
Learning Tree Structured Potential Games

Vikas K. Garg
CSAIL, MIT

vgarg@csail.mit.edu

Tommi Jaakkola
CSAIL, MIT

tommi@csail.mit.edu

Abstract

Many real phenomena, including behaviors, involve strategic interactions that can
be learned from data. We focus on learning tree structured potential games where
equilibria are represented by local maxima of an underlying potential function. We
cast the learning problem within a max margin setting and show that the problem
is NP-hard even when the strategic interactions form a tree. We develop a variant
of dual decomposition to estimate the underlying game and demonstrate with
synthetic and real decision/voting data that the game theoretic perspective (carving
out local maxima) enables meaningful recovery.

1 Introduction

Structured prediction methods [1; 2; 3; 4; 5] are widely adopted techniques for learning mappings
between context descriptions x ∈ X and configurations y ∈ Y . The variables specifying each config-
uration y (e.g., arcs in natural language parsing) are typically mutually dependent and it is therefore
beneficial to predict them jointly rather than individually. The predicted y often arises as the highest
scoring configuration with respect to a parameterized scoring function that decomposes into terms
that couple two or more variables together to model their interactions. Structured prediction methods
have been broadly useful across areas, from computational biology (e.g., molecular arrangements,
alignments), natural language processing (e.g., parsing, tagging), computer vision (e.g., segmentation,
matching), and many others. However, the setting is less suitable for modeling strategic interactions
that are better characterized in terms of local consistency constraints.

We consider the problem of predicting configurations y that represent game theoretic equilibria. Such
configurations are unlikely to coincide with the maximum of a global scoring function as in structured
prediction. Indeed, there may be many possible equilibria in a specific context, and the particular
choice may vary considerably. Each possible configuration is nevertheless characterized by local
constraints that represent myopic optimizations of individual players. For example, senators can
be thought to vote relative to give and take deals with other closely associated senators. Several
assumptions are necessary to make the game theoretic setting feasible.

We abstract the setting as a potential game [6; 7; 8] among the players, and define a stochastic process
to model the dynamics of the game. A game is said to be a potential game if the incentive of all
players to change their strategy can be expressed using a single global potential function. Every
potential game is guaranteed to have at least one (possibly multiple) pure strategy Nash equilibria
[9], and we will exploit this property in modeling and analyzing several real world scenarios. Note
that each pure Nash equilibrium corresponds to a local optimum of the underlying potential function
rather than the global optimum as in structured prediction.

We further restrict the setting by permitting the payoff of each player to depend only on their own
action and the actions of their neighbors (a subset of the other players). Thus, we may view our
setting as a graphical game [10; 11]. In this work, we investigate potential games where the graphical
structure of the interactions form a tree. The goal is to recover the tree structured potential function
that supports observed configurations of actions as locally optimal solutions. We prove that it is
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NP-hard to recover such games under a max-margin setting. We then propose a variant of dual
decomposition (cf. [12; 13]) to learn the tree structure and the associated parameters.

2 Setting

We commence with the game theoretic setting. There are n players indexed by a position in [n] ,
{1, 2, . . . , n}. These players can be visualized as nodes of a tree-structured graph T with undirected
edges E. We denote the set of neighbors of node i by Ni, i.e., (i, j) ∈ E ⇐⇒ j ∈ Ni ∧ i ∈ Nj , and
abbreviate (i, j) ∈ E as ij ∈ T without introducing ambiguity. Each player i has a finite discrete
set of strategies Yi. A strategy profile or label configuration is an n-dimensional vector of the form
y = (y1, y2, . . . , yn) ∈ Y =

∏n
i=1 Yi. We denote the parametric potential function associated with

the tree by f(y;x, T, θ), where y is a strategy profile, θ the set of parameters, and x ∈ X is a context
[14]. We obtain an (n− 1)-dimensional vector y−i = (y1, . . . , yi−1, yi+1, . . . , yn) by considering
the strategies of all players other than i. Thus, we may equivalently write y = (yi, y−i). Moreover,
we use yNi to denote the strategy profile pertaining to the neighbors of node i. We can extract from
f(y;x, T, θ) individual payoff (or cost) functions fi(yi, yNi ;x, T, θ), i ∈ [n], which merely include
all the terms that pertain to the strategy of the ith player yi.

The choice of a particular equilibrium (local optimum) in a context results from a stochastic process.
Starting with an initial configuration y at time t = 0 (e.g., chosen at random), the game proceeds
in an iterative fashion: during each subsequent iteration t = 1, 2, . . ., a player pt ∈ [n] is chosen
uniformly at random. The player pt then computes the best response candidate set

Zpt = arg max
z∈Ypt

fpt(z, yNpt ;x, T, θ),

and switches to a strategy within this set uniformly at random if their current strategy does not already
belong to this set, i.e., player changes their strategy only if a better option presents itself. The game
finishes when a locally optimal configuration ŷ ∈ Y has been reached, i.e., when no player can
improve their payoff unilaterally. Since many locally optimal configurations could have been reached
in the given context x, the stochastic process induces a distribution over the strategy profiles.

We assume that our training data S = {(x1, y1), . . . , (xM , yM )} is generated by some distribution
over contexts and the induced conditional distribution over strategy profiles with respect to some tree
structured potential function. Our objective is to learn both the underlying tree structure T and the
parameters θ using a max-margin setting. Specifically, given S, we are interested in finding T and θ
such that

∀ m ∈ [M ], i ∈ [n], yi ∈ Yi, f(ym;xm, T, θ) ≥ f(ym−i, yi;x
m, T, θ) + e(y, ym),

where e(y, ym) is a non-negative loss (e.g. Hamming loss), which is 0 if and only if y = ym.
Note that the maximum margin framework does not make an explicit use of the assumed induced
distribution over equilibria.

The setting here is superficially similar to relaxations of structured prediction tasks such as pseudo-
likelihood [15] or decomposed learning [16]. These methods are, however, designed to provide
computationally efficient approximations of the original structured prediction task by using fewer
constraints during learning. Instead, we are specifically interested in modeling the observations as
locally optimal solutions with respect to the potential function.

We only state the results of our theorems in the main text, and defer all the proofs to the Supplementary.

3 Learning Tree Structured Potential Games

We first show that it is NP-hard to learn a tree structured potential game in a discriminative max-
margin setting. Previous hardness results are available about learning structured prediction models
under global constraints and arbitrary graphs [15], and under global constraints and tree structured
models [17], also in a max-margin setting.

Theorem 1. Given a set of training examples S = {(xm, ym)}Mm=1 and a family of potential
functions of the form

f(y;x, T, θ) =
∑
ij∈T

θij(yi, yj) +
∑
i

θi(yi) +
∑
i

xi(yi),
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it is NP-hard to decide whether there exists a tree T and parameters θ (up to model equivalence) such
that the following holds:

∀ m, i, yi, f(ym;xm, T, θ) ≥ f(ym−i, yi;x
m, T, θ) + e(y, ym).

3.1 Dual decomposition algorithm

The remainder of this section concerns with developing an approximate method for learning the
potential function by appeal to dual decomposition. Dual decomposition methods are typically
employed to solve inference tasks over combinatorial structures (e.g., [12; 13]). In contrast, we
decompose the problem on two levels. On one hand, we break the problem into independent local
neighborhood choices and use dual variables to reconcile these choices across the players so as to
obtain a single tree-structured model. On the other hand, we ensure that initially disjoint parameters
mediating the interactions between a player and its neighbors are in agreement across the edges in the
resulting structure. The two constraints ensure that there is a single tree-structured global potential
function.

For each node i, let Ni be the set of neighbors of i represented in terms of indicator variables such
that Nij = 1 if i selects j as a neighbor. Nij can be chosen independently from Nji but the two
will be enforced to agree at the solution. We will use Ni as a set of neighbors and as a set of
indicator variables interchangeably. Similarly, we decompose the parameters into node potentials
θi · φ(yi;x) = θi(yi;x) and edge potentials θij · φ(yi, yj ;x) = θi,j(yi, yj ;x) where again θij may
be chosen separately from θji but will be encouraged to agree. The set of parameters associated with
each player then consists of locally controllable parameters Θi = {θi, θi·} and Ni, where Ni selects
the relevant subset of interaction terms:

f(y;x,Ni,Θi) = θi(yi;x) +
∑
j 6=i

Nijθi,j(yi, yj ;x)

Given a training set S = {(x1, y1), . . . , (xM , yM )}, the goal is to learn the set of neighbors N =
{N1, . . . , Nn}, and weights Θ = {Θ1, . . . ,Θn} so as to minimize

1

2
||Θ||2 +

C

Mn

n∑
i=1

M∑
m=1

max
yi

[
f(ym−i, yi;x

m, Ni,Θi)− f(ym;xm, Ni,Θi) + e(yi, y
m
i )
]

︸ ︷︷ ︸
,Rmi(Ni,Θi)

(1)

subject to N forming a tree and Θ agreeing across the players. Let Ri(Ni,Θi) =
C/(Mn)

∑
mRmi(Ni,Θi). We force the neighbor choices to agree with a global tree structure

represented by indicators N ′. Similarly, we enforce parameters Θi to agree across neighbors. The
resulting Lagrangian can be written as

n∑
i=1

[1
2
||Θi||2 +Ri(Ni,Θi) +

∑
j 6=i

(δijNij + λij · θij)
]

︸ ︷︷ ︸
L(Θi,Ni;δ,λ)

+
[
−
∑
i,j 6=i

δijN
′
ij +G(N ′)

]
︸ ︷︷ ︸

G(N ′,δ)

where G(N ′) = 0 if N ′ forms a tree and∞ otherwise, and λij = −λji. For the dual decomposition
algorithm, we must be able to solve minΘi L(Θi, Ni; δ, λ) to obtain Θ∗i and minNi L(Θi, Ni; δ, λ) to
get N∗i . The former is a QP while the latter is more challenging though may permit efficient solutions
via additional relaxations, exploiting combinatorial properties in restricted cases (sub-modularity), or
even brute force for smaller problems. G(N ′, δ) corresponds to a minimum weighted spanning tree,
and thus can be efficiently solved using any standard algorithm like Borůvka’s, Kruskal’s or Prim’s.

The basic dual decomposition alternatively solves Θ∗i , N∗i , and N ′∗, resulting in updates of the dual
variables based on disagreements. While the method has been successful for enforcing structural
constraints (e.g., parsing), it is less appropriate for constraints involving continuous variables. To
address this, we employ the alternating direction method of multipliers (ADMM) [18; 19; 20] for
parameter agreements. Specifically, we encourage θi· and θ·i to agree with their mean ui·, by
introducing an additional term to the Lagrangian L

LA(Θi, Ni;ui·, δ, λ) = L(Θi, Ni; δ, λ) +
ρ

2
||θi· − ui·||2
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where ui· is updated as an independent parameter.

There are many ways to schedule the updates. We employ a two-phase algorithm that learns the
structure of the game tree and the parameters separately. The algorithm is motivated by the following
theorem. Since the result applies broadly to the dual decomposition paradigm, we state the theorem
in a slightly more generic form than that required for our purpose. The theorem applies to our setting
with

f(N ′) = −G(N ′),A = [n], and gi(Θi, Ni) =
∑
j 6=i

δijNij − L(Θi, Ni; δ, λ).

We now set up the conditions of the theorem. Consider the following combinatorial problem

Opt = max
z

{
f(z) +

∑
α∈A

gα(zα)

}
,

where f(z) specifies global constraints on admissible z, and gα(zα) represent local terms guiding the
assignment of values to different subsets of variables zα = {zj}j∈α. Let the problem be minimized
with respect to the dual coefficients {δi,α(zi)} by following a dual decomposition approach. Suppose
we can find a global assignment ẑ and dual coefficients such that this assignment nearly attains the
local maxima for all α ∈ A, i.e.,

gα(ẑα) +
∑
j∈α

δj,α(ẑj) ≥ max
zα

{
gα(zα) +

∑
j∈α

δj,α(zj)
}
− ε.

Assume further, without loss of generality,1 that the assignment attains the max for the global
constraint. Then, we have the following result.

Theorem 2. If there exists an assignment ẑ and associated dual coefficients such that the assignment
obtains ε-maximum of each term in the decomposition, for some ε > 0, then the objective value for
ẑ ∈

[
Opt− |A|ε, Opt

]
.

The theorem implies that if a global structure nearly attains the optima for the local neighborhoods,
then we might as well shift our focus to finding the global structure rather than optimize for the
parameters corresponding to the exact local optima. The result guarantees that the value of such a
global structure cannot be too far from that of the optimal global structure.

We outline our two-phase approach in Algorithm 1. The first phase concerns only with iteratively
finding a globally consistent structure. It is possible that at the conclusion of this phase, the local
structures do not fully agree (the relaxation is not tight). For this reason, the procedure runs for a
specified maximum number of iterations and selects the global tree corresponding to an iteration that
is least inconsistent with the local neighborhoods. Note that this phase does not precisely solve the
original problem we posed earlier. Instead, the structure is obtained without constraining parameters
to agree. In this sense, the first phase does not consider strictly potential games as the interactions
between players can remain intrinsic to the players themselves.

The second phase simply optimizes the parameters for the already specified global tree. This step
realizes a potential game as the parameters and the structure will be in agreement. We note that such
parameters could be optimized directly for the selected tree without the need of dual decomposition.
However, Algorithm 1 remains suitable in a distributed setting since each player is required to solve
only local problems during the entire execution of the algorithm.

3.2 Scaling the algorithm

As already noted, Algorithm 1 exhaustively enumerates all neighborhoods for each local optimization
problem. This makes the algorithm computationally prohibitive in realistic settings. We now outline
an approximation procedure that restricts the candidate neighborhood assignments. Specifically, for a
local optimization at any node i, we may restrict the possible local neighborhoods at any iteration t to
only those configurations that are at most h Hamming distance away from the best local configuration
for i in iteration t-1. That is, we update each local max-structure incrementally, still guided by the

1We can adjust the bound with a term that depends on the difference between the value of the optimal global
structure and the value of the global structure under consideration if these values do not coincide.
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overall tree within the same dual decomposition framework. Note that we recover Algorithm 1 as a
special case when h = n. A small h corresponds to searching over a much smaller space compared to
the brute force algorithm. For instance, if we take h = 1, then the total complexity of the approximate
algorithm reduces to O(n2 ∗MaxIter) since in each iteration we need to solve n local problems
each having O(n) candidate neighborhoods.

Algorithm 1 Learning tree structured potential games
1: procedure LEARNTREEPOTENTIALGAME
2: Input: parameters ρ, β, MaxIter, and ε > 0.
3:
4: Phase 1: Learn Tree Structure
5: Initialize t = 1, λij = 0, δij = 0, MinGap =∞.
6: repeat
7: Find N ′ = argmin

N
G(N , δ) using a minimum spanning tree algorithm

8: for each i ∈ [n] do
9: for each Ni do

10: Compute Θ∗t+1
i = min

Θi
L(Θi, Ni; δ, 0)

11: Find N∗i = argmin
Ni

L(Θ∗t+1
i , Ni; δ, 0)

12: Compute gap: Gap =
∑
i,j

I(N∗ij 6= N ′ij).

13: if Gap < MinGap then
MinGap = Gap, Global = N ′

14: Update δ ∀i, j 6= i: δij = δij + βt(N
∗
ij −N

′

ij)
15: t← t+ 1
16: until MinGap = 0 or t > MaxIter.
17: Set N ′∗ = Global.
18:
19: Phase 2: Learn Parameters
20: Set N = N ′∗
21: Compute Θ∗t+1

i = min
Θi

L(Θi, Ni; 0, λ)

22: repeat
23: Compute u ∀i, j 6= i: ut+1

ij = (θ∗t+1
ij + θ∗t+1

ji )/2

24: Update λ ∀i, j 6= i: λij = λij + ρ(θ∗t+1
ij − ut+1

ij )

25: Compute Θ∗t+1
i = min

Θi
LA(Θi, Ni;ui·, 0, λ)

26: t← t+ 1
27: until

∑
i,j 6=i

||θ∗t+1
ij − θ∗t+1

ji ||2 < ε

28: Set θ∗ij , θ
∗
ji = (θ∗t+1

ij + θ∗t+1
ji )/2

29: Output: N ′∗, Θ∗

4 Experimental Results

We now describe the results of our experiments on both synthetic and real data to demonstrate the
efficacy of our algorithm. We found the algorithm to perform well for a wide range of C and β
across different data. We report below the results of our experiments with the following setting
of parameters: ρ = 1, βt = 0.005 (for all t), C = 10, ε = 0.1, and MaxIter = 100. For each
local optimization problem, the configurations were constrained to share the slack variable in order
to reduce the total number of optimization variables. Moreover, we used a scaled 0-1 loss [15],
e(y, ym) = 1{y 6= ym}/n for each local optimization. We set h = 1 for the approximate method.

We conducted different sets of experiments to underscore the different aspects of our approach.
Our experiments with toy synthetic data highlight recovery of an underlying true structure under
controlled conditions (pertaining to the data generation process). The results on a real, but toy dataset,
Supreme Court vindicate the applicability of the exhaustive approach to unraveling the interactions
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latent in real datasets. Finally, we address the scalability issues inherent in the exhaustive search, by
demonstrating the approximate version on the larger Congressional Votes real dataset.

4.1 Synthetic Dataset

We will now describe how the brute force method recovered the true structure on a synthetic dataset.
For this, data were assumed to come from the underlying model

f(y;x, θ) =
∑
ij∈E

θij(yi, yj) +
∑
i

xiθi(yi),

where x represents the context that varies. The parameters were set as follows. We designed a n-node
degenerate or pathological tree, n = 6, with edges between node i and i+ 1, i ∈ {1, 2, . . . , n− 1}.
On each edge (i, j) ∈ E, we sampled θij(yi, yj), yi, yj ∈ {0, 1} uniformly at random from [−1, 1]
independently of the other edges. For each node i, we also sampled θi(yi), yi ∈ {0, 1} independently
from the same range. Each training example pair (xm, ym) was sampled in two steps. First, each
xmj , j ∈ [n] was set uniformly at random in the range [−10, 10], independently of each other. The
associated ym was then generated according to the stochastic process described in Section 2. Briefly,
starting with ym ∈ {0, 1}n sampled uniformly at random, we successively updated the configuration
by changing a randomly chosen coordinate of ym, and accepting the move only if the associated
score was higher. Since there are 2n possible configurations of binary vectors, we were guaranteed
that, in finite time, this procedure ended in a locally stable configuration. Once this locally stable
configuration was reached, we checked if the score of this configuration exceeded all the other
configurations with Hamming distance one by at least 1/n. If yes, then we included the pair (xm, ym)
in our synthetic data set, otherwise we discarded the pair. Starting with 100 examples, this procedure
resulted in a total of 78 stable configurations that scored higher than each configuration one Hamming
distance away by at least 1/n. These configurations formed our synthetic data set. We were able
to exactly recover the tree structure at the end of the Phase 1 of our algorithm using the training
data. Fig. 1 shows the evolution of the global tree structure (i.e. N ′

in the iterations that resulted in
decrease of Gap). Note how the algorithm corrects for incorrect edges, starting from a star tree till it
recovers the pathological tree structure. Fig. 2 elucidates the synergy between the global tree and
local neighborhoods toward recovering the correct structure.
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Figure 1: Recovery on synthetic data. Evolution of the tree structure is shown from left to right.
Each incorrect edge is indicated by coloring one of the end nodes in red. After first iteration, only the
edge (1, 2) is identified correctly. At termination, all edges in the underlying structure are recovered.

We show in Fig. 3 the evolution of the tree when the observations were falsely treated as globally
optimal points. Clearly, structured prediction failed to recover the underlying tree structure.

4.2 Real Dataset 1: Supreme Court Rulings

For both real datasets, we assumed the following decomposition:

f(y; θ) =
∑
ij∈E

θij(yi, yj) +
∑
i

θi(yi).

For our first real dataset,2 we considered the rulings of a Supreme Court bench comprising Justices
Alito (A), Breyer (B), Ginsburg (G), Kennedy (K), Roberts (R), Scalia (S), and Thomas (T ), during

2Publicly available at http://scdb.wustl.edu/.
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Figure 2: Global-Local Synergy. (Center & Right) Spanning trees formed from two separate local
neighborhoods (in different iterations). (Left) The common global tree structure. The global tree
structure reappears during the execution of the algorithm. On first occurrence, the global tree is
misaligned from chain 2-3-4 of the local neighborhood tree at node 5, as indicated by tree in the
center. The algorithm takes corrective action, and on the next occurrence, node 5 moves to the desired
position, as seen from tree on the right. The algorithm proceeds to correct the positioning of node 6.
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Figure 3: Evolution of structured prediction. Structured prediction fails to recover true structure.
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Conservatives Liberals
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B

K

G
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A

Figure 4: (Left) Tree recovered from Supreme Court data. The tree is consistent with widely known
ideology of the justices: Justice Kennedy (K) is considered largely moderate, while the others espouse
a more conservative or liberal jurisprudence. The thickness of an edge indicates the strength of
interaction in terms of (scaled) l2-norm of the edge parameters. (Right) Enforcing global constraints
(structured prediction) resulted in a qualitatively incorrect structure.

the year 2013. Justices Alito, Roberts, Scalia, and Thomas are known to be conservatives, while
Justices Breyer and Ginsburg belong to the liberal side of the Court. Justice Kennedy generally takes
a moderate stand on most issues. On every case under their jurisdiction, each Justice chose an integer
from the set {1, 2, . . . , 8}. We considered all the rulings of this bench that had at least one “dissent".
For our purposes, we created a dataset from those rulings that did not register a value 6, 7, 8 from any
of the Justices, since these values seem to have a complex interpretation instead of a simple yes/no.
For all other values, we used the interpretation by [21]: dissent value 2 was treated as 0 (no), and
others with 1 (yes). Fig. 4 shows that we were able to recover the known ideology of the Justices
by correctly treating the rulings as local optimal, whereas structured prediction failed to identify a
qualitatively correct structure.

7



Figure 5: (Congressional Votes.) The recovered tree is consistent with the expected voting pattern
that, in general, Democrats and Republicans vote along their respective party principles.

4.3 Real Dataset 2: Congressional Voting Records

We also experimented with a dataset3 obtained by compiling the votes on all the bills of the 110th

United States Congress (Session 2). The US Congress records the voting proceedings of the legislative
branch of the US federal government [11]. The U.S. Senate consists of 100 senators: each of the
50 U.S. states is represented by two senators. We compiled all the votes of the first 30 senators (in
data order) over this period on bills without unanimity. Each vote takes one of the two values: +1 or
-1, to denote whether the vote was in favor or against the proposed bill. We treated vote values -1
with 0 to create a binary dataset. Fig. 5 shows how the approximate algorithm is able to recover a
qualitatively correct structure that Democrats and Republicans typically vote along their respective
party ideologies (note that there might be more than one qualitatively correct structure). Specifically,
we obtain a structure where no Democrat is sandwiched between two Republicans, or vice-versa.

Discussion

A primary goal of this work is to argue that complex strategic interactions are better modeled as
locally optimal solutions instead of globally optimal assignments (as done, for instance, in structured
prediction). We believe this local versus global distinction has not been accorded due significance in
the literature, and we hope our work fosters more research in that direction.

The work opens up several interesting avenues. All the results presented in this paper are qualitative
in nature, primarily because quantitative evaluation is non-trivial in our setting since a strategic game
may have multiple equilibria (local optima). The incremental method proposed in this paper does
not come with any certificate of optimality, unlike most dual decomposition settings. We assumed
the dynamics of the underlying game follow a stochastic process, whereas players typically take
deterministic turns in real game settings. From a statistical learning perspective, it will be interesting
to estimate the generalization bounds in terms of the number of local equibria samples. Learning
across (repeated) games and exploring sub-modular potential functions are other directions.
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