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1 Distance-Generating Functions and Mirror Opera-
tors

We consider a closed, convex set X , and a pair of conjugate convex functions ψ,ψ∗ such
that ψ is closed and proper, and the effective domain of ψ is X . We denote X ∗ the
effective domain of ψ∗. By Fenchel’s duality theorem, ψ∗∗ coincides with ψ, and we
have for all x ∈ E and z ∈ E∗:

ψ∗(z) = sup
x∈E
〈z, x〉 − ψ(x), ψ(x) = sup

z∈E∗
〈z, x〉 − ψ∗(z).

Since ψ and ψ∗ are proper convex functions, they are both subdifferentiable on the
relative interior of their respective domains (Theorem 23.4 in [4]). And if we denote
∂ψ(x) the subdifferential of ψ at x, then we have, by definition of a subgrdient,

z ∈ ∂ψ(x)⇔ ψ(x′)− 〈z, x′〉 ≥ ψ(x)− 〈z, x〉 ∀x′ ∈ E
⇔ x ∈ arg max

x′∈E
〈z, x′〉 − ψ(x′)

⇔ ψ∗(z) = 〈z, x〉 − ψ(x)

and switching the roles of ψ and ψ∗ (and using the fact that ψ∗∗ = ψ), we have the
equivalence

ψ∗(z) + ψ(x) = 〈z, x〉 ⇔ z ∈ ∂ψ(x)⇔ x ∈ ∂ψ∗(z). (1)

By the previous observation, we have for all z ∈ E∗,

∂ψ∗(z) = arg max
x∈E

〈z, x〉 − ψ(x). (2)

And since domψ = X , we have that ∂ψ∗(z) ⊂ X . Thus we have a set-valued function
∂ψ∗(·) which maps E∗ into X . If ψ∗ is differentiable on all of E∗, then ∂ψ∗(·) becomes
a (single-valued) function from E∗ to X , as desired. The following proposition gives a
sufficient condition for differentiability.

Proposition 1. Let ψ,ψ∗ be a pair of convex, closed function which are conjugates of
each other, and suppose that ψ is strongly convex. Then ψ∗ is finite and differentiable
on all of E∗.

Proof. Strong convexity of ψ implies, by Theorem 13.3 in [4], that domψ∗ = E∗, and
by Theorem 25.3 in [4], that ψ∗ is essentially smooth (i.e. that it is differentiable on
the interior of its domain, and that ‖∇ψ(x)‖ → ∞ as x approaches the boundary). But
since domψ∗ = E∗, the interior of the domain is all of E∗.
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2 Replicator Dynamics

The replicator ODE is given by{
∀i, Ẋi +Xi (∇if(X)− 〈X,∇f(X)〉) = 0

X(0) = x0

It has been studied for a long time, see [5] for a survey, and has many applications
ranging from evolutionary game theory [6] and viability theory [1] to transportation [2].

It is used to study large population dynamics, where one considers a population of
players and a finite action set {1, . . . , n}, such that at time t, Xi(t) is the proportion of
players who adopt action i. Then ∇if(X) is the cost (or the negative fitness) of action
i given the distribution X. The ODE is called replicator as it can be obtained using a
simple model of adaptive play as follows: at time t, players are randomly matched in
pairs, and if their current actions are, respectively, i and j, then the first player will
switch to j (i.e. replicate the action of the second player) with a rate proportional to
∇jf(X) − ∇if(X), and similarly for the second player. As a consequence, the rate of
increase of Xi is simply the sum over all actions j of XiXj (the probability of the match
(i, j)) multiplied by the difference in costs ∇jf(X)−∇if(X), i.e.

Ẋi =

n∑
j=1

XiXj(∇jf(X)−∇if(X))

= Xi

 n∑
j=1

Xj(∇jf(X)−∇if(X))


= Xi (〈X,∇f(X)〉 − ∇if(X)) .

3 Illustration of the operator ∇2ψ∗ ◦ ∇ψ(Z)
Consider the accelerated replicator dynamics given in the second example of Section 3.
Recall that

∇2ψ∗(z)ij =
δji e

zi∑
k e

zk
− eziezj

(
∑
k e

zk)
2 .

And the primal version of AMDw,η becomes{
∀i, ˙̌Zi + η(t)Ži

(
∇if(X)−

〈
Ž,∇f(X)

〉)
= 0

Ž(0) = x0.

This example can be used to illustrate the role of the Hessian term in equation (6).
Suppose that ∇ψ∗(Z) approaches the relative boundary of the feasible set, say eZi0

approaches 0. Then (∇2ψ∗(Z)∇f(X))i0 = e
Zi0∑
k e

Zk

(
∇i0f(X)−

〈
∇f(X), eZ∑

eZk

〉)
, also

approaches 0. Figure 1 displays the vector field ∇2ψ∗(Z)∇f(X) for different values of
Z, to illustrate this phenomenon.
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t1

(a) Vector field ∇2ψ∗(Z(t1))∇f(·).

t2

(b) Vector field ∇2ψ∗(Z(t2))∇f(·).

Figure 1: Vector field X 7→ ∇2ψ∗(Z(t))∇f(X) for different values of Z(t) (taken along
a solution trajectory for an example problem with solution on the relative boundary of
the simplex). As ∇ψ∗(Z(t)) approaches the relative boundary, the vector field changes
in such a way that the component that is orthogonal to the boundary vanishes.

4 Discretization of AMD′w,η

Starting from the ODE with generalized averaging,

AMD′w,η


Ż(t) = −η(t)∇f(X(t))

Ẋ(t) = w(t)
W (t) (∇ψ

∗(Z(t))−X(t))

X(t0) = ∇ψ∗(Z(t0)) = x0,

we apply a discretization similar to that used in [3]. Let the step size be
√
s, and apply a

mixed Euler scheme (forward in the Z variable, and backward in theX variable). Given a
solution (X,Z) of the ODE, let tk = k

√
s, and x(k) = X(tk) = X(k

√
s). Approximating

Ẋ(tk) with X(tk+
√
s)−X(tk)√
s

, and Ż(tk) with Z(tk+
√
s)−Z(tk)√
s

, we can write{
z(k+1)−z(k)

√
s

= −ηk∇f(x(k)),
x(k+1)−x(k)

√
s

= ak+1

(
∇ψ∗(z(k+1))− x(k+1)

)
.

(3)

with ηk := η(k
√
s) and ak := a(k

√
s). The second equation can be rewritten as

x(k+1) =
(
x(k) +

√
sak+1∇ψ∗(z(k+1))

)
/
(
1 +
√
sak+1

)
.
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Thus, x(k+1) is a convex combination of ∇ψ∗(z(k)) and x(k) with coefficients λk+1 =√
sak+1

1+
√
sak+1

and 1− λk+1 = 1
1+
√
sak+1

.

Next, using the characterization of the mirror operator ∇ψ∗, given in equation (2),
we can write that

ž(k+1) = ∇ψ∗(z(k+1))

= arg min
x∈X

ψ(x)−
〈
z(k+1), x

〉
= arg min

x∈X
ψ(x)−

〈
∇ψ(ž(k))−

√
sηk∇f(x(k)), x

〉
= arg min

x∈X

√
sηk

〈
∇f(x(k)), x

〉
+Dψ(x, ž(k))

To summarize, the discretization can be written purely in terms of the primal variables
x(k) and ž(k) as follows{

x(k+1) = λk+1ž
(k+1) + (1− λk+1)x(k), λk =

√
sak

1+
√
sak

,

ž(k+1) = arg minx∈X
√
sηk

〈
∇f(x(k)), x

〉
+Dψ(x, ž(k)).

(4)

Now to preserve the quadratic convergence rate, we show in [3] show that it suffices
to replace, in the expression (4) of x(k+1) = λk+1∇ψ∗(z(k+1)) + (1−λk+1)x(k), the term
x(k) with x̃(k), obtained as a solution to the following regularized problem

x̃(k+1) = arg min
x∈X

γs
〈
∇f(x(k)), x

〉
+R(x, x(k)),

where R is regularization function that is both strongly convex and smooth. After
applying this modification, we have the following algorithm:

Accelerated mirror descent

1: Initialize x̃(0) = x0, ž(0) = x0,
2: for k ∈ N do
3: ž(k+1) = arg minž∈X

√
sηk

〈
∇f(x(k)), ž

〉
+Dψ(ž, ž(k)).

4: x̃(k+1) = arg minx̃∈X γks
〈
∇f(x(k)), x̃

〉
+R(x̃, x(k))

5: x(k+1) = λk+1ž
(k+1) + (1− λk+1)x̃(k+1), with λk =

√
sak

1+
√
sak

.
6: end for

Finally, ak can be computed adaptively as described in Section 4, which results in
Algorithm 1, copied below.

Algorithm 1 Accelerated mirror descent with adaptive averaging. Parameters βmax ≥
β ≥ 3 and step size s.

1: Initialize x̃(0) = x0, ž(0) = x0, a1 = β√
s

2: for k ∈ N do
3: ž(k+1) = arg minž∈X βks

〈
∇f(x(k)), ž

〉
+Dψ(ž, ž(k)).

4: x̃(k+1) = arg minx̃∈X γs
〈
∇f(x(k)), x̃

〉
+R(x̃, x(k))

5: x(k+1) = λk+1ž
(k+1) + (1− λk+1)x̃(k+1), with λk =

√
sak

1+
√
sak

.

6: ak = min(ak−1,
βmax

k
√
s

).

7: if f(x̃(k+1)) > f(x̃(k)) then
8: ak = β

k
√
s
.

9: end if
10: end for

Note that the conditions on ak ensures that β
k
√
s
≤ ak ≤ βmax

k
√
s

, which will be impor-

tant in proving the convergence rate of the discretization.
We will show that the sequence

L̃(k) := Lr(x̃
(k), z(k), k

√
s) = sk2(f(x̃(k))− f?) +Dψ∗(z

(k), z?)
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is a Lyapunov function for the discrete dynamics given in Algorithm 1. In the following,
we will suppose that βmax ≥ β ≥ 3, that ψ∗ is Lψ∗ smooth, and that R is `R strongly
convex and LR smooth.

Lemma 1. If γ ≥ ββmaxLRLψ∗ and s ≤ `R
2Lfγ

, then

L̃(k+1) − L̃(k) ≤ (2k + 1− kβ)sf(x̃(k+1))− f?.

It follows that L̃(k) is non-increasing for k ≥ 1.

The proof is given below, and is an extension of the proof of Lemma 2 in [3]. As a
consequence, we can prove that adaptive averaging preserves the quadratic convergence
rate.

Theorem 1. Accelerated mirror descent with adaptive averaging, given in Algorithm 1,
with step sizes γ ≥ ββmaxLRLψ∗ and s ≤ `R

2Lfγ
, guarantees that for all k > 0,

f(x̃(k))− f? ≤ L̃(1)

sk2
.

Proof. Since L̃(k) is non-increasing for all k ≥ 1, we have

f(x̃(k))− f? ≤ L̃(k)

sk2
≤ L̃(1)

sk2
.

In the proof of Lemma 1, we will use the following lemmas, which can be found in [3].

Lemma 2 (Convexity inequality). Let f be a convex function and suppose that ∇f is
Lf -Lipschitz w.r.t. ‖ · ‖. Then for all x, x′, x+,

f(x+) ≤ f(x′) + 〈∇f(x), x+ − x′〉+
Lf

2 ‖x
+ − x‖2

Lemma 3 (Bregman identity). For all u, v, w

Dψ∗(u, v)−Dψ∗(w, v) = −Dψ∗(w, u) + 〈∇ψ∗(u)−∇ψ∗(v), u− w〉

Lemma 4 (Bregman bound). For all u, v ∈ E∗,

1

2Lψ∗
‖ǔ− v̌‖2 ≤ Dψ∗(u, v) ≤ Lψ∗

2
‖u− v‖2∗

where ǔ = ∇ψ∗(u) and v̌ = ∇ψ∗(v).

Proof of Lemma 1. We start by bounding the difference in Bregman divergences

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

= −Dψ∗(z
(k), z(k+1)) +

〈
∇ψ∗(z(k+1))−∇ψ∗(z?), z(k+1) − z(k)

〉
by Lemma 3,

≤ − 1

2Lψ∗
‖ž(k+1) − ž(k)‖2 +

〈
ž(k+1) − x?,−βks∇f(x(k))

〉
by Lemma 4.

(5)

Now using the step from x(k) to x̃(k+1), we have

x̃(k+1) = arg min
x∈X

γs
〈
∇f(x(k)), x

〉
+R(x, x(k))

with `R
2 ‖x−y‖

2 ≤ R(x, y) ≤ LR

2 ‖x−y‖
2. Therefore, for any x, R(x, x(k)) ≥ R(x̃(k+1), x(k))+

γs
〈
∇f(x(k)), x̃(k+1) − x

〉
. We can write

ž(k+1) − ž(k) =
1

λk

(
λkž

(k+1) + (1− λk)x̃(k) − x(k)
)

=
1

λk

(
d(k+1) − x(k)

)
,
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where we have defined d(k+1) in the obvious way. Thus

‖ž(k+1) − ž(k)‖2

=
1

λ2k
‖d(k+1) − x(k)‖2

≥ 1

λ2k

2

LR
R(d(k+1), x(k))

≥ 1

λ2k

2

LR

(
R(x̃(k+1), x(k)) + γs

〈
∇f(x(k)), x̃(k+1) − d(k+1)

〉)
≥ 1

λ2k

2

LR

(
`R
2
‖x̃(k+1) − x(k)‖2 + γs

〈
∇f(x(k)), x̃(k+1) − λkž(k+1) − (1− λk)x̃(k)

〉)
.

Thus, multiplying by λkβkLR

2γ ,

λkβkLR
2γ

‖ž(k+1) − ž(k)‖2

≥ βk`R
2λkγ

‖x̃(k+1) − x(k)‖2 +

〈
βks∇f(x(k)),

1

λk
x̃(k+1) − ž(k+1) − 1− λk

λk
x̃(k)

〉
. (6)

Subtracting (6) from (5),

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

≤ −αk‖ž(k+1) − ž(k)‖2 − βk`R
2λkγ

‖x̃(k+1) − x(k)‖2

+

〈
−βks∇f(x(k)),−x? +

1

λk
x̃(k+1) − 1− λk

λk
x̃(k)

〉
,

where

αk =
1

2Lψ∗
− βkλkLR

2γ
.

Defining D
(k+1)
1 = ‖x̃(k+1) − x(k)‖2 and D

(k+1)
2 = ‖ž(k+1) − ž(k)‖2, we can rewrite the

last inequality as

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

= −αkD(k+1)
2 − βk`R

2λkγ
D

(k+1)
1 + βsk

〈
−∇f(x(k)), x̃(k+1) − x?

〉
+

1− λk
λk

βsk
〈
−∇f(x(k)), x̃(k+1) − x̃(k)

〉
By Lemma 2, we can bound the inner products as follows〈

x̃(k+1) − x̃(k),−∇f(x(k))
〉
≤ f(x̃(k))− f(x̃(k+1)) +

Lf
2
D

(k+1)
1 ,〈

x̃(k+1) − x?,−∇f(x(k))
〉
≤ f∗ − f(x̃(k+1)) +

Lf
2
D

(k+1)
1 .

Combining the last inequalities,

Dψ∗(z
(k+1), z?)−Dψ∗(z(k), z?)

≤ −αkD(k+1)
2 − βk`R

2λkγ
D

(k+1)
1 + βks

(
f? − f(x̃(k+1)) +

Lf
2
D

(k+1)
1

)
+ βks

1− λk
λk

(
f(x̃(k))− f(x̃(k+1)) +

Lf
2
D

(k+1)
1

)
= βks

1− λk
λk

(
f(x̃(k))− f(x̃(k+1))

)
+ βks

(
f∗ − f(x̃(k+1))

)
− αkD(k+1)

2 − βkD(k+1)
1 ,

where

βk =
βk`R
2λkγ

− βksLf
2

− βksLf
2

1− λk
λk

=
βk

2λk

(
`R
γ
− Lfs

)
.
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Next, observe that 1−λk

λk
= 1√

sak
, and by construction of ak (lines 6–8 in Algorithm 1),

we have 1
ak
√
s
(f(x̃(k+1))− f(x̃(k))) ≤ k

β (f(x̃(k+1))− f(x̃(k))), so

1− λk
λk

(f(x̃(k+1))− f(x̃(k))) =
1√
sak

(f(x̃(k+1))− f(x̃(k))) ≤ k

β
(f(x̃(k+1))− f(x̃(k))).

Combining with the previous inequality, we have

Dψ∗(z
(k+1), z?)−Dψ∗(z(k), z?)

≤ k2s
(
f(x̃(k))− f(x̃(k+1))

)
+ βks

(
f∗ − f(x̃(k+1))

)
− αkD(k+1)

2 − βkD(k+1)
1 ,

Finally, we obtain a bound on the difference L̃(k+1) − L̃(k):

L̃(k+1) − L̃(k)

= (k + 1)2s(f(x̃(k+1))− f?)− k2s(f(x̃(k))− f?) +Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

= k2s(f(x̃(k+1))− f(x̃(k))) + (2k + 1)s(f(x̃(k+1))− f?) +Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

≤ (2k + 1− βk)s(f(x̃(k+1))− f?)− αkD(k+1)
2 − βkD(k+1)

1

For the desired inequality to hold, it suffices that αk, βk ≥ 0, i.e.

1

2Lψ∗
− βkλkLR

2γ
≥ 0

βk

2λk

(
`R
γ
− Lfs

)
≥ 0,

i.e.

γ ≥ βkλkLRLψ∗

s ≤ `R
Lfγ

.

To simplify the condition on γ, we observe that λk = 1
1+ 1√

sak

, and since ak ≤ βmax

k
√
s

, we

have

βkλk ≤
βk

1 + k
βmax

≤ ββmax

So it is sufficient that

γ ≥ ββmaxLRLψ∗ s ≤ `R
Lfγ

which concludes the proof.

5 Additional Numerical Experiments

We provide additional numerical experiments in higher dimension n = 100, to illustrate
the performance of the adaptive averaging compared to the restarting heuristics. We
test the algorithm on simplex-constrained problems, with quadratic objective functions
f(x) = (x − s)TA(x − s) with a positive definite matrix A in the first example, and a
positive semidefinite matrix in the second example (with rank 10), a linear function in
the third example, and the Kullback Leibler divergence in the last example. The results
are reported in Figure 2. Each subfigure has three plots: From left to right, we show
the value of objective function, the Lyapunov function and the energy function. We
observe similar results to those in dimension 3. Adaptive averaging performs as well as
the restarting heuristics, it gives a significant improvement in one of the examples (in
this case the linear example), and it guarantees the decrease of the Lyapunov function.
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(a) Strongly convex quadratic.

(b) Weakly convex function.

(c) Linear function.

(d) KL divergence.

Figure 2: Examples of accelerated descent with adaptive averaging and restarting on
simplex constrained problems.
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