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1 Asynchronous q-KG Optimization

The (1.1) corresponds to the synchronous q-KG optimization, in which we wait for all q points
from our previous batch to finish before searching for a new batch of q points. However, in some
applications, we may wish to generate a new batch of points to evaluate next while p(< q) points
are still being evaluated, before we have their values. This is common in training machine learning
algorithms, where different machine learning models do not necessarily finish at the same time.

max
z(1:q)⊂A

q-KG(z(1:q),A). (1.1)

We can generalize (1.1) to the asynchronous q-KG optimization. Given that p points are still under
evaluation, now we would like to recommend a batch of q points to evaluate. As we did for the
synchronous q-KG optimization above, now we estimate the q-KG of the combined q + p points
only with respect to the q points that we need to recommend. Then we proceed the same way via
gradient-based algorithms.

2 Speed-up analysis

Next, we compare q-KG at different levels of parallelism against the fully sequential KG algorithm.
We test the algorithms with different batch sizes on two noisy synthetic functions Branin2 and
Hartmann6, whose standard deviation of the noise is σ = 0.5. From the results, our parallel
knowledge gradient method does provide a speed-up as q goes up.
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Figure 1: The performances of q-KG with different batch sizes. We report the mean and the standard deviation
of the log10 scale of the immediate regret vs. the number of iterations. Iteration 0 is the initial designs. For each
iteration later, we evaluate q points recommended by the q-KG algorithm.
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3 The unbiasedness of the stochastic gradient estimator

Recall that in Section 5 of the main document, we have expressed the q-KG factor as follows,

q-KG(z(1:q),A) = E
(
g(z(1:q),A, Zq)

)
(3.1)

where the expectation is taken over Zq and

g(z(1:q),A, Zq) = min
x∈A

µ(n)(x)−min
x∈A

(
µ(n)(x) + σ̃n(x, z(1:q))Zq

)
,

σ̃n(x, z(1:q)) = K(n)(x, z(1:q))(D(n)(z(1:q))T )−1.

The main purpose of this section is to prove the following proposition.
Proposition 1. When A is finite, under the condition that µ and K are continuous differentiable,

∂

∂zij
q-KG(z(1:q),A)

∣∣∣∣
z(1:q)=θ(1:q)

= E
(

∂

∂zij
g(z(1:q),A, Zq)

) ∣∣∣∣
z(1:q)=θ(1:q)

, (3.2)

where 1 ≤ i ≤ q, 1 ≤ j ≤ d, zij is the jth dimension of the ith point in z(1:q) and θ(1:q) ∈
the interior of Aq .

Without loss of generality, we assume that (1) i and j are fixed in advance and (2) A = [0, 1]d,
we would like to prove that (3.2) is correct. Before proceeding, we define one more notation
fA,Zq

(zij) := g(z(1:q),A, Zq) where z(1:q) equals to θ(1:q) component-wise except for zij . To prove
it, we cite Theorem 1 in [1], which requires three conditions to make (3.2) valid: there exists an
open neighborhood Θ = (0, 1) of θij where θij is the jth dimension of ith point in θ(1:q) such that
(i) fA,Zq

(zij) is continuous in Θ for any fixed A and Zq, (ii) fA,Zq
(zij) is differentiable except on

a denumerable set in Θ for any given A and Zq, (iii) the derivative of fA,Zq
(zij) (when it exists) is

uniformly bounded by Γ(Zq) for all zij ∈ Θ, and the expectation of Γ(Zq) is finite.

3.1 The proof of condition (i)

Under the condition that the mean function µ and the kernel function K are continuous differentiable,
we see that for any given x, σ̃n(x, z(1:q)) is continuous differentiable in z(1:q) by the result that
the multiplication, the inverse (when the inverse exists) and the Cholesky operators [2] preserve
continuous differentiability. When A is finite, we see that g(z(1:q),A, Zq) = minx∈A µ

(n)(x) −
minx∈A

(
µ(n)(x) + σ̃n(x, z(1:q))Zq

)
is continuous in z(1:q). Then fA,Zq (zij) is also continuous in

zij by the definition of the function fA,Zq
(zij).

3.2 The proof of condition (ii)

By the expression that fA,Zq
(zij) = minx∈A µ

(n)(x) − minx∈A
(
µ(n)(x) + σ̃n(x, z(1:q))Zq

)
, if

both argminx∈Aµ
(n)(x) and argminx∈A

(
µ(n)(x) + σ̃n(x, z(1:q))Zq

)
are unique, then fA,Zq

(zij)
is differentiable at zij . We define D(A) ⊂ Θ to be the set that fA,Zq (zij) is not differentiable, then
we see that

D(A) ⊂ ∪x,x′∈A

{
zij ∈ Θ : µ(n)(x) = µ(n)(x′),

dµ(n)(x)

dzij
6= dµ(n)(x′)

dzij

}
∪

∪x,x′∈A

{
zij ∈ Θ : hx(zij) = hx′(zij),

dhx(zij)

dzij
6= dhx′(zij)

dzij

}
where hx(zij) := µ(n)(x) + σ̃n(x, z(1:q))Zq. µ(n)(x)

(
µ(n)(x′)

)
depend on zij

if x = zi (x′ = zi) where zi is the ith point of z(1:q). As A is fi-
nite, we only need to show that

{
zij ∈ Θ : µ(n)(x) = µ(n)(x′), dµ

(n)(x)
dzij

6= dµ(n)(x′)
dzij

}
and{

zij ∈ Θ : hx(zij) = hx′(zij),
dhx(zij)
dzij

6= dhx′ (zij)
dzij

}
is denumerable.

Defining η(zij) := hx1(zij) − hx2(zij) on Θ, one can see that η(zij) is continuous differentiable

on Θ. We would like to show that E :=
{
zij ∈ Θ : η(zij) = 0,

dη(zij)
dzij

6= 0
}

is denumerable. To
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prove it, we will show that E contains only isolated points. Then one can use a theorem in real
analysis: any set of isolated points in R is denumerable (see the proof of statement 4.2.25 on page
165 in [3]). To prove that E only contains isolated points, we use the definition of an isolated point:
y ∈ E is an isolated point of E if and only if x ∈ E is not a limit point of E. We will prove by
contradiction, suppose that y ∈ E is a limit point of E, then it means that there exists a sequence
of points y1, y2, · · · all belong to E such that limn→∞ yn = zij . However, by the definition of
derivative and η(yn) = η(zij) = 0, 0 6= dη(y)

dy

∣∣
y=zij

= limn→∞
η(yn)−η(zij)

yn−zij = limn→∞ 0 = 0, a
contradiction. So we conclude that E only contains isolated points, so is denumerable.

Defining δ(zij) := µ(n)(x1) − µ(n)(x2) on Θ, δ(zij) is also continuous differentiable on Θ, then

one can similarly prove that
{
zij ∈ Θ : δ(zij) = 0,

dδ(zij)
dzij

6= 0
}

is denumerable.

3.3 The proof of condition (iii)

Recall that from Section 5 of the main document,
d

dzij
f(zij ,A, Zq) =

∂

∂zij
g(z(1:q),A, Zq)

=
∂

∂zij
µ(n)(x∗(before))− ∂

∂zij
µ(n)(x∗(after))

− ∂

∂zij
σ̃n(z(1:q), x∗(after))Zq,

where x∗(before) = argminx∈Aµ
(n)(x), x∗(after) = argminx∈A

(
µ(n)(x) + σ̃n(x, z(1:q))Zq

)
,

and
∂

∂zij
σ̃n(z(1:q), x∗(after)) =

(
∂

∂zij
K(n)(x∗(after), z(1:q))

)
(D(n)(z(1:q))T )−1

−D(n)(x∗(after), z(1:q))(D(n)(z(1:q))T )−1(
∂

∂zij
D(n)(z(1:q))T

)
(D(n)(z(1:q))T )−1.

We can calculate the ∂
∂zij

µ(n)(x) as follows

∂

∂zij
µ(n)(x) =

{
∂
∂zij

µ(n)(zi) if x = zi, i.e. the ith point of z(1:q)

0 otherwise.

Using the fact that µ is continuously differentiable and A is compact, then ∂
∂zij

µ(n)(x) is bounded

by some B > 0. By the result that ∂
∂zij

σ̃n(z(1:q), x∗(after)) is continous, it is bounded by a

vector 0 ≤ Λ < ∞ as A is compact. Then
∣∣∣ d
dzij

f(zij ,A, Zq)
∣∣∣ ≤ 2B +

∑q
i=1 Λi|zi| where

Zq = (z1, · · · , zq)T . And E (
∑q
i=1 Λi|zi|) =

√
2/π

∑q
i=1 Λi <∞.

4 The convergence of stochastic gradient ascent

In this section, we will prove that SGA converges to a stationary point. We follow the same idea of
proving the Theorem 2 in [4].

First, it requires the step size γt satisfying γt → 0 as t → ∞,
∑∞
t=0 γt = ∞ and

∑∞
t=0 γ

2
t < ∞.

Second, it requires the second moment of the gradient estimator is finite. In the above section 1.3,
we have show that | ∂∂zij g(z(1:q),A, Zq)| ≤ 2B +

∑q
i=1 Λi|zi|, then E( ∂

∂zij
g(z(1:q),A, Zq))2 ≤

4B2 +
∑q
i=1 Λ2

i + 4B
√

2/π
∑q
i=1 Λi <∞.
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