities, even when data points from different classes have the same sizes and positions.

6 Discussion

Neural circuit models are powerful tools for understanding neural learning and information process-
ing. They have attracted attention as inherently parallel information processing devices for analog
VLSI, a fast and power-efficient alternative to standard processor architectures [12,23]. Much work
has investigated learning with winner-take-all (WTA) type networks [2, 8–12, 18, 21, 24]. A subset
of these studies [2, 8–11, 21] link synaptic plasticity in WTA networks to optimal learning, mostly
using mixture distributions to model input stimuli [8–11, 21]. Our contribution expands on these
results both computationally, by allowing for a robust treatment of variability in input gain, and
biologically, by providing a normative justification for intrinsic plasticity during learning. Our an-
alytical results show that the PPG-generative model is tractable and neurally-implementable, while
our numerical results show that it is flexible and robust.

Our model provides a principled treatment of intensity variations, something ubiquitous in realistic
datasets. As a result, it allows for robust learning without requiring normalized input data. This ad-
dresses the criticisms (see [10]) of earlier WTA-like circuits [8,9] that required normalized data. We
found that explicitly accounting for intensity improves classification performance even for datasets
that have been size-normalized (e.g. MNIST), presumably by providing an additional dimension for
discriminating across latent features. Furthermore, we found that the learned representation of the
MNIST data allows for good classification in a semi-supervised setting, when only a small fraction

7

of the data is labeled. Thus, our model provides a starting point for constructing novel clustering
and classification algorithms following the general approach in [9].

The treatment of intensity as an explicit variable is not new. The well-investigated class of Gaussian
Scale Mixtures (GSM) is built on that idea. Nonetheless, while GSM and PPG share some con-
ceptual similarities, they are mathematically distinct. While GSMs assume 1) Gaussian distributed
random variables and 2) a common scale variable [25], PPG assumes 1’) Poisson observation noise
and 2’) class-specific scale variables. Consequently, none of the GSM results carry over to our
work, and our PPG assumptions are critical for our derived intrinsic plasticity and Hebbian plastic-
ity rules. It would be interesting to investigate a circuit analog of intensity parameter learning in a
GSM. Since this class of models is known to capture many features of afferent sensory neurons, we
might make more specific predictions concerning IP in V1. It would also be interesting to compare
the classification performance of a GSM with that of PPG on the same dataset. The nature of the
GSM generative model (linear combination of features with multiplicative gain modulation) makes
it an unusual choice for a classification task. However, in principle, one could use a GSM to learn a
representation of a dataset and train a classifier on it.

The optimal circuit implementation of learning in our generative model requires a particular form of
IP. The formulation of IP is a phenomenological one, reflecting the biological observation that the
excitability of a neuron changes in a negative feedback loop as a function of past activity [14, 15].
Mathematically, our model shares similarities with past IP models [6, 10, 17] with the important
difference that the controlled variable is the input current, rather than the output firing rate. Since
the two quantities are closely related, we expect it will be difficult to directly disambiguate between
IP models experimentally. Nonetheless, our model makes potentially testable predictions in terms
of the functional role of IP, by directly linking the excitability of individual neurons to nontrivial
statistics of their inputs, namely their average intensity under a Gamma distribution. Since past IP
work invariably assumes the target excitability is a fixed parameter, usually shared across neurons,
the link between neural excitability and real world statistics is very specific to our model and po-
tentially testable experimentally. Furthermore, our work provides a computational rationale for the
dramatic variations in excitability across neurons, even within a local cortical circuit, which could
not be explained by traditional models.

The functional role for IP identified here complements previous proposals linking the regulation
of neuronal excitability to learning priors [11] or as posterior constraints [10, 26]. Ultimately, it
is likely that the role of IP is manifold. Recent theoretical work suggests that the net effect of
inputs on neural excitability may arise as a complex interaction between several forms of IP, some
homeostatic and others not [17]. Furthermore, different experimental paradigms may preferentially
expose one IP process over the others, which would explain the confusion within the literature on
the exact nature of biological IP. Taken together, these models point to a fundamental role of IP for
circuit computation in a variety of setups. Given its many possible roles, any approach based on
first principles is valuable, as it tightly connects IP to concrete stimulus properties in a way that can
translate into better-constrained experiments.

Acknowledgements. We acknowledge funding by the DFG within the Cluster of Excellence EXC
1077/1 (Hearing4all) and by grant LU 1196/5-1 (JL and TM) and the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement no. 291734 (CS).

References

[1] L F Abbott and S B Nelson. Synaptic plasticity: taming the beast. Nat Neurosci, 3:1178 –
1183, 2000.

[2] J Lücke and M Sahani. Maximal causes for non-linear component extraction. J Mach Learn
Res, 9:1227–67, 2008.

[3] C J Rozell, D H Johnson, R G Baraniuk, and B A Olshausen. Sparse coding via thresholding
and local competition in neural circuits. Neural Comput, 20(10):2526–63, October 2008.

[4] J Lücke. Receptive field self-organization in a model of the fine-structure in V1 cortical
columns. Neural Comput, 21(10):2805–45, 2009.

8

[5] J Zylberberg, J T Murphy, and M R Deweese. A Sparse Coding Model with Synaptically
Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell
Receptive Fields. PLoS Comp Biol, 7(10):e1002250, 2011.

[6] C Savin, P Joshi, and J Triesch. Independent Component Analysis in Spiking Neurons. PLoS
Comp Biol, 6(4):e1000757, April 2010.

[7] E Oja. A simplified neuron model as a principal component analyzer. J Math Biol, 15:267 –
273, 1982.

[8] B Nessler, M Pfeiffer, and W Maass. Stdp enables spiking neurons to detect hidden causes of
their inputs. In Adv Neural Inf Process Syst, pages 1357–1365, 2009.

[9] C Keck, C Savin, and J Lücke. Feedforward inhibition and synaptic scaling–two sides of the
same coin? PLoS Comp Biol, 8(3):e1002432, 2012.

[10] S Habenschuss, J Bill, and B Nessler. Homeostatic plasticity in bayesian spiking networks as
expectation maximization with posterior constraints. In Adv Neural Inf Process Syst, pages
773–781, 2012.

[11] B Nessler, M Pfeiffer, L Buesing, and W Maass. Bayesian computation emerges in
generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comp Biol,
9(4):e1003037, 2013.

[12] M Schmuker, T Pfeil, and M P Nawrot. A neuromorphic network for generic multivariate data
classification. Proc Natl Acad Sci, 111(6):2081–2086, 2014.

[13] O Schwartz and E P Simoncelli. Natural sound statistics and divisive normalization in the
auditory system. Adv Neural Inf Process Syst, pages 166–172, 2000.

[14] G Daoudal and D Debanne. Long-term plasticity of intrinsic excitability: learning rules and
mechanisms. Learn Memory, 10(6):456–465, 2003.

[15] R H Cudmore and G G Turrigiano. Long-term potentiation of intrinsic excitability in lv visual
cortical neurons. J Neurophysiol, 92(1):341–348, 2004.

[16] M Stemmler and C Koch. How voltage-dependent conductances can adapt to maximize the
information encoded by neuronal firing rate. Nat Neurosci, 2(6):521–527, 1999.

[17] C Savin, P Dayan, and M Lengyel. Optimal Recall from Bounded Metaplastic Synapses: Pre-
dicting Functional Adaptations in Hippocampal Area CA3. PLoS Comp Biol, 10(2):e1003489,
February 2014.

[18] Rodney J Douglas and Kevan AC Martin. Neuronal circuits of the neocortex. Annu Rev
Neurosci, 27:419–451, 2004.

[19] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from incomplete data via the
EM algorithm (with discussion). J R Stat Soc Series B, 39:1–38, 1977.

[20] R Neal and G Hinton. A view of the EM algorithm that justifies incremental, sparse, and other
variants. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, 1998.

[21] D J Rezende, D Wierstra, and W Gerstner. Variational learning for recurrent spiking networks.
Adv Neural Inf Process Syst, pages 136–144, 2011.

[22] L F Abbott and S B Nelson. Synaptic plasticity: taming the beast. Nat Neurosci, 3(Supp):1178–
1183, November 2000.

[23] E Neftci, J Binas, U Rutishauser, E Chicca, G Indiveri, and R J Douglas. Synthesizing cogni-
tion in neuromorphic electronic systems. Proc Natl Acad Sci, 110(37):E3468–E3476, 2013.

[24] J Lücke and C Malsburg. Rapid processing and unsupervised learning in a model of the cortical
macrocolumn. Neural Comput, 16:501–33, 2004.

[25] M J Wainwright, E P Simoncelli, and A S Willsky. Random cascades on wavelet trees and
their use in analyzing and modeling natural images. Appl Comput Harmon Anal, 11(1):89–
123, 2001.

[26] S Deneve. Bayesian spiking neurons i: inference. Neural Comput, 20(1):91–117, 2008.

9

