
A Proofs

A.1 Proof of (12)

Consider the subspace parametrization for the density q(f) = N (f |µ̃, Σ̃) of f ∈ H with

µ̃ = ΨX̃K
−1
X̃
m̃

Σ̃ = I + ΨX̃(K−1
X̃
S̃K−1

X̃
−K−1

X̃
)ΨT

X̃
.

Decompose f = f‖ + f⊥, where f‖ = ΨX̃K
−1
X̃
fX̃ and f⊥ satisfies NX̃f⊥ = f⊥, with respect to

the null-space projection NX̃ = I − PX̃ , where PX̃ = ΨX̃K
−1
X̃

ΨT
X̃

. Further, consider b satisfying

f⊥ = ΦXb, which implies ΦTXPX̃ΦXb = K̂Xb = 0. That is, b = N̂b, where N̂ is the null space of
K̂X . By construction, since

fX −KX,X̃K
−1
X̃
fX̃ = ΦTX(I −ΨX̃K

−1
X̃

ΨT
X̃

)f

= ΦTXf⊥ = ΦTXNX̃ΦXN̂b

= (KX − K̂X)N̂b

it follows that

− log q(f) =
1

2
log |Σ̃|+ 1

2
(f − µ̃)T Σ̃−1(f − µ̃) + const.

=
1

2
log

|S̃|
|KX̃ |

+
1

2
(f − µ̃)T (I −ΨX̃

(
K−1
X̃
− S̃−1

)
ΨT
X̃

)(f − µ̃) + const.

=
1

2
log

|S̃|
|KX̃ |

+
1

2
(f − µ̃)T (NX̃ + ΨX̃ S̃

−1ΨT
X̃

)(f − µ̃) + const.

=
1

2
log

|S̃|
|KX̃ |

+
1

2
fT⊥NX̃f⊥ +

1

2
(fX̃ − m̃)TK−1

X̃
ΨT
X̃

ΨX̃ S̃
−1ΨT

X̃
ΨX̃K

−1
X̃

(fX̃ − m̃) + const.

=
1

2
log

|S̃|
|KX̃ |

+
1

2
bT N̂(KX − K̂X)N̂b+

1

2
(fX̃ − m̃)T S̃−1(fX̃ − m̃) + const.

=
1

2
log

|S̃|
|KX̃ |

+
1

2
(fX −KX,X̃K

−1
X̃
fX̃)T (KX − K̂X)+(fX −KX,X̃K

−1
X̃
fX̃)

+
1

2
(fX̃ − m̃)T S̃−1(fX̃ − m̃) + const.

=
1

2
log

1

|KX̃ ||KX − K̂X |
− log p(fX |fX̃)− log q(fX̃) + const.

where we used the identities

|Σ̃| = |I||(S̃ −KX̃)−1 +K−1
X̃
||S̃ −KX̃ |

= |(KX̃ −KX̃ S̃
−1KX̃)−1||S̃ −KX̃ |

=
|S̃ −KX̃ |

|KX̃ −KX̃ S̃
−1KX̃ |

=
|S̃ −KX̃ |

|KX̃ S̃
−1||S̃ −KX̃ |

=
|S̃|
|KX̃ |
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and

Σ̃−1 =
(
I + ΨX̃K

−1
X̃

(S̃ −KX̃)K−1
X̃

ΨT
X̃

)−1
= (I −ΨX̃K

−1
X̃

(
(S̃ −KX̃)−1 +K−1

X̃

)−1
K−1
X̃

ΨT
X̃

)

= (I −ΨX̃K
−1
X̃

(
KX̃ −KX̃(KX̃ + S̃ −KX̃)−1KX̃

)
K−1
X̃

ΨT
X̃

)

= I −ΨX̃

(
K−1
X̃
− S̃−1

)
ΨT
X̃
.

Thus

q(f) ∝ p(fX |fX̃)q(fX̃)|KX̃ |
1/2|KX − K̂X |1/2

A.2 Proof of the equivalence between (7) and (13)

Using (12), since
fT‖ f‖ = fT

X̃
K−1
X̃
fX̃

and

fT⊥f⊥ = bN̂ΦTXNX̃ΦXN̂b = (fX −KX,X̃K
−1
X̃
fX̃)T (KX − K̂X)+(fX −KX,X̃K

−1
X̃
fX̃)

we can rewrite (13) as∫
q(f) log

p(y|f)p(f)

q(f)
df

u
∫
p(fX |fX̃)q(fX̃)|KX̃ |

1/2|KX − K̂X |1/2 log
p(y|f)p(fX |fX̃)p(fX̃)|KX̃ |1/2|KX − K̂X |1/2

p(fX |fX̃)q(fX̃)|KX̃ |1/2|KX − K̂X |1/2
df

=

∫
p(fX |fX̃)q(fX̃) log

p(y|f)p(fX |fX̃)p(fX̃)

p(fX |fX̃)q(fX̃)
|KX̃ |

1/2df‖|KX − K̂X |1/2df⊥

=

∫
q(fX , fX̃) log

p(y|fX)p(fX̃)

q(fX , fX̃)
dfXdfX̃

where u denotes the equivalence up to constants.

A.3 Solution to subproblem (16)

Consider the objective function∫
q(f) log

p(yt|f)Nγtp(f)γtqt(f)1−γt

q(f)
df

The modified likelihood term is

log p(yt|f)Nγt = logN (yt|φTx f,
σ2

Nγt
) + const.

Suppose qt has mean µ̃t and precision Σ̃−1t , where Σ̃ is subspace parametrized Σ̃t = I + ΨX̃AtΨ
T
X̃

with At = S̃−1t −K−1X̃ . Then Σ̃−1t = I −ΨX̃(A−1t +KX̃)−1ΨX̃ , and the natural parameters in the

modified prior p(f)γtqt(f)1−γt ∝ N (f |µ̂t, Σ̂t) can be written as

Σ̂−1t µ̂t = γtΣ
−1µ+ (1− γt)Σ̃−1t µt = (1− γt)Σ̃−1t µt

Σ̂−1t = γtΣ
−1 + (1− γt)Σ̃−1t = I − (1− γt)ΨX̃(A−1t +KX̃)−1ΨX̃

In implementation, it means p(f)γtqt(f)1−γt ∝ p(fX |fX̃)q(fX̃ |m̂, Ŝ), where m̂, Ŝ can be identified
as below:
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Σ̂−1t = I − (1− γt)ΨX̃

(
K−1
X̃
− S̃−1t

)
ΨT
X̃

= I −ΨX̃

(
K−1
X̃
−K−1

X̃
+ (1− γt)K−1X̃ − (1− γt)S̃−1t

)
ΨT
X̃

= I −ΨX̃

(
K−1
X̃
− ((1− γt)S̃−1t + γtK

−1
X̃

)
)

ΨT
X̃

= I −ΨX̃

(
K−1
X̃
− Ŝ−1t

)
ΨT
X̃

where we define
Ŝ−1t := (1− γt)S̃−1t + γtK

−1
X̃

That is, subspace parametrization can be expressed with Ŝ

Σ̂t = I −ΨX̃K
−1
X̃

(
KX̃ − Ŝt

)
K−1
X̃

ΨT
X̃

For the mean,

µ̂t = Σ̂t

(
(1− γt)Σ̃−1t µ̃

)
= (1− γt)Σ̂tΣ̃−1t µ̃

= (1− γt)(I −ΨX̃K
−1
X̃

(
KX̃ − Ŝt

)
K−1
X̃

ΨT
X̃

)ΨX̃ S̃
−1
t m̃t

= (1− γt)ΨX̃(I −K−1
X̃

(
KX̃ − Ŝt

)
)S̃−1t m̃t

= (1− γt)ΨX̃(I −
(
I −K−1

X̃
Ŝt

)
)S̃−1t m̃t

= ΨX̃K
−1
X̃

(
(1− γt)ŜtS̃−1t m̃t

)
= ΨX̃K

−1
X̃
m̂t

where m̂t := (1− γt)ŜtS̃−1t m̃t

Thus, the subproblem is a also variational sparse GPR written in the same inducing functions, but
with likelihood with modified variance

σ2 ← σ2

Nγt
and prior with modified mean and covariance

m̂t ← (1− γt)ŜtS̃−1t m̃t

Ŝ−1t ← (1− γt)S̃−1t + γtK
−1
X̃

B Auxiliary Experimental Results
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Figure 2: Online learning results of kin40k. nMSE evaluated on the held out test set; Nm = 2048.
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(a) joint 1 (b) joint 2

(c) joint 3 (d) joint 4

(e) joint 5 (f) joint 6

(g) joint 7

Figure 3: Online learning results of sarcos. nMSE evaluated on the held out test set; the dash lines
and the solid lines denote the results with Nm = 512 and Nm = 2048, respectively.
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(a) joint 1 (b) joint 2

(c) joint 3 (d) joint 4

(e) joint 5 (f) joint 6

(g) joint 7

Figure 4: Online learning results of KUKA1. nMSE evaluated on the held out test set; Nm = 2048
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(a) joint 1 (b) joint 2

(c) joint 3 (d) joint 4

(e) joint 5 (f) joint 6

(g) joint 7

Figure 5: Online learning results of KUKA2. nMSE evaluated on the held out test set; Nm = 2048
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