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Abstract

Many practical perception systems exist within larger processes that include inter-
actions with users or additional components capable of evaluating the quality of
predicted solutions. In these contexts, it is beneficial to provide these oracle mecha-
nisms with multiple highly likely hypotheses rather than a single prediction. In this
work, we pose the task of producing multiple outputs as a learning problem over an
ensemble of deep networks – introducing a novel stochastic gradient descent based
approach to minimize the loss with respect to an oracle. Our method is simple
to implement, agnostic to both architecture and loss function, and parameter-free.
Our approach achieves lower oracle error compared to existing methods on a wide
range of tasks and deep architectures. We also show qualitatively that the diverse
solutions produced often provide interpretable representations of task ambiguity.

1 Introduction

Perception problems rarely exist in a vacuum. Typically, problems in Computer Vision, Natural
Language Processing, and other AI subfields are embedded in larger applications and contexts. For
instance, the task of recognizing and segmenting objects in an image (semantic segmentation [6])
might be embedded in an autonomous vehicle [7], while the task of describing an image with a
sentence (image captioning [18]) might be part of a system to assist visually-impaired users [22, 30].
In these scenarios, the goal of perception is often not to generate a single output but a set of plausible
hypotheses for a ‘downstream’ process, such as a verification component or a human operator. These
downstream mechanisms may be abstracted as oracles that have the capability to pick the correct
solution from this set. Such a learning setting is called Multiple Choice Learning (MCL) [8], where
the goal for the learner is to minimize oracle loss achieved by a set of M solutions. More formally,
given a dataset of input-output pairs {(xi, yi) | xi ∈ X , yi ∈ Y}, the goal of classical supervised
learning is to search for a mapping F : X → Y that minimizes a task-dependent loss ` : Y×Y → R+

capturing the error between the actual labeling yi and predicted labeling ŷi. In this setting, the learned
function f makes a single prediction for each input and pays a penalty for that prediction. In contrast,
Multiple Choice Learning seeks to learn a mapping g : X → YM that produces M solutions
Ŷi = (ŷ1i , . . . , ŷ

M
i ) such that oracle loss minm ` (yi, ŷ

m
i ) is minimized.

In this work, we fix the form of this mapping g to be the union of outputs from an ensemble of
predictors such that g(x) = {f1(x), f2(x), . . . , fM (x)}, and address the task of training ensemble
members f1, . . . , fM such that g minimizes oracle loss. Under our formulation, different ensemble
members are free to specialize on subsets of the data distribution, so that collectively they produce a
set of outputs which covers the space of high probability predictions well.
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Horse
Cow

A	  couple	   of	  birds	   that	  are	  standing	  in	  the	  grass.

A	  bird	  perched	  on	  top	  of	  a	  tree	  branch.

A	  bird	  perched	  on	  a	  tree	  branch	  in	  the	  sky.

Figure 1: Single-prediction based models often produce solutions with low expected loss in the face of ambiguity;
however, these solutions are often unrealistic or do not reflect the image content well (row 1). Instead, we train
ensembles under a unified loss which allows each member to produce different outputs reflecting multi-modal
beliefs (row 2). We evaluate our method on image classification, segmentation, and captioning tasks.

Diverse solution sets are especially useful for structured prediction problems with multiple reasonable
interpretations, only one of which is correct. Situations that often arise in practical systems include:
– Implicit class confusion. The label space of many classification problems is often an arbitrary

quantization of a continuous space. For example, a vision system may be expected to classify
between tables and desks, despite many real-world objects arguably belonging to both classes. By
making multiple predictions, this implicit confusion can be viewed explicitly in system outputs.

– Ambiguous evidence. Often there is simply not enough information to make a definitive prediction.
For example, even a human expert may not be able to identify a fine-grained class (e.g., particular
breed of dog) given an occluded or distant view, but they likely can produce a small set of reasonable
guesses. In such cases, the task of producing a diverse set of possibilities is more clearly defined
than producing one correct answer.

– Bias towards the mode. Many models have a tendency to exhibit mode-seeking behaviors as a
way to reduce expected loss over a dataset (e.g., a conversation model frequently producing ‘I
don’t know’). By making multiple predictions, a system can improve coverage of lower density
areas of the solution space, without sacrificing performance on the majority of examples.

In other words, by optimizing for the oracle loss, a multiple-prediction learner can respond to
ambiguity much like a human does, by making multiple guesses that capture multi-modal beliefs.
In contrast, a single-prediction learner is forced to produce a solution with low expected loss in
the face of ambiguity. Figure 1 illustrates how this can produce solutions that are not useful in
practice. In semantic segmentation, for example, this problem often causes objects to be predicted
as a mixture of multiple classes (like the horse-cow shown in the figure). In image captioning,
minimizing expected loss encourages generic sentences that are ‘safe’ with respect to expected error
but not very informative. For example, Figure 1 shows two pairs of images each having different
image content but very similar, generic captions – the model knows it is safe to assume that birds are
on branches and that cakes are eaten with forks.
In this paper, we generalize the Multiple Choice Learning paradigm [8, 9] to jointly learn ensembles
of deep networks that minimize the oracle loss directly. We are the first to formalize these ideas in
the context of deep networks and we present a novel training algorithm that avoids costly retraining
[8] of past methods. Our primary technical contribution is the formulation of a stochastic block
gradient descent optimization approach well-suited to minimizing the oracle loss in ensembles of
deep networks, which we call Stochastic Multiple Choice Learning (sMCL). Our formulation is
applicable to any model trained with stochastic gradient descent, is agnostic to the form of the task
dependent loss, is parameter-free, and is time efficient, training all ensemble members concurrently.
We demonstrate the broad applicability and efficacy of sMCL for training diverse deep ensembles
with interpretable emergent expertise on a wide range of problem domains and network architectures,
including Convolutional Neural Network (CNN) [1] ensembles for image classification [17], Fully-
Convolutional Network (FCN) [20] ensembles for semantic segmentation [6], and combined CNN
and Recurrent Neural Network (RNN) ensembles [14] for image captioning [18]. We provide detailed
analysis of the training and output behaviors of the resulting ensembles, demonstrating how ensemble
member specialization and expertise emerge automatically when trained using sMCL. Our method
outperforms existing baselines and produces sets of outputs with high oracle performance.
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2 Related Work

Ensemble Learning. Much of the existing work on training ensembles focuses on diversity between
member models as a means to improve performance by decreasing error correlation. This is often
accomplished by resampling existing training data for each member model [27] or by producing
artificial data that encourages new models to be decorrelated with the existing ensemble [21]. Other
approaches train or combine ensemble members under a joint loss [19, 26]. More recently, work of
Hinton et al. [12] and Ahmed et al. [2] explores using ‘generalist’ network performance statistics to
inform the design of ensemble-of-expert architectures for classification. In contrast, sMCL discovers
specialization as a consequence of minimizing oracle loss. Importantly, most existing methods do
not generalize to structured output labels, while sMCL seamlessly adapts, discovering different
task-dependent specializations automatically.

Generating Multiple Solutions. There is a large body of work on the topic of extracting multiple
diverse solutions from a single model [3, 15, 16, 23, 24]; however, these approaches are designed for
probabilistic structured-output models and are not directly applicable to general deep architectures.
Most related to our approach is the work of Guzman-Rivera et al. [8, 9] which explicitly minimizes
oracle loss over the outputs of an ensemble, formalizing this setting as the Multiple Choice Learning
(MCL) paradigm. They introduce a general alternating block coordinate descent training approach
which requires retraining models multiple times. Vondrick et al. [29] follow a similar methodology to
train multi-modal regressors to predict the feature representations of future frames in video.
Recently, Dey et al. [5] reformulated the problem of generating multiple diverse solutions as a
submodular optimization task in which ensemble members are learned sequentially in a boosting-like
manner to maximize marginal gain in oracle performance. Both these methods require either costly
retraining or sequential training, making them poorly suited to modern deep architectures that can
take weeks to train. To address this serious shortcoming and to provide the first practical algorithm for
training diverse deep ensembles, we introduce a stochastic gradient descent (SGD) based algorithm
to train ensemble members concurrently.

3 Multiple-Choice Learning as Stochastic Block Gradient Descent

We consider the task of training an ensemble of differentiable learners that together produce a set of
solutions with minimal loss with respect to an oracle that selects only the lowest-error prediction.

Notation. We use [n] to denote the set {1, 2, . . . , n}. Given a training set of input-output pairs
D = {(xi, yi) | xi ∈ X , yi ∈ Y}, our goal is to learn a function g : X → YM which maps
each input to M outputs. We fix the form of g to be an ensemble of M learners f such that
g(x) = (f1(x), . . . , fM (x)). For some task-dependent loss `(y, ŷ), which measures the error
between true and predicted outputs y and ŷ, we define the oracle loss of g over the dataset D as

LO(D) =

n∑
i=1

min
m∈[M ]

` (yi, fm(xi)) .

Minimizing Oracle Loss with Multiple Choice Learning. In order to directly minimize the oracle
loss for an ensemble of learners, Guzman-Rivera et al. [8] present an objective which forms a
(potentially tight) upper-bound. This objective replaces the min in the oracle loss with indicator
variables (pi,m)Mm=1 where pi,m is 1 if predictor m has the lowest error on example i,

argmin
fm,pi,m

n∑
i=1

M∑
m=1

pi,m ` (yi, fm(xi)) (1)

s.t.

M∑
pi,m = 1, pi,m ∈ {0, 1}.

The resulting minimization is a constrained joint optimization over ensemble parameters and data-
point assignments. The authors propose an alternating block algorithm, shown in Algorithm 1, to
approximately minimize this objective. Similar to K-Means or ‘hard-EM,’ this approach alternates
between assigning examples to their min-loss predictors and training models to convergence on the
partition of examples assigned to them. Note that this approach is not feasible with training deep
networks, since modern architectures [11] can take weeks or months to train a single model once.
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Figure 2: The MCL approach of [8] (Alg. 1) requires costly retraining while our sMCL method (Alg. 2) works
within standard SGD solvers, training all ensemble members under a joint loss.

Stochastic Multiple Choice Learning. To overcome this shortcoming, we propose a stochastic
algorithm for differentiable learners which interleaves the assignment step with batch updates in
stochastic gradient descent. Consider the partial derivative of the objective in Eq. 1 with respect to
the output of the mth individual learner on example xi,

∂LO

∂fm(xi)
= pi,m

∂`(yi, fm(xi))

∂fm(xi)
. (2)

Notice that if fm is the minimum error predictor for example xi, then pi,m = 1, and the gradient
term is the same as if training a single model; otherwise, the gradient is zero. This behavior lends
itself to a straightforward optimization strategy for learners trained by SGD based solvers. For each
batch, we pass the examples through the learners, calculating losses from each ensemble member for
each example. During the backward pass, the gradient of the loss for each example is backpropagated
only to the lowest error predictor on that example (with ties broken arbitrarily).
This approach, which we call Stochastic Multiple Choice Learning (sMCL), is shown in Algorithm 2.
sMCL is generalizable to any learner trained by stochastic gradient descent and is thus applicable to
an extensive range of modern deep networks. Unlike the iterative training schedule of MCL, sMCL
ensembles need only be trained to convergence once in parallel. sMCL is also agnostic to the exact
form of loss function ` such that it can be applied without additional effort on a variety of problems.

4 Experiments

In this section, we present results for sMCL ensembles trained for the tasks and deep architectures
shown in Figure 3. These include CNN ensembles for image classification, FCN ensembles for
semantic segmentation, and a CNN+RNN ensembles for image caption generation.

Baselines. Many existing general techniques for inducing diversity are not directly applicable to deep
networks. We compare our proposed method against:
- Classical ensembles in which each model is trained under an independent loss with differing

random initializations. We will refer to these as Indp. ensembles in figures.
- MCL [8] that alternates between training models to convergence on assigned examples and

allocating examples to their lowest error model. We repeat this process for 5 meta-iterations and
initialize ensembles with (different) random weights. We find MCL performs similarly to sMCL
on small classification tasks; however, MCL performance drops substantially on segmentation and
captioning tasks. Unlike sMCL which can effectively reassign an example once per epoch, MCL
only does this after convergence, limiting its capacity to specialize compared to sMCL. We also
note that sMCL is 5x faster than MCL, where the factor 5 is the result of choosing 5 meta-iterations
(other applications may require more, further increasing the gap.)

- Dey et al. [5] train models sequentially in a boosting-like fashion, each time reweighting examples
to maximize marginal increase of the evaluation metric. We find these models saturate quickly as
the ensemble size grows. As performance increases, the marginal gain and therefore the weights
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(a) Convolutional classification
model of [1] for CIFAR10 [17]

(b) Fully-convolutional segmenta-
tion model of Long et al. [20]

(c) CNN+RNN based captioning
model of Karpathy et al. [14]

Figure 3: We experiment with three problem domains using the various architectures shown above.

approach zero. With low weights, the average gradient backpropagated for stochastic learners drops
substantially, reducing the rate and effectiveness of learning without careful tuning. To compute
weights, [5] requires an error measure bounded above by 1: accuracy (for classification) and IoU
(for segmentation) satisfy this; the CIDEr-D score [28] divided by 10 guarantees this for captioning.

Oracle Evaluation. We present results as oracle versions of the task-dependent performance metrics.
These oracle metrics report the highest score over all outputs for a given input. For example, in
classification tasks, oracle accuracy is exactly the top-k criteria of ImageNet [25], i.e. whether at
least one of the outputs is the correct label. Likewise, the oracle intersection over union (IoU) is the
highest IoU between the ground truth segmentation and any one of the outputs. Oracle metrics allow
the evaluation of multiple-prediction systems separately from downstream re-ranking or selection
systems, and have been extensively used in previous work [3, 5, 8, 9, 15, 16, 23, 24].
Our experiments convincingly demonstrate the broad applicability and efficacy of sMCL for training
diverse deep ensembles. In all three experiments, sMCL significantly outperforms classical ensembles,
Dey et al. [5] (typical improvements of 6-10%), and MCL (while providing a 5x speedup over MCL).
Our analysis shows that the exact same algorithm (sMCL) leads to the automatic emergence of
different interpretable notions of specializations among ensemble members.

4.1 Image Classification
Model. We begin our experiments with sMCL on the CIFAR10 [17] dataset using the small convo-
lutional neural network “CIFAR10-Quick” provided with the Caffe deep learning framework [13].
CIFAR10 is a ten way classification task with small 32×32 images. For these experiments, the
reference model is trained using a batch size of 350 for 5,000 iterations with a momentum of 0.9,
weight decay of 0.004, and an initial learning rate of 0.001 which drops to 0.0001 after 4000 iterations.

Results. Oracle accuracy for sMCL and baseline ensembles of size 1 to 6 are shown in Figure
4a. The sMCL trained ensembles result in higher oracle accuracy than the baseline methods, and
are comparable to MCL while being 5x faster. The method of Dey et al. [5] performs worse than
independent ensembles as ensemble size grows. Figure 4b shows the oracle loss during training for
sMCL and regular ensembles. The sMCL trained models optimize for the oracle cross-entropy loss
directly, not only arriving at lower loss solutions but also reducing error more quickly.

Interpretable Expertise: sMCL Induces Label-Space Clustering. Figure 4c shows the class-wise
distribution of the assignment of test datapoints to the oracle or ‘winning’ predictor for an M = 4
sMCL ensemble. The level of class division is striking – most predictors become specialists for
certain classes. Note that these divisions emerge from training under the oracle loss and are not
hand-designed or pre-initialized in any way. In contrast, Figure 4f show that the oracle assignments
for a standard ensemble are nearly uniform. To explore the space between these two extremes, we
loosen the constraints of Eq. 1 such that the lowest k error predictors are penalized. By varying k
between 1 and the number of ensemble members M , the models transition from minimizing oracle
loss at k = 1 to a traditional ensemble at k = M . Figures 4d and 4e show these results. We find
a direct correlation between the degree of specialization and oracle accuracy, with k = 1 netting
highest oracle accuracy.

4.2 Semantic Segmentation
We now present our results for the semantic segmentation task on the Pascal VOC dataset [6].

Model. We use the fully convolutional network (FCN) architecture presented by Long et al. [20]
as our base model. Like [20], we train on the Pascal VOC 2011 training set augmented with extra
segmentations provided in [10] and we test on a subset of the VOC 2011 validation set. We initialize
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Figure 4: sMCL trained ensembles produce higher oracle accuracies than baselines (a) by directly optimizing
the oracle loss (b). By varying the number of predictors k each example can be assigned to, we can interpolate
between sMCL and standard ensembles, and (c-f) show the percentage of test examples of each class assigned
to each ensemble member by the oracle for various k. These divisions are not preselected and show how
specialization is an emergent property of sMCL training.

our sMCL models from a standard ensemble trained for 50 epochs at a learning rate of 10−3. The
sMCL ensemble is then fine-tuned for another 15 epochs at a reduced learning rate of 10−5.

Results. Figure 5a shows oracle accuracy (class-averaged IoU) for all methods with ensemble sizes
ranging from 1 to 6. Again, sMCL significantly outperforms all baselines (~7% relative improvement
over classical ensembles). In this more complex setting, we see the method of Dey et al. [5] saturates
more quickly – resulting in performance worse than classical ensembles as ensemble size grows.
Though we expect MCL to achieve similar results as sMCL, retraining the MCL ensembles a sufficient
number of times proved infeasible so results after five meta-iterations are shown.

Interpretable Expertise: sMCL as Segmentation Specialists. In Figure 5b, we analyze the class
distribution of the predictions using an sMCL ensemble with 4 members. For each test sample, the
oracle picks the prediction which corresponds to the ensemble member with the highest accuracy
for that sample. We find the specialization with respect to classes is much less evident than in the
classification experiments. As segmentation presents challenges other than simply selecting the
correct class, specialization can occur in terms of shape and frequency of predicted segments in
addition to class divisions; however, we do still see some class biases – network 2 captures cows,
tables, and sofas well and network 4 has become an expert on sheep and horses.
Figure 6 shows qualitative results from a four member sMCL ensemble. We can clearly observe
the diversity in the segmentations predicted by different members. In the first row, we see the
majority of the ensemble members produce dining tables of various completeness in response to the
visual uncertainty caused by the clutter. Networks 2 and 3 capture this ambiguity well, producing
segmentations with the dining table completely present or absent. Row 2 demonstrates the capacity
of sMCL ensembles to provide multiple high quality solutions. The models are confused whether the
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Figure 5: a) sMCL trained ensembles consistently result in improved oracle mean IoU over baselines on PASCAL
VOC 2011. b) Distribution of examples from each category assigned by the oracle for an sMCL ensemble.
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Independent
Ensemble Oracle sMCL Ensemble Predictions

IoU 82.64 IoU 77.11 IoU 88.12 IoU 58.70 IoU 52.78

IoU 54.26 IoU 56.45 IoU 62.03 IoU 47.68 IoU 37.73

IoU 20.31 IoU 21.34 IoU 14.17 IoU 94.55 IoU 19.18

Input Net 1 Net 2 Net 3 Net 4

Figure 6: Samples images and corresponding predictions obtained by each member of the sMCL ensemble as
well as the top output of a classical ensemble. The output with minimum loss on each example is outlined in red.
Notice that sMCL ensembles vary in the shape, class, and frequency of predicted segments.

animal is a horse or a cow – models 1 and 3 produce typical ‘safe’ responses while models 2 and 4
attempt to give cohesive responses. Finally, row 3 shows how the models can learn biases about the
frequency of segments with model 3 presenting only the sheep.

4.3 Image Captioning
In this section, we show that sMCL trained ensembles can produce sets of high quality and diverse
sentences, which is essential to improving recall and capturing ambiguities in language and perception.

Model. We adopt the model and training procedure of Karpathy et al. [14], utilizing their publicly
available implementation neuraltalk2. The model consists of an VGG16 network [4] which encodes
the input image as a fixed-length representation for a Long Short-Term Memory (LSTM) language
model. We train and test on the MSCOCO dataset [18], using the same splits as [14]. We perform two
experimental setups by either freezing or finetuning the CNN. In the first, we freeze the parameters
of the CNN and train multiple LSTM models using the CNN as a static feature generator. In the
second, we aggregate and back-propagate the gradients from each LSTM model through the CNN in
a tree-like model structure. This is largely a construct of memory restrictions as our hardware could
not accommodate multiple VGG16 networks. We train each ensemble for 70k iterations with the
parameters of the CNN fixed. For the fine-tuning experiments, we perform another 70k iterations of
training to fine-tune the CNN. We generate sentences for testing by performing beam search with a
beam width of two (following [14]).

Results. Table 1 presents the oracle CIDEr-D [28] scores for all methods on the validation set. We
additionally compare with all outputs of a beam search over a single CNN+LSTM model with beam
width ranging from 1 to 5. sMCL significantly outperforms the baseline ensemble learning methods
(shown in the upper section of the table), increasing both oracle performance and the number of
unique n-grams. For M = 5, beam search from a single model achieves greater oracle but produces
significantly fewer unique n-grams. We note that beam search is an inference method and increased
beam width could provide similar benefits for sMCL ensembles.

Oracle CIDEr-D for Ensemble of Size # Unique n-Grams (M=5)

M = 1 2 3 4 5 n = 1 2 3 4 Avg.
Length

sMCL - 0.822 0.862 0.911 0.922 713 2902 6464 15427 10.21
MCL [8] - 0.752 0.81 0.823 0.852 384 1565 3586 9551 9.87
Dey [5] - 0.798 0.850 0.887 0.910 584 2266 4969 12208 10.26
Indp. 0.684 0.757 0.784 0.809 0.831 540 2003 4312 10297 10.24

sMCL (fine-tuned CNN) - 1.064 1.130 1.179 1.184 1135 6028 15184 35518 10.43
Indp. (fine-tuned CNN) 0.912 1.001 1.05 1.073 1.095 921 4335 10534 23811 10.33

Beam Search 0.654 0.754 0.833 0.888 0.943 580 2272 4920 12920 10.62
Table 1: sMCL base methods outperform other ensemble methods a captioning, improve both oracle performance
and the number of distinct n-grams. For low M, sMCL also performs better than multiple-output decoders.
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Input Independently Trained Networks sMCL Ensemble

A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.

A man riding a wave on top of a surfboard.
A person on a surfboard in the water.
A surfer is riding a wave in the ocean.
A surfer riding a wave in the ocean.

A group of people standing on a sidewalk.
A man is standing in the middle of the street.
A group of people standing around a fire hydrant.
A group of people standing around a fire hydrant

A man is walking down the street with an umbrell.
A group of people sitting at a table with umbrellas.
A group of people standing around a large plane.
A group of people standing in front of a building

A kitchen with a stove and a microwave.
A white refrigerator freezer sitting inside of a kitchen.
A white refrigerator sitting next to a window.
A white refrigerator freezer sitting in a kitchen

A cat sitting on a chair in a living room.
A kitchen with a stove and a sink.
A cat is sitting on top of a refrigerator.
A cat sitting on top of a wooden table

A bird is sitting on a tree branch.
A bird is perched on a branch in a tree.
A bird is perched on a branch in a tree.
A bird is sitting on a tree branch

A small bird perched on top of a tree branch.
A couple of birds that are standing in the grass.
A bird perched on top of a branch.
A bird perched on a tree branch in the sky

Figure 7: Comparison of sentences generated by members of a standard independently trained ensemble and an
sMCL based ensemble of size four.

Intepretable Expertise: sMCL as N-Gram Specialists. Figure 7 shows example images and gen-
erated captions from standard and sMCL ensembles of size four (results from beam search over a
single model are similar). It is evident that the independently trained models tend to predict similar
sentences independent of initialization, perhaps owing to the highly structured nature of the output
space and the mode bias of the underlying language model. On the other hand, the sMCL based
ensemble generates diverse sentences which capture ambiguity both in language and perception. The
first row shows an extreme case in which all of the members of the standard ensemble predict identical
sentences. In contrast, the sMCL ensemble produces sentences that describe the scene with many
different structures. In row three, both models are confused about the content of the image, mistaking
the pile of suitcases as kitchen appliances. However, the sMCL ensemble widens the scope of some
sentences to include the cat clearly depicted in the image. The fourth row is an example of regression
towards the mode, with the standard model producing multiple similar sentences describing birds on
branches. In the sMCL ensemble, we also see this tendency; however, one model breaks away and
captures the true content of the image.

5 Conclusion

To summarize, we propose Stochastic Multiple Choice Learning (sMCL), an SGD-based technique
for training diverse deep ensembles that follows a ‘winner-take-gradient’ training strategy. Our
experiments demonstrate the broad applicability and efficacy of sMCL for training diverse deep
ensembles. In all experimental settings, sMCL significantly outperforms classical ensembles and
other strong baselines including the 5x slower MCL procedure. Our analysis shows that exactly the
same algorithm (sMCL) automatically generates specializations among ensemble members along
different task-specific dimensions. sMCL is simple to implement, agnostic to both architecture and
loss function, parameter free, and simply involves introducing one new sMCL layer into existing
ensemble architectures.
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