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In this supplement, we present proofs, additional technical results, and additional simulations for
“Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers”.

A.1 Proof of Lemma 1 (canonical scaling)

Suppose that θ ∈ Hd(1) that is a discretization of a 1-Lipschitz function f , i.e., θi = f(i1/` . . . , id/`),
i = 1, . . . , n. We first we compute and bound its squared Sobolev norm

‖Dθ‖22 =
∑

(i,j)∈E

(θi − θj)2 =
∑

(i,j)∈E

(
f(i1/`, . . . , id/`)− f(j1/`, . . . , jd/`)

)2
≤

∑
(i,j)∈E

∥∥(i1/`, . . . , id/`)− (j1/`, . . . , jd/`)
∥∥2

∞

= m/`2,

where, recall, we denote by m = |E| the number of edges in the grid. In the second line we used
the 1-Lipschitz property of f , and in the third we used that multi-indices corresponding to adjacent
locations on the grid are exactly 1 apart, in `∞ distance. Thus we see that setting C ′n =

√
m/` gives

the desired containment Sd(C ′n) ⊇ Hd(1). It is always true that m � n for a d-dimensional grid
(though the constant may depend on d), so that

√
m/` � n1/2−1/d. This completes the proof for the

Sobolev class scaling.

As for TV class scaling, the result follows from the simple fact that ‖x‖1 ≤
√
m‖x‖2 for any x ∈ Rm,

so that we may take Cn =
√
mC ′n = n1−1/d.

A.2 Proof of Theorem 2 (minimax rates over TV classes)

Here and henceforth, we use the notation Bp(r) = {x : ‖x‖p ≤ r} for the `p ball of radius r, where
p, r > 0 (and the ambient dimension will be determined based on the context).

We begin with a very simple lemma, that embeds an `1 ball inside the TV ball Td(Cn).
Lemma A.1. Let G be a graph with maximum degree dmax, and let D ∈ Rm×n be its incidence
matrix. Then for any r > 0, it holds that B1(r/dmax) ⊆ Td(r).

Proof. Write Di for the ith column of D. The proof follows from the observation that, for any θ,

‖Dθ‖1 =

∥∥∥∥ n∑
i=1

Diθi

∥∥∥∥
1

≤
n∑
i=1

‖Di‖1|θi| ≤
(

max
i=1,...,n

‖Di‖1
)
‖θ‖1 = dmax‖θ‖1.
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To prove Theorem 2, we will rely on a result from Birge and Massart [1], which gives a lower bound
for the risk in a normal means problem, over `p balls. Another related, earlier result is that of Donoho
and Johnstone [3]; however, the Birge and Massart result places no restrictions on the radius of the
ball in question, whereas the Donoho and Johnstone result does. Translated into our notation, the
Birge and Massart result is as follows.
Lemma A.2 (Proposition 5 of Birge and Massart [1]). Assume i.i.d. observations yi ∼ N(θ0,i, σ

2),
i = 1, . . . , n, and n ≥ 2. Then the minimax risk over the `p ball Bp(rn), where 0 < p < 2, satisfies

n ·R(Bp(rn)) ≥ c ·


σ2−prpn

[
1 + log

(
σpn

rpn

)]1−p/2

if σ
√

log n ≤ rn ≤ σn1/p/
√
ρp

r2
n if rn < σ

√
log n

σ2n/ρp if rn > σn1/p/
√
ρ

.

Here c > 0 is a universal constant, and ρp > 1.76 is the unique solution of ρp log ρp = 2/p.

Finally, applying Lemma A.2 to B1(Cn/dmax) almost gives the lower bound as stated in Theorem 2.
However, note that the minimax risk in question is trivially lower bounded by σ2/n, because

inf
θ̂

sup
θ0∈Td(Cn)

1

n
E‖θ̂ − θ0‖22 ≥ inf

θ̂
sup

θ0:θ0,1=...=θ0,n

1

n

n∑
i=1

E(θ̂i − θ0,1)2

= inf
θ̂1

sup
θ0,1

E(θ̂1 − θ0,1)2

=
σ2

n
.

In the second to last line, the problem is to estimate a 1-dimensional mean parameter θ0,1, given the
observations yi ∼ N(θ0,1, σ

2), i.i.d., for i = 1, . . . , n; this has a well-known minimax risk of σ2/n.
What this means for our TV problem: to derive a lower bound for the minimax rate over Td(Cn), we
may take the maximum of the result of applying Lemma A.2 toB1(Cn/dmax) and σ2/n. One can see
that the term σ2/n only plays a role for small Cn, i.e., it effects the case when Cn < σdmax

√
log n,

where the lower bound becomes C2
n/(d

2
maxn) ∨ σ2/n.

A.3 Proof of Theorem 3 (minimax linear rates over TV classes)

First we recall a few definitions, from Donoho et al. [4]. Given a set A ⊆ Rk, its quadratically convex
hull qconv(A) is defined as

qconv(A) =
{

(x1, . . . , xk) : (x2
1, . . . , x

2
k) ∈ conv(A2

+)
}
, where

A2
+ =

{
(a2

1, . . . , a
2
k) : a ∈ A, ai ≥ 0, i = 1, . . . , k

}
.

(Here conv(B) denotes the convex hull of a set B.) Furthermore, the set A is called quadratically
convex provided that qconv(A) = A. Also, A is called orthosymmetric provided that (a1, . . . , ak) ∈
A implies (σ1a1, . . . , σkak) ∈ A, for any choice of signs σ1, . . . , σk ∈ {−1, 1}.
Now we proceed with the proof. Following from equation (7.2) of Donoho et al. [4],

qconv
(
B1(Cn/dmax)

)
= B2(Cn/dmax).

Theorem 11 of Donoho et al. [4] states that, for orthosymmetric, compact sets, such as B1(Cn/dmax),
the minimax linear risk equals that of its quadratically convex hull. Moreover, Theorem 7 of Donoho
et al. [4] tells us that for sets that are orthosymmetric, compact, convex, and quadratically convex,
such as B2(Cn/dmax), the minimax linear risk is the same as the minimax linear risk over the worst
rectangular subproblem. We consider B∞(Cn/(dmax

√
n)), and abbreviate rn = Cn/(dmax

√
n). It

is fruitful to study rectangles because the problem separates across dimensions, as in

inf
θ̂ linear

sup
θ0∈B∞(rn)

E
[

1

n

n∑
i=1

(θ̂i − θ0,i)
2

]
=

1

n

n∑
i=1

[
inf

θ̂i linear
sup

|θ0,i|≤rn
E(θ̂i − θ0,i)

2

]
= inf
θ̂1 linear

sup
|θ0,1|≤rn

E(θ̂1 − θ0,1)2.
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Thus it suffices to compute the minimax linear risk over the 1d class {θ0,1 : |θ0,1| ≤ rn}. It is easily
shown (e.g., see Section 2 of Donoho et al. [4]) that this is r2

nσ
2/(r2

n + σ2
2), and so this is precisely

the minimax linear risk for B2(Cn/dmax), and for B1(Cn/dmax).

To get the first lower bound as stated in the theorem, we simply take a maximum of r2
nσ

2/(r2
n + σ2

2)
and σ2/n, as the latter is the minimax risk for estimating a 1-dimensional mean parameter given n
observations in a normal model with variance σ2, recall the end of the proof of Theorem 2. To get the
second, we use the fact that 2ab/(a+ b) ≥ min{a, b}. This completes the proof.

A.4 Alternative proof of Theorem 3

Here, we reprove Theorem 3 using elementary arguments. We write y = θ0 + ε, for ε ∼ N(0, σ2I).
Given an arbitary linear estimator, θ̂ = Sy for a matrix S ∈ Rn×n, observe that

E
[
MSE(θ̂, θ0)

]
=

1

n
E‖θ̂ − θ0‖22 =

1

n
E‖S(θ0 + ε)− θ0‖22

=
1

n
E‖Sε‖22 +

1

n
‖(S − I)θ0‖22

=
σ2

n
‖S‖2F +

1

n
‖(S − I)θ0‖22, (A.1)

which we may view as the variance and (squared) bias terms, respectively. Now denote by ei the ith
standard basis vector, and consider

σ2

n
‖S‖2F +

(
sup

θ0:‖Dθ0‖1≤Cn

1

n
‖(S − I)θ0‖22

)
≥ σ2

n
‖S‖2F +

C2
n

d2
maxn

(
max

i=1,...,n
‖(I − S)ei‖22

)

≥ σ2

n
‖S‖2F +

C2
n

d2
maxn

2

n∑
i=1

‖(I − S)ei‖22

=
σ2

n
‖S‖2F +

C2
n

d2
maxn

2
‖(I − S)‖2F

≥ σ2

n

n∑
i=1

S2
ii +

C2
n

d2
maxn

2

n∑
i=1

(1− Sii)2

=
1

n

n∑
i=1

(
σ2S2

ii +
C2
n

d2
maxn

(1− Sii)2

)
.

Here Sii, i = 1, . . . , n denote the diagonal entries of S. To bound each term in the sum, we apply the
simple inequality ax2 + b(1− x)2 ≥ ab/(a+ b) for all x (since a short calculation shows that the
quadratic in x here is minimized at x = b/(a + b)). We may continue on lower bounding the last
displayed expression, giving

σ2

n
‖S‖2F +

(
sup

θ0:‖Dθ0‖1≤Cn

1

n
‖(S − I)θ0‖22

)
≥ σ2C2

n

C2
n + σ2d2

maxn
.

Lastly, we may take the maximum of this with σ2/n in order to derive a final lower bound, as argued
in the proof of Theorem 3.

A.5 Proof of Lemma 4 (mean estimator over TV classes)

For this estimator, the smoother matrix is S = 11T /n and so ‖S‖2F = 1. From (A.1), we have

E
[
MSE(θ̂mean, θ0)

]
=
σ2

n
+

1

n
‖θ0 − θ̄01‖22,
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where θ̄0 = (1/n)
∑n
i=1 θ0,i. Now

sup
θ0:‖Dθ0‖1≤Cn

1

n
‖θ0 − θ̄01‖22 = sup

x∈row(D):‖Dx‖1≤Cn

1

n
‖x‖22

= sup
z∈col(D):‖z‖1≤Cn

1

n
‖D†z‖22

≤ sup
z:‖z‖1≤Cn

1

n
‖D†z‖22

=
C2
n

n
max

i=1,...,n
‖D†i ‖

2
2

≤ C2
nM

2
n

n
,

which establishes the desired bound.

A.6 Additional experiments comparing TV denoising and Laplacian
smoothing

Piecewise constant signal in 2d Piecewise constant signal in 3d

n
102 103 104 105

M
S

E

10-3

10-2

10-1

100

TV denoising (-tted slope -0.68)
Laplacian smoothing (-tted slope -0.36)
Minimax rate: n!1=2

Minimax linear rate: constant

n
102 103 104 105

M
S

E

10-3

10-2

10-1

100

TV denoising (-tted slope -0.57)
Laplacian smoothing (-tted slope -0.27)
Minimax rate: n!1=3

Minimax linear rate: constant

Figure A.1: MSE curves for estimating a “piecewise constant” signal, having a single elevated region, over 2d
and 3d grids. For each n, the results were averaged over 5 repetitions, and the Laplacian smoothing and TV
denoising estimators were tuned for best average MSE performance. We set θ0 to satisfy ‖Dθ0‖1 � n1−1/d,
matching the canonical scaling. Note that all estimators achieve better performance than that dictated by their
minimax rates.

A.7 Proof of Theorem 5 (minimax rates over Sobolev classes)

Recall that we denote by L = V ΣV T the eigendecomposition of the graph Laplacian L = DTD,
where Σ = diag(ρ1, . . . , ρn) with 0 = ρ1 < ρ2 ≤ . . . ≤ ρn, and where V ∈ Rn×n has orthonormal
columns. Also denote by D = UΣ1/2V T the singular value decomposition of the edge incidence
matrix D, where U ∈ Rm×n has orthonormal columns.1 First notice that

‖Dθ0‖2 = ‖UΣ1/2V T θ0‖2 = ‖Σ1/2V T θ0‖2.

1When d = 1, we have m = n− 1 edges, and so it is not be possible for U to have orthonormal columns;
however, we can just take its first column to be all 0s, and take the rest as the eigenbasis for Rn−1, and all the
arguments given here will go through.
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This suggests that a rotation by V T will further simplify the minimax risk over Sd(C ′n), i.e.,

inf
θ̂

sup
θ0:‖Σ1/2V T θ0‖2≤C′n

1

n
E‖θ̂ − θ0‖22 = inf

θ̂
sup

θ0:‖Σ1/2V T θ0‖2≤C′n

1

n
E‖V T θ̂ − V T θ0‖22

= inf
γ̂

sup
γ0:‖Σ1/2γ0‖2≤C′n

1

n
E‖γ̂ − γ0‖22, (A.2)

where we have rotated and now consider the new parameter γ0 = V T θ0, constrained to lie in

Ed(C ′n) =

{
γ :

n∑
i=2

ρiγ
2
i ≤ (C ′n)2

}
.

To be clear, in the rotated setting (A.2) we observe a vector y′ = V T y ∼ N(γ0, σ
2I), and the goal is

to estimate the mean parameter γ0. Since there are no constraints along the first dimension, we can
separate out the MSE in (A.2) into that incurred on the first component, and all other components.
Decomposing γ0 = (α0, β0) ∈ R1×(n−1), with similar notation for an estimator γ̂,

inf
γ̂

sup
γ0∈Ed(C′n)

1

n
E‖γ̂ − γ0‖22 = inf

α̂
sup
α0

1

n
E(α̂− α0)2 + inf

β̂
sup

β0∈P−1(Ed(C′n))

1

n
E‖β̂ − β0‖22

=
σ2

n
+ inf

β̂
sup

β0∈P−1(Ed(C′n))

1

n
E‖β̂ − β0‖22, (A.3)

where P−1 projects onto all coordinate axes but the 1st, i.e., P−1(x) = (0, x2, . . . , xn), and in the
second line we have used the fact that the minimax risk for estimating a 1-dimensional parameter α0

given an observation z ∼ N(α0, σ
2) is simply σ2.

Let us lower bound the second term in (A.3), i.e., R(P−1(Ed(C ′n))). The ellipsoid P−1(Ed(C ′n)) is
orthosymmetric, compact, convex, and quadratically convex, hence Theorem 7 in Donoho et al. [4]
tells us that its minimax linear risk is the minimax linear risk of its hardest rectangular subproblem.
Further, Lemma 6 in Donoho et al. [4] then tells us the minimax linear risk of its hardest rectangular
subproblem is, up to a constant factor, the same as the minimax (nonlinear) risk of the full problem.
More precisely, Lemma 6 and Theorem 7 from Donoho et al. [4] imply

R(P−1(Ed(C ′n))) ≥ 4

5
RL(P−1(Ed(C ′n))) = sup

H⊆P−1(Ed(C′n))

RL(H), (A.4)

where the supremum above is taken over all rectangular subproblems, i.e., all rectangles H contained
in P−1(Ed(C ′n)).

To study rectangular subproblems, it helps to reintroduce the multi-index notation for a location i on
the d-dimensional grid, writing this as (i1, . . . , id) ∈ {1, . . . , `}d, where ` = n1/d. For a parameter
2 ≤ τ ≤ `, we consider rectangular subsets of the form2

H(τ) =
{
β ∈ Rn−1 : |βi| ≤ ti(τ), i = 2, . . . , n

}
, where

ti(τ) =

{
C ′n/(

∑
j1,...,jd≤τ ρj1,...,jd)1/2 if i1, . . . , id ≤ τ

0 otherwise
, for i = 2, . . . , n.

It is not hard to check thatH(τ) ⊆ {β ∈ Rn−1 :
∑n
i=2 ρiβ

2
i ≤ (C ′n)2} = P−1(Ed(C ′n)). Then, from

(A.4),

R(P−1(Ed(C ′n))) ≥ sup
τ

RL(H(τ)) = sup
τ

1

n

n∑
i=1

ti(τ)2σ2

ti(τ)2 + σ2

= sup
τ

1

n

(τd − 1)σ2(C ′n)2

(C ′n)2 +
∑
j1,...,jd≤τ ρj1,...,jd

.

The first equality is due to the fact that the minimax risk for rectangles decouples across dimensions,
and the 1d minimax linear risk is straightforward to compute for an interval, as argued in the proof

2Here, albeit unconvential, it helps to index β ∈ H(τ) ⊆ Rn−1 according to components i = 2, . . . , n,
rather than i = 1, . . . , n − 1. This is so that we may keep the index variable i to be in correspondence with
positions on the grid.
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Theorem 3; the second equality simply comes from a short calculation following the definition of
ti(τ), i = 2, . . . , n. Applying Lemma A.3, on the eigenvalues of the graph Laplacian matrix L for a
d-dimensional grid, we have that for a constant c > 0,

(τd − 1)σ2(C ′n)2

(C ′n)2 +
∑
j1,...,jd≤τ ρj1,...,jd

≥ (τd − 1)σ2(C ′n)2

(C ′n)2 + cσ2τd+2/`2
≥ 1

2

σ2(C ′n)2

(C ′n)2τ−d + cσ2τ2/`2
.

We can choose τ to maximize the expression on the right above, given by

τ∗ =

(
`2(C ′n)2

cσ2

) 1
d+2

.

When 2 ≤ τ∗ ≤ `, this provides us with the lower bound on the minimax risk

R(P−1(Ed(C ′n))) ≥ RL(H(τ∗)) ≥ 1

2n

τdσ2(C ′n)2

2(cσ2)
d
d+2 (C ′n)

4
d+2 `−

2d
d+2

=
c1
n

(nσ2)
2
d+2 (C ′n)

2d
d+2 ,

(A.5)
for a constant c1 > 0. When τ∗ < 2, we can use τ = 2 as lower bound on the minimax risk,

R(P−1(Ed(C ′n))) ≥ RL(H(2)) ≥ 1

2n

σ2`2(C ′n)2

`2(C ′n)22−d + cσ222
≥ c2

n
`2(C ′n)2, (A.6)

for a constant c2 > 0, where in the last inequality, we used the fact that `2(C ′n)2 ≤ cσ22d+2 (just a
constant) since we are in the case τ∗ < 2. Finally, when τ∗ > `, we can use τ = ` as a lower bound
on the minimax risk,

R(P−1(Ed(C ′n))) ≥ RL(H(`)) ≥ 1

2n

σ2(C ′n)2

`−d(C ′n)2 + cσ2
≥ c3σ2, (A.7)

for a constant c3 > 0, where in the last inequality, we used that cσ2 ≤ `−d(C ′n)2 as we are in the
case τ∗ > `. Taking a minimum of the lower bounds in (A.5), (A.6), (A.7), as a way to navigate the
cases, gives us a final lower bound on R(P−1(Ed(C ′n))), and completes the proof.

A.8 Proof of Theorem 6 (Laplacian eigenmaps and Laplacian smoothing
over Sobolev classes)

We will prove the results for Laplacian eigenmaps and Laplacian separately.

Laplacian eigenmaps. The smoother matrix for this estimator is Sk = V[k]V
T
[k], for a tuning pa-

rameter k = 1, . . . , n. From (A.1),

E
[
MSE(θ̂LE, θ0)

]
=
σ2

n
k +

1

n
‖(I − Sk)θ0‖22.

Now we write k = τd, and analyze the max risk of the second term,

sup
θ0:‖Dθ0‖2≤C′n

1

n
‖(I − Sk)θ0‖22 = sup

z:‖z‖2≤C′n

1

n
‖(I − Sk)D†z‖22

=
(C ′n)2

n
σ2

max

(
(I − Sk)D†

)
≤ (C ′n)2

n

1

4 sin2(πτ/(2`))

≤ (C ′n)2

n

4`2

π2τ2
.

Here we denote by σmax(A) the maximum singular value of a matrix A. The last inequality above
used the simple lower bound sin(x) ≥ x/2 for x ∈ [0, π/2]. The earlier inequality used that

(I − Sk)D† = (I − V[k]V
T
[k])V

T (Σ†)1/2UT =
[
0, . . . , 0, Vk+1, . . . , Vn

]
(Σ†)1/2UT ,

where we have kept the same notation for the singular value decomposition of D as in the proof of
Theorem 5. Therefore σ2

max((I − Sk)D†) is the reciprocal of the (k + 1)st smallest eigenvalue ρk+1

6



of the graph Laplacian L. For any subset A of the set of eigenvalues λ(L) = {ρ1, . . . , ρn} of the
Laplacian, with |A| = k, note that ρk+1 ≥ min λ(L) \ A. This means that, for our d-dimensional
grid,

ρk+1 ≥ min λ(L) \ {ρi1,...,id : i1, . . . , id ≤ τ}
= 4 sin2(πτ/(2`)),

where recall ` = n1/d, as explained by (A.8), in the proof of Lemma A.3.

Hence, we have established

sup
θ0:‖Dθ0‖2≤C′n

E
[
MSE(θ̂LE, θ0)

]
≤ σ2

n
+
σ2

n
τd +

(C ′n)2

n

4`2

π2τ2
.

Choosing τ to balance the two terms on the right-hand side above results in τ∗ = (2`C ′n/(πσ))
2
d+2 .

Plugging in this choice of τ , while utilizing the bounds 1 ≤ τ ≤ `, very similar to the arguments
given at the end of the proof of Theorem 5, gives the result for Laplacian eigenmaps.

Laplacian smoothing. The smoother matrix for this estimator is Sλ = (I + λL)−1, for a tuning
parameter λ ≥ 0. From (A.1),

E
[
MSE(θ̂LS, θ0)

]
=
σ2

n

n∑
i=1

1

(1 + λρi)2
+

1

n
‖(I − Sλ)θ0‖22.

When d = 1, 2, or 3, the first term upper is bounded by c1σ2/n+ c2σ
2/λd/2, for some constants

c1, c2 > 0, by Lemma A.4. As for the second term,

sup
θ0:‖Dθ0‖2≤C′n

1

n
‖(I − Sλ)θ0‖22 = sup

z:‖z‖2≤C′n
‖(I − Sλ)D†z‖22

=
(C ′n)2

n
σ2

max

(
(I − Sλ)D†

)
=

(C ′n)2

n
max

i=2,...,n

(
1− 1

1 + λρi

)2
1

ρi

=
(C ′n)2

n
λ max
i=2,...,n

λρi
(1 + λρi)2

≤ (C ′n)2λ

4n
.

In the third equality we have used the fact the eigenvectors of I − Sλ are the left singular vectors of
D†, and in the last inequailty we have used the simple upper bound f(x) = x/(1 + x)2 ≤ 1/4 for
x ≥ 0 (this function being maximized at x = 1).

Therefore, from what we have shown,

sup
θ0:‖Dθ0‖2≤C′n

E
[
MSE(θ̂LS, θ0)

]
≤ c1σ

2

n
+
c2σ

2

λd/2
+

(C ′n)2λ

4n
.

Choosing λ to balance the two terms on the right-hand side above gives λ∗ = c(n/(C ′n)2)2/(d+2),
for a constant c > 0. Plugging in this choice, and using upper bounds from the trivial cases λ = 0 and
λ =∞ when C ′n is very small or very large, respectively, gives the result for Laplacian smoothing.
Remark A.1. When d = 4, Lemma A.4 gives a slightly worse upper bound on

∑n
i=1 1/(1 + λρi)

2,
with an “extra” term (nc2/λ

d/2)) log(1 + c3λ), for constants c2, c3 > 0. It is not hard to show, by
tracing through the same arguments as given above that we can use this to establish an upper bound
on the max risk of

sup
θ0∈Sd(C′n)

E
[
MSE(θ̂LE, θ0)

]
≤ c

n

(
(nσ2)

2
d+2 (C ′n)

2d
d+2 log(n/(C ′n)2) ∧ nσ2 ∧ n2/d(C ′n)2

)
+
cσ2

n
,

only slightly worse than the minimax optimal rate, by a log factor.

When d ≥ 5, our analysis provides a much worse bound for the max risk of Laplacian smoothing, as
the integral denoted I(d) in the proof of Lemma A.4 grows very large when d ≥ 5. We conjecture
that this not due to slack in our proof technique, but rather, to the Laplacian smoothing estimator
itself, since all inequalities the proof are fairly tight.
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A.9 Utility lemmas used in the proofs of Theorems 5 and 6

This section contains some calculations on partial sums of eigenvalues of the Laplacian matrix L, for
d-dimensions grids. These are useful for the proofs of both Theorem 5 and Theorem 6.
Lemma A.3. Let L ∈ Rn×n denote the graph Laplacian matrix of a d-dimensional grid graph, and
ρi1,...,id , (i1, . . . , id) ∈ {1, . . . , `}d be its eigenvalues, where ` = n1/d. Then there exists a constant
c > 0 (dependent on d) such that, for any 1 ≤ τ ≤ `,∑

(i1,...,id)∈{1,...,τ}d
ρi1,··· ,id ≤ c

τd+2

`2
.

Proof. The eigenvalues of L can be written explicitly as

ρi = 4 sin2
(π(i1 − 1)

2`

)
+ . . .+ 4 sin2

(π(id − 1)

2`

)
, (i1, . . . , id) ∈ {1, . . . , `}d. (A.8)

This follows from known facts about the eigenvalues for the Laplacian matrix of a 1d grid, and the
fact that the Laplacian matrix for higher-dimensional grids can be expressed in terms of a Kronecker
sum of the Laplacian matrix of an appropriate 1d grid (e.g., [2, 6–9, 5]). We now use the fact that
sin(x) ≤ x for all x ≥ 0, which gives us the upper bound∑

(i1,...,id)∈{1,...,τ}d
ρi1,··· ,id ≤

π2

`2

∑
(i1,...,id)∈{1,...,τ}d

(
(i1 − 1)2 + . . .+ (id − 1)2

)

≤ π2d

`2
τd−1

τ∑
i=1

(i− 1)2

≤ π2d

`2
τd−1τ3

=
π2d

`2
τd+2,

as desired.

Lemma A.4. Let L ∈ Rn×n denote the graph Laplacian matrix of a d-dimensional grid graph, and
ρi, i = 1, . . . , n be its eigenvalues. Let λ ≥ 0 be arbitrary. For d = 1, 2, or 3, there are constants
c1, c2 > 0 such that

n∑
i=1

1

(1 + λρi)2
≤ c1 + c2

n

λd/2
.

For d = 4, there are constants c1, c2, c3 > 0 such that
n∑
i=1

1

(1 + λρi)2
≤ c1 + c2

n

λd/2

(
1 + log(1 + c3λ)

)
.

Proof. We will use the explicit form of the eigenvalues as given in the proof of Lemma A.3. In the
expressions below, we use c > 0 to denote a constant whose value may change from line to line.
Using the inequality sinx ≥ x/2 for x ∈ [0, π/2],

n∑
i=1

1

(1 + λρi)2
≤

∑
(i1,...,id)∈{1,...,`}d

1(
1 + λ π

2

4`2

∑d
j=1(ij − 1)2

)2
≤ 1 +

∫
[0,`]d

1(
1 + λπ

2

4

∑d
j=1 x

2
j/`

2
)2 dx

= 1 + c

∫ `
√
d

0

1(
1 + λπ

2

4 r
2/`2

)2 rd−1 dr

= 1 + c
n

λd/2

∫ π
2

√
λd

0

ud−1

(1 + u2)2
du︸ ︷︷ ︸

I(d)

.
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In the second inequality, we used the fact that the right-endpoint Riemann sum is always an underesti-
mate for the integral of a function that is monotone nonincreasing in each coordinate. In the third, we
made a change to spherical coordinates, and suppressed all of the angular variables, as they contribute
at most a constant factor. It remains to compute I(d), which can be done by symbolic integration:

I(1) =
π
√
d

4
(
1 + π2

4 λd
) +

1

2
tan−1

(π
2

√
λd
)
≤ 1

4
+
π

4
,

I(2) =
1

2
− 1

2
(
1 + π2

4 λd
) ≤ 1

2
,

I(3) =
1

2
tan−1

(π
2

√
λd
)
≤ π

4
, and

I(4) =
1

2
log
(

1 +
π2

4
λd
)

+
1

2
(
1 + π2

4 λd
) − 1

2
≤ 1

2
log
(

1 +
π2

4
λd
)

+
1

2
.
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