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Supplementary Material for “A Constant Factor Bi-Criteria Approximation
Guarantee for k-means++”

The following appendices provide proofs omitted from the main manuscript. Equation numbers and
other labels refer back to the main manuscript.

A Proof of Lemma 4

The proof follows the inductive proof of [4, Lemma 3.3] with the notational changes X,, — U,
X. — V, and 8popT — p. For brevity, only the differences are presented.

For the first base case t = 0, u > 0, [4] already shows that the lemma holds with coefficients
1=14Hyp,0=1+H_q,and 1 = (v — 0)/u. Similarly for the second base case t = u = 1, [4]
shows that E[¢ | ¢] < 2¢(V) + p(U) = (1 + H1)p(V) + (1 + Ho)p(U), as required for the stronger
version here.

For the first “covered” case considered in the inductive step, the argument is the same and the upper
bound on the contribution to E[¢’ | ¢] is changed to

¢0)
¢

For the second “uncovered” case, the first displayed expression in the right-hand column of [4, page
1030] becomes (after applying the bound 3 . 4 pada < p(A) from Lemma 2)

u—t+1

(0 Hi)o(V) + (14 Hiapth) + =

o). (s)

P [0+ o) 600) + () + (14 Hia) o) = o) + 2= 00) — o)
Summing over all uncovered clusters A C U, the contribution to E[¢’ | ¢] is bounded from above by
Y 1+ He)o) + (4 Hia)olt) + 2= o)
b | (s = i) 3 0LA)p(A) = 21 3 oA
ACu ACu
The inner product above can be bounded as
Y d(A)p(A) < oU)pUh), (16)

ACU

with equality if both ¢(U), p(U) are completely concentrated in the same cluster 4. The sum of
squares term can be bounded using the power-mean inequality as in [4]. Hence the contribution to
E[¢’ | ¢] is further bounded by

0 1 o) + 1+ Hipen + o). a7
Summing the bounds in (15), (17), we have
Bl | 0] < (14 Hi)o(v) + (14 A2 TR gy 2=ty 200200,

Recalling that ¢ = (V) + ¢(U), the right-hand side is seen to be increasing in ¢(Uf). Taking the
worst case as ¢p(U) — ¢ gives

u—t

Bl 0] < (14 Hooa ) 609) + (L4 Hioa)l@d) + ot

u—t

<+ H)o(V) + (1 + Hia)pU) + o)

u

since 1/u < 1/t. This completes the induction.
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B Remainder of Proof of Lemma 6

This appendix provides some additional details on solving for the intersection between the functions
By((u)) = LW +evtu+ 1)o(V) ev (L) dU) + cult,u+ DoY)

o) +9(V) oU) + 6(V)
By(p(U)) = oU) + ¢(V)

for the case that By (¢(U)) is decreasing in ¢(U). Equating By (¢(U)) and By (p(U)) leads after
some algebra to a quadratic equation in ¢(U):

0=0U)* + [26(V) — cv(t, u)(6(V) + pU)] 6(U)
+¢(V) (6(V) = ev(t,u+1)o(V) — cy(t, u+ 1)pUh)) .
By the assumption cy (¢, u + 1) > 1, the constant term in this quadratic equation is non-positive,

implying that one of the roots is also non-positive and can be discarded. The remaining positive root
is given by

o(V) + pU),

BU) = Sev(t,w)(G(V) + W) — 6(V) + 3V/@

after simplifying the discriminant to match the stated expression for (). Evaluating either By (¢(Uf))
or Ba(¢p(U)) at this root yields the bound in (10), as required.

C Proof of Lemma 7
We aim to bound the quadratic function @) from above by the square (a¢(V) + bp(U))? for all
#(V), p(U) and some choice of a,b > 0. The cases ¢(V) = 0 and p(Uf) = 0 require that
a® > cy(t,u)? + 4(ey(t,u+ 1) — cyp(t, u)),
b2 > cp(t,u)?.
Setting these inequalities to equalities, the remaining condition for the cross-term is
ab > cy(t,u)? + 2(cy(t,u+ 1) — cy(t, u)).
Equivalently for a,b > 0,
a?b® = (cev(t,u)® + 4(ev(tu+ 1) — ep(t, u)) ev(t,u)?
> (ev(tu)? + 2cult,u+1) = ev(t))”.
We rearrange to obtain
4(CV(ta u+ 1) - CV(ta U))Cv(t, U)2
> dey(t,u)? (cy(t,u+ 1) — ep(t,u) + 4(cy(t,u+ 1) — ep(t,u))?,
(ey(t,u+1) — cy(t,u+1))eyp(t,u)® > (cyu(t,u+ 1) — ep(t, u))?,
the last of which is true by assumption (5). Thus we conclude that
\/a < \/CV(t7 U)2 + 4(CV(t7 U+ 1) - CV(t7 u))¢(V) + CV(ta u)p(bl)

Combining this last inequality with Lemma 6 proves the result.

D Proof of Lemma 8

Substituting (2) into the left-most factor in (5b),
ey(t,u+1) —cy(t,u+1) =cyp(t,u+1) —ep(t — 1,u)
(a+1)(u+1) (a+1)u
t—u—1+4b t—1—u+b
a+1
t—u—1+b

11
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Similarly on the right-hand side of (5b),

cu(t,u+1) —cp(t,u) = cp(t — 1,u) — cp(t,u)
~ (a+1)u (a+1u
Ct—l-u+b t—u+b
(a+Du
(t—u+b)(t—u—1+b)

Hence
(ecy(t,u+1) —cy(t,u+ 1))cv(t,u)2 — (ey(t,u+1) — cv(t,u))2
B a+1 1 2(a+1)u (a+1)%u? B (a+1)%u?
Ct—u—1+b t—u+b (t—u+b)? (t—u+b)2(t—u—1+Db)?

a+1 (1 2m+1m) (a+1)2u?[(a+ 1)t —u—1+0b)—1] (18)

T t—u—1+b t—u+bd (t—u—+b)2(t—u—1410b)?2
The first of the two summands in (18) is positive for ¢ > u > 0. The second summand is also

non-negative as long as (a + 1)(t —u — 1 + b) > 1. The most stringent case occurs for t = u + 1
and is implied by the assumption ab > 1. We conclude that (18) is positive, i.e. (Sb) holds.

E Proof of Lemma 9

First note that (2a) has the property that ¢y (t,u + 1) > cp(¢,u) for all ¢,u. Therefore (6a) is
equivalent to

2ep(t+ Lu41) —cp(t,u) > Vey(t,u)? + 4(cp(t,u+ 1) — ep(t,u)). (19)
Substituting (2a) into the left-hand side,

(a+1D)(u+1) (a+1u
Lu+1)— = -
2ep(t+Lutl) —ep(tu) =142 ——"—— t—u+b

(a+1)(u+2)
t—u+b

which is seen to be positive for ¢ > » > 0. Hence (19) is in turn equivalent to
2ep(t+1Lu+1) — cv(t,u))2 > cy(t,u)? + 4(ey(t,u+ 1) — eyp(t,u)).

On the left-hand side,

(a+1D(u+2) (a+1)%(u+2)?

2 Lu+1)— Z=1+2 2
(Cy(t+ , U+ ) CV(tau)) + t—u+b (t—u+b)2 (0)
On the right-hand side,
C(a+D(u+1)  (a+1u
ey(t,u+1) —cp(t,u) = t—u—14b t—u+b
(a+1)(t+D)
C(t—utb)(t—u—1+b)
o a+1 14 u+1
T t—u4+b t—u—1+b)’
+1Du  (a+1)%u?
2_q 400
Cv(t,u) + t—U+b (t_u+b)2a
ey(t,u)? +4(ey(t,u+1) — ep(t,u)
2,2
1 apet D@t | (a+ (a+ Dut1) 1)

t—u+b (t—u+0b)? (t—u+b)(t—u—1+0b)
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Subtracting (21) from (20) yields
4(a+1)%(u+1) 4 (a+1)(u+1)

(t—u+b?  (t—u+b)(t—u—1+b)
(a+1)(u+1)[alt—u—1+b)—1]

(t—u+b2(t—u—1+Dd) ’

=4

which is non-negative provided that a(t — « — 1 4+ b) > 1. As in the proof of Lemma 8, the most
stringent case occurs for ¢ = u + 1 and is covered by the assumption ab > 1. We conclude that (20)
is at least as large as (21), i.e. (6a) holds.
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