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Figure 1: Left: Spectra of the 9 test functions in log-domain. Blue distributions have more eigenvalues
close to α = 0.5 corresponding to more flat distributions, while Red distributions are more extreme
distributions of eigenvalues. Right: Runtime of the algorithms on the functions ordered by difficulty
of the distribution.

To further test the behaviour of the algorithms on quadratic functions with different eigenvalue spectra,
we implemented an approach inspired by Stich and Müller [2012]. Starting from the spectrum of
the ellipsoid function with eigenvalues spaced uniformly on log-scale, we implemented distributions
which have either more eigenvalues that are small or large, forming more extreme distributions, or
distributions with many eigenvalues that are close, forming flat distributions. The biggest difference
to the approach by Stich and Müller [2012] is that we distribute the eigenvalues on a log-scale. The
extreme distributions can be considered as difficult for optimization, because many more eigenvalues
have to be learned in order to adapt to the conditioning of the problem, while in the flat cases only a
few eigenvalues are relevant.

All functions have the form f(x) =
∑d
i=1 10

6αix2i . where 0 = α0 ≤ α2 ≤ · · · ≤ αd = 1 describe
the eigenvalue distribution on log-scale. The extreme distributions follow

αi =
σ(a(1− 2 · i/d))− σ(a)

σ(−a)− σ(a)
,
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with σ(x) = 1/(1 + exp(−x)) and the flat distributions follow

αi =
βa(i)− βa(1)
βa(d)− βa(1)

,

where a > 0 is a variable governing the shape of the distribution and

βa(i) = log

(
1

10−a + i/d · (1− 2 · 10−a)
− 1

)
.

As a → 0, both distributions approach the uniform distribution leading to the Ellipsoid. The
extreme distributions have sigmoidal shapes, while flat distributions have shapes similar to the inverse
of a sigmoid. The values of a used in the extreme distributions were 2, 5, 8, 15 and for the flat
1, 1.25, 2, 3, 6. The resulting distributions of αi can be seen in Figure 1a. We ran 51 trials with 64
dimensions until a target value of 10−14 was reached and show the median of the number of iterations
in Figure 1b.

We can see that all approaches except CMA-ES/d showed comparable performance on all spectra,
where for the harder spectra the gap increased, clearly showing a loss in performance when skipping
updates. Suttorp-CMA-ES and Cholesky-CMA-ES showed comparable results.
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Figure 2: Frobenius distance ‖Et+1E
T
t − I‖F . The line marking the distance of a single rotation by

0.125 rad is given as a reference.

This section describes experiments studying the change of the rotation matrix Et introduced by the
Cholesky-CMA-ES at each iteration. As described in the main paper, a constant rotation matrix Et
will not change the behaviour of the algorithm, but only the rotation introduced between iterations,
Et+1E

T
t . To measure this, we use the Frobenius distance from the identity matrix ‖Et+1E

T
t − I‖F

during a run on DiffPowers. As a reference, we calculated an upper bound on a single rotation angle
that results in a rotation matrix with similar Frobenius distance. In reality the rotation angles of the
matrix are typically smaller as rotations are split among dimensions.
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