
A A method to use the timestamps

As before, we use t(n)i to represent the timestamp of the i-th visit of the n-th patient. In the following,
we suppress the superscript (n) to avoid cluttered notation. Note that the timestamp ti can be anything
that provides the temporal information of the i-th visit: the number of days from the first visit, the
number of days between two consecutive visits, or the number of days until the index date of some
event such as heart failure diagnosis.

In order to use the timestamps, we modify Step 2 and Step 3 in Section 2.2 as follows:
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to match the dimensionality. The entire process could be understood such that we use the temporal
information not to embed each visit, but to calculate the attentions for the entire visit sequence. This
is consistent with our modeling approach where we lose the sequential information in embedding the
visit with MLP, then recover the sequential information by generating the attentions using the RNN.
By using the temporal information, specifically the log of the number of days from the first visit, we
were able to improve the heart failure prediction AUC by 0.003 without any hyper-parameter tuning.

B Details of the experiment settings

B.1 Hyper-parameter Tuning

We used the validation set to tune the hyper-parameters: visit embedding size m, RNN↵’s hidden
layer size p, RNN�’s hidden layer size q, L2 regularization coefficient, and drop-out rates.

L2 regularization was applied to all weights except the ones in RNN↵ and RNN�. Two separate
drop-outs were used on the visit embedding vi and the context vector ci. We performed the random
search with predefined ranges m, p, q 2 {32, 64, 128, 200, 256}, L2 2 {0.1, 0.01, 0.001, 0.0001},
dropoutvi , dropoutci 2 {0.0, 0.2, 0.4, 0.6, 0.8}. We also performed the random search with m, p
and q fixed to 256.

The final value we used to train RETAIN for heart failure prediction is m, p, q = 128, dropoutvi = 0.6,
dropoutci = 0.6 and 0.0001 for the L2 regularization coefficient.

B.2 Code Grouper

Diagnosis codes, medication codes and procedure codes in the dataset are respectively using Interna-
tional Classification of Diseases (ICD-9), Generic Product Identifier (GPI) and Current Procedural
Terminology (CPT).

Diagnosis codes are grouped by Clinical Classifications Software for ICD-9[16] which reduces the
number of diagnosis code from approximately 14,000 to 283. Medication codes are grouped by
Generic Product Identifier Drug Group[24] which reduces the dimension to from approximately
151,000 to 96. Procedure codes are grouped by Clinical Classifications Software for CPT[17], which
reduces the number of CPT codes from approximately 9,000 to 238.

B.3 Training Specifics of the Basline Models
• LR: We use 0.01 L2 regularization coefficient for the logistic regression weight.
• MLP: We use drop-out rate 0.6 on the output of the hidden layer. We use 0.0001 L2 regularization

coefficient for the hidden layer weight and the logistic regression weight.
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Table 3: Qualifying ICD-9 codes for heart failure

• RNN: We use drop-out rate 0.6 on the outputs of both hidden layers. We use 0.0001 L2

regularization coefficient for the logistic regression weight. The dimension size of both hidden
layers is 256.

• RNN+↵M : We use drop-out rate 0.4 on the output of the hidden layer and 0.6 on the output of
the context vector

P
i ↵ivi. We use 0.0001 L2 regularization coefficient for the hidden layer

weight of the MLP that generates ↵’s and the logistic regression weight. The dimension size of
the hidden layers in both RNN and MLP is 256.

• RNN+↵R: We use drop-out rate 0.4 on the output of the hidden layer and 0.6 on the output of
the context vector

P
i ↵ivi. We use 0.0001 L2 regularization coefficient for the hidden layer

weight of the RNN that generates ↵’s and the logistic regression weight. The dimension size of
the hidden layers in both RNNs is 256.

B.4 Heart Failure Case/Control Selection Criteria

Case patients were 40 to 85 years of age at the time of HF diagnosis. HF diagnosis (HFDx) is
defined as: 1) Qualifying ICD-9 codes for HF appeared in the encounter records or medication orders.
Qualifying ICD-9 codes are displayed in Table 3. 2) a minimum of three clinical encounters with
qualifying ICD-9 codes had to occur within 12 months of each other, where the date of diagnosis was
assigned to the earliest of the three dates. If the time span between the first and second appearances of
the HF diagnostic code was greater than 12 months, the date of the second encounter was used as the
first qualifying encounter. The date at which HF diagnosis was given to the case is denoted as HFDx.
Up to ten eligible controls (in terms of sex, age, location) were selected for each case, yielding an
overall ratio of 9 controls per case. Each control was also assigned an index date, which is the HFDx
of the matched case. Controls are selected such that they did not meet the operational criteria for
HF diagnosis prior to the HFDx plus 182 days of their corresponding case. Control subjects were
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required to have their first office encounter within one year of the matching HF case patient’s first
office visit, and have at least one office encounter 30 days before or any time after the case’s HF
diagnosis date to ensure similar duration of observations among cases and controls.

C Results on disease progression modeling

Objective: Given a sequence of visits x1, . . . ,xT , the goal of DPM is, for each time step i, to predict
the codes occurring at the next visit x2, . . . ,xT+1. However, as we are interested in the disease
progression, we create a separate set of labels y1, . . . ,yT that do not contain non-diagnosis codes
such as medication codes or procedure codes. Therefore yi will contain diagnosis codes from the
next visit xi+1.

Dataset: We divide the entire dataset described in Table 1 into 0.75:0.10:0.15 ratio, respectively for
training set, validation set, and test set.

Baseline: We use the same baseline models we used for HF prediction. However, since we are
predicting 283 binary labels now, we replace the logistic regression function with the Softmax
function. The drop-out and L2 regularization policies remain the same.

For LR and MLP, at each step i, we aggregate maximum ten past input vectors3
xi�9, . . . ,xi to create

a pseudo-context vector bci. LR applies the Softmax function on top of bci. MLP places a hidden layer
on top of bci then applies the Softmax function.

Evaluation metric: We use the negative log likelihood Eq (1) on the test set to evaluate the model
performance. We also use Recall@k as an additional metric to measure the prediction accuracy.

• Recall@k: Given a sequence of visits x1, . . . ,xT , we evaluate the model performance based
on how accurately it can predict the diagnosis codes y1, . . . ,yT . We use the average Recall@k,
which is expressed as below,
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Recall@k(byi), where Recall@k(byi) =
|argsort(byi)[: k] \ nonzero(yi)|

|nonzero(yi)|

where argsort returns a list of indices that will decrementally sort a given vector and nonzero

returns a list of indices of the coordinates with non-zero values. We use Recall@k because of its
similar nature to the way a human physician performs the differential diagnostic procedure, which
is to generate a list of most likely diseases for an undiagnosed patient, then perform medical
practice until the true disease, or diseases are determined.

Prediction accuracy: Table 4 displays the prediction performance of RETAIN and the baselines.
We use k = 5, 10 for Recall@k to allow a reasonable number of prediction trials, as well as cover
complex patients who often receive multiple diagnosis codes at a single visit.

RNN shows the best prediction accuracy for DPM. However, considering the purpose of DPM, which
is to assist doctors to provide quality care for the patient, black-box behavior of RNN makes it
unattractive as a clinical tool. On the other hand, RETAIN performs as well as other attention models,
only slightly inferior to RNN, provides full interpretation of its prediction behavior, making it a
feasible solution for clinical applications.

The interesting finding in Table 4 is that MLP is able to perform as accurately as RNN+↵M in terms
of Recall@10. Considering the fact that MLP uses aggregated information of past ten visits, we can
assume that DPM depends more on the frequency of disease occurrences rather than the order in
which they occurred. This is quite different from the HF prediction task, where stationary models
(LF, MLP) performed significantly worse than sequential models.

D Illustration and comparison of the baselines

Figure 4 illustrates the baselines used in the experiments and shows the relationship among them.

3We also tried aggregating all past input vectors x1, . . . ,xi, but the performance was slightly worse than
using just ten.
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Table 4: Disease progression modeling performance of RETAIN and the baselines

Model
Negative

Likelihood Recall@5 Recall@10

LR 0.0288 43.15 55.84
MLP 0.0267 50.72 65.02
RNN 0.0258 55.18 69.09
RNN+↵M 0.0262 52.15 65.81
RNN+↵R 0.0259 53.89 67.45
RETAIN 0.0259 54.25 67.74
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Figure 4: Graphical illustration of the baselines: (a) Logistic regression (LR), (b) Multilayer Percep-
tron (MLP), (c) Recurrent neural network (RNN), (d) RNN with attention vectors generated via an
MLP (RNN+↵M ), (e) RNN with attention vectors generated via an RNN (RNN+↵R). RETAIN is
given in Figure 1b.
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